
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 3 Ver. VII (May. - Jun. 2016), PP 08-14 

www.iosrjournals.org 

DOI: 10.9790/5728-1203070814                                           www.iosrjournals.org                                     8 | Page 

 

Mathematical Modeling and Analysis of Finite Queueing System 

with Unreliable Single Server 
 

Anupama
1
, Prof Anjana Solanki

2
 

1
Deptt. of Applied Mathematics, Research Scholar, GBU, Greater Noida (U. P.) India, 

2
Deptt. of Applied Mathematics, GBU, Greater Noida (U. P.) India, 

 

Abstract: In this paper we study the queueing system of unreliable server of production system which causes 

server breakdowns. The analysis of a finite-capacity N queueing system with a single server where service rule 

is FIFO has been done. A customer, on arrival to an idle server, is immediately taken for service; or else he 

joins the tail of the queue. During the service of a customer, one or more breakdowns may occur. It takes a 

random amount of time to clear the interruption. We consider a queueing system with troubled and non-

troubled server breakdowns. Both troubled and non-troubled breakdowns may start when there is a customer in 

service. The customer repeats its service after a troubled interruption, and continues its service after a non-

troubled interruption. Using a Laplace Transform approach, we obtain various performance measures such as 

service times with troubled and non –troubled interruption, the moments of the queue size and retard times. 

Special cases also considered in this paper. Numerical illustrations of the system behavior are also provided. 
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I. Introduction 

Vacation queues have been investigated for over two decades as a very useful tool for modeling and 

analyzing computer systems, communication networks, manufacturing and production systems and many others. 

Consider a production system that is subject to failures. Failures occur during production or when the 

system is idle and may either lead to the complete loss of the item that is in production, or to a temporary 

production halt. In the former case, the production of the “interrupted” item has to start all over. In the latter 

case, production may continue after the failure is fixed. In queueing theory, periods of temporary service 

unavailability are referred to as server vacations or server breakdowns. Queueing models with service 

breakdowns have proved to be a useful abstraction in situations where a service facility is shared by multiple 

queues, or where the facility is subject to failure. Some queueing problems with the service station subject to 

breakdowns[1] and the N -policy for an unreliable server with delaying repair and two phases of service [2] is 

discussed in 1963 and 2009 respectively. From the vantage point of a single queue, the facility leaves for an 

interruption whenever it attends another queue. When the facility is subject to failures, the breakdowns 

correspond to the time one needs to fix the failure, or the time one spends on preventive maintenance [7]. 

According to Ibe and Trivedi [11], White and Christie [5] were the first to study queues with service 

breakdowns. They consider an M/M/1 queueing system with exponentially distributed breakdowns. Generally 

distributed service times and breakdowns are considered by Avi-Itzhak and Naor [1] and by Thiruvengadam [8]. 

The former authors assume that the server remains with the queue for an exponentially distributed amount of 

time. Federgruen and Green [9] then relax this assumption to phase-type distributed ”on-periods”. Van Dijk [11] 

provides an approximate analysis of a system with exponentially distributed service times but with generally 

distributed on- and off periods, whereas Takine and Sengupta [15] and Masuyama and Takine [4] study 

queueing systems with service breakdowns in a Markov-modulated environment. A processor sharing queueing 

system with exponentially distributed on-periods and generally distributed off-periods is studied by N´u˜nez 

Queija [13]. All these authors assume that customers resume service after the interruption. Gaver [3] considers 

the cases where service is repeated, or repeated and resampled after the interruption. The latter operation mode 

is also studied by Ibe and Trivedi [12] for a two station polling system. In the present contribution, we consider 

M/G/1 queueing systems with combined troubled and non-troubled renewal-type breakdowns. We consider two 

variants of the system. The system with recompiling assumes that the service time after a troubled interruption is 

resampled. For the system without recompiling, the service time after a troubled interruption equals the original 

service time. In terms of the abstract production system introduced earlier, the breakdowns correspond to the 

time that is needed to recover from a failure. The system with recompiling can then capture the uncertainty in 

the production process,the production time after the failure is not necessarily the same whereas the system 

without recompiling allows one to consider a system that produces different types of products with unequal 

production time requirements. The remainder of this contribution is organized as follows. In the following two 

sections, the queueing model is described in detail and analysed respectively. We then illustrate our approach by 

means of some numerical examples and draw conclusions. 
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II. Descriptions Of The Model And Notations 
We consider a finite capacity queueing system that adheres a first-in-first-out service discipline. 

