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Abstract: In this paper, generalized Hat functions operational matricesare proposed and combined with the method of steps 

to solve linear and nonlinear delay differential equations of fractional order. We convert the delay differential equationsof 

fractional order to non-delay differential equationsof fractional orderon a given intervalby apply the method of steps, and 

then apply the operational matrices for generalized Hat function on the obtained non-delay differential equationsof 

fractional order to transform linear and nonlinear non-delay differential equationsof fractional order into a system of 

algebraic equations and then find the solution.Two illustrative examples will be presented to show the accuracy and 

efficiencyof the proposed method. 
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I. Introduction 
Fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) is an old 

mathematical problem, and mainly developed as a pure mathematics problem for nearly three centuries [1]-[3]. Though 

having a long history, it was not used in physics and engineering for a long period. However, in the last few decades, 

fractional calculus began to attract increasing attention of scientists from the viewpoint of application [3]-[6]. Fractional 

calculus and fractional differential equations have found applications in several different disciplines [7]-[8]. 

Over the years, many mathematicians, using their own notation and approach, have found various definitions that 

fit the idea of a non-integer order integral or derivative. The most famous of these definitions that have been popularized in 

the world of fractional calculus are Riemann-Liouville and Grünwald-Letnikov definition. Also, Caputo, [9] reformulated 

the more "classic" definition of the Riemann-Liouville fractional derivative in order to use integer order initial conditions to 

solve his fractional order differential equations. 
Delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown 

function at a certain time is given in terms of the values of the function at previous times. Delay differential equations play 

an important role in the research field of various applied sciences such as control theory, electrical networks, population 

dynamics, environment science, biology and life science [10]. 

Fractional delay differential equations are a very recent topic. Although it