Customers arrive in accordance with a Poisson process with arrival rate λ and their service times constitute a 

series of independent and identically distributed (i.i.d.) random variables with common density function s(t), t ≥ 

0 and corresponding Laplace-Stieltjes transform (LST) S(α), α > −RS. Here −RS is the boundary of the region of 

convergence of the LST.  

The customers are served by a single server that takes an interruption from time to time. Breakdowns 

occur in accordance with a Poisson process with rate v while the server is serving customers and with rate 

when the server is idle. No new breakdowns start during server breakdowns. When an interruption occurs 

while a customer receives service, the interruption is either troubled (with probability pd) or non-troubled (with 

probability pn = 1 − pd). The server will continue the interrupted service time if the interruption is non-troubled 

and will repeat the entire service time if the interruption is troubled. For further use, we also introduce the 

interruption rates vd = vpd and vn = vpn of the troubled and the non-troubled breakdowns respectively. The 

lengths of the consecutive troubled (non-troubled, idle time) breakdowns constitute a series of i.i.d. positive 

random variables with density function vd(t) (vn(t), vi(t)), t ≥ 0 and corresponding LST Vd(α) (Vn (α), Vi(α)) .  

Two different queueing models are considered. The model with recompiling assumes that the service 

time after a troubled interruption is resampled. For the model without recompiling, the service time after a 

troubled interruption equals the original service time. 

  The queueing model with a choice of service breakdowns described in this section is based on the following 

notation:  

 

Parameters: 

λ:  positive arrival rate of Poisson input process. 

p:  probability that the server takes a single vacation at a service completion epoch. 

v:  mean vacation time of the server. 

 

Random variables: 

vd: Interruptions rates for troubled breakdowns 

vn: Interruptions rates for non troubled breakdowns 

vi :  Interruptions rates for idle period 

 β : An independent exponentially distributed random variable 

 

Probability distribution functions (PDF): 

vd(t): PDF of troubled breakdowns 

vn(t): PDF of non troubled breakdowns 

vi(t)): PDF of idle period 

 

Laplaces- Stieltjes transforms (LST): 

Vd(α): LST of troubled breakdowns 

Vn(α): LST of non troubled breakdowns 

Vi(α) : LST of idle period 

T(α)  : The LST of the effective service time of a random customer 

 

Some important Notations:  
T(x) : The effective service time of a customer with service time x 

S     :  The service time of a random customer  

Vd   :  The length of a random troubled interruption 

Vn     : The length of a random non-troubled interruption 

E[Vd] : The mean length of a troubled interruptions 

E[Vn] : The mean length of  non-troubled interruption 

 

III. System Analysis 
To simplify the analysis, we first consider the effective service times for the models with the special 

cases. This then allows for a unified queueing analysis afterwards. 

 Let a customer’s effective service time be defined as the amount of time between the epoch where the 

server starts serving this customer for the first time and the epoch where this customer leaves the system. As 

such, the effective service time includes all service breakdowns during the customer’s service time as well as 

time that is lost due to service repetitions. 
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3.1 Special Cases: 

3.1.1 The service time after a troubled interruption  

We first focus on the model with recompiling. Let T(x) denote the effective service time of a customer 

with service time x (before being resampled, if this is the case), and let S, Vd and Vn denote the service time of a 

random customer, the length of a random troubled interruption and the length of a random non-troubled 

interruption respectively. Further, let β denote an independent exponentially distributed random variable with 

mean 1/v, and let Q denote an independent random variable that takes the values d and n with probability pd and 

pn respectively. The variable β corresponds to the time between the start of the customer’s service and the 

following interruption, and the variable Q corresponds to the type of this interruption. We then find the 

following expression for the effective service time 

 

 T(S) =  

 

Here T*(·) and S*are independent random variables that are distributed as T(·) and S respectively. Let 

T(α|x) denote the LST of the effective service time, given that the service time equals x(before being resampled, 

if this is the case). Further, let T(α) denote the LST of the effective service time of a random customer. In view 

of the former expression and by conditioning on β, we find that T(α|x) obeys following integral equation: 

 

 

 
                                                                                                                                       

for x ≥ 0. One then easily shows that a solution of the equation (1) has the form, 

 

 

 

where C(α) is an unknown function. Since the effective service time of a zero length service time 

equals zero, we have T(α|0) = 1. Therefore, plugging x = 0 in equation (2) and solving for C(α) yields, 

 

 
 

Combining the equations (2) & (3) and integrating over all possible service times with respect to the 

service time distribution then yields the following expression for the LST of the effective service times: 

 

 

Here we introduced   =  to simplify notation. Solving for T(α) finally leads to 

 

 
 

By means of the moment generating property of LSTs, we obtain expressions for the various moments of the 

effective service times. In particular, the first moment is given by 
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            Where E[Vd] and E[Vn] denote the mean length of a troubled and non-troubled interruption respectively. 

Similar expressions can be obtained for higher moments. In particular, the k
th

 moment can be expressed in terms 

of the LST S(α) and its derivatives evaluated in jvd (j = 1 . . . k), and the moments up to order k of the 

breakdowns. Notice that for vd > 0 existence of the moments of the effective service time does not require the 

existence of the moments of the service time. 

 

3.1.2 The service time after a troubled interruption equals the original service time. 

For the model without recompiling, we may proceed analogously. It is however more convenient to 

rely on the results of the model with recompiling. As before, let T(α/x) denote the effective service time of a 

customer given that the customer’s service time equals x. It is then easy to see that under the assumption that the 

service times are fixed and equal to x, T(α/x) equals the LST for the model with recompiling. This notion 

immediately leads to the following expression for the conditional LST of the effective service times: 

 

 
 

Integrating over all possible service times with respect to the service time distribution then yields the 

following expression for the LST of the effective service times for the model without recompiling: 

 

 
. 

Furthermore, the moment generating property of LSTs allows us to obtain expressions for the various moments 

of the effective service times. In particular, the first moment is given by 

 

 
  

For vd < RS. Higher moments can also be expressed in terms of the LST of the service times. In 

particular, the kth moment can be expressed in terms of the LST S(α) and its derivatives, evaluated in vd (j = 1 . . 

. k), and the moments up to order k of the lengths of the troubled and non-troubled breakdowns. Therefore, the 

kth moment exists whenever the k
th

 moments of the breakdowns exist and whenever 

 

χ vd < Rs                                                                                                                                                             (9) 

 

The existence of the k
th

 moments for χvd = RS depends on the behaviour of the LST S(α) and its derivatives for α 

= −RS. 

The expressions (1) and (7) for the LSTs of the effective service times for the model without and with 

recompiling respectively now enable us to present a unified queueing analysis of both models. 

 

IV. Queue Size 
Let Uk denote the number of packets in the queue upon departure of the kth customer. We then find, 

 

Uk+1 =  

 

 

Here denotes the number of customer arrivals during the kth customer’s effective service time 

and  denotes the number of arrivals during the ”remaining interruption time” upon arrival of the kth customer. 

The remaining interruption time of the kth customer is defined as the time between the arrival instant and the 
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end of the interruption if service is interrupted when the customer arrives or equals zero if the server is 

available. Let Uk(z) denote the probability generating function of Uk. In view of the former expression, we find 

  

 Uk+1(z) =  

 

where η(α) is the LST of the remaining interruption time upon arrival of a random customer that arrives 

in an empty system, and where T(α) is given by (1) or (7) depending on the model under consideration. 

One can show that the queueing system under consideration reaches steady state whenever λ E[T] < 1 (where 

E[T] is given by either (1) or (7). Let U(z) =  Uk(z) denote the probability generating function of the 

queue content at departure epochs in steady state. From the former expression and the normalization condition 

U(1) = 1, we obtain 

 

 
    

With E[η] the average remaining interruption time. 

We now determine the LST η(α). Let  and denote exponentially distributed random variables with 

mean 1/vi and 1/λ respectively. The former variable corresponds to the amount of time till the next server 

interruption after the server becomes idle. The latter random variable corresponds to the arrival time of the first 

arrival after the epoch where the server becomes idle. We may now decompose the remaining interruption time 

as follows, 

 

 
Here  is an independent copy of η . In view of the former expressions, the LST of η satisfies 

 

 
 

               Solving for η(α)  leads to 

 

 
 

The moment-generating property of LSTs further yields 

 

 
where E[Vi] denotes the mean length of an interruption that starts when the server is idle. 

 

V. Retard 

Let customer retard be defined as the time between a customer’s arrival and departure instant and let 

D(α) denote the LST of a random customer’s delay. Since the queue content upon departure of a customer 

equals the number of arrivals that arrived during this customer’s delay, we find 

U(z) = D(λ(1-z))                                                                                                                                             (15) 

or equivalently, 

 
 The mean customer delay is given by 
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VI. Numerical Examples 
In this section, we present numerical example for the parameters derived from above analysis. In 

particular case customer service times has gamma distributions and length of the different types of the 

breakdowns are exponentially distributed.  The gamma distribution is completely specified by the mean μ and 

standard deviation σ, and has the following LST: 

 
When μ= σ  Gamma distribution becomes exponential distribution 

 Now the fraction φ indicated the server is available while there are customers in service and the mean length of 

the sum of an available and interruption period χ, 

 
This also referred as the time scale parameter of the interruption process (while customers receive 

Service). 

 
                                                                                     Figure (a)  [Mean] 

 

 
Figure (b) [Standard deviation] 
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In Figures (a) and (b), the mean µ and standard deviation σ of the effective service times are depicted 

versus the time scale parameter χ of the interruption process. Non-troubled and troubled breakdowns share the 

same (exponential) distribution and the server is available during φ = 80% of the time. The mean and standard 

deviation of the customer service times are equal to E[S] = 20 and σ[S] = 40 respectively. Different values of the 

probability pn that an interruption is non-troubled are assumed, and we consider both the systems with (lower 

curves) and without recompiling (upper curves). 

For increasing values of χ, one observes that all curves converge. Large χ  implies few but long 

breakdowns. Whenever there is such an interruption, neither recompiling nor the troubleness of the interruption 

comes in to play compared to the length of the interruption. For decreasing values of χ, performance of the 

systems with and without recompiling is completely different. For the system with recompiling, all curves 

converge to 0. This comes from the fact that low χ implies many short breakdowns such that service times get 

resampled until they are very small. For the system without recompiling, the service times remain the same after 

an interruption. Since decreasing χ implies that sufficiently long available periods become less probable, the 

mean and standard deviation of the effective service times converge to . Finally notice that the vertical 

asymptotes for the system without recompiling come from the condition (9) for the existence of the moments 

 

VII. Conclusions 

We considered a queueing system with troubled and non-troubled  breakdown. After a troubled 

breakdowns, service of the interrupted customer is either repeated or repeated and resampled. By means of a 

Laplace – stieltjes approach, we obtained performance measures such as the moments of queue content and 

customer Retard. We finally illustrated our approach by means of some numerical examples. 
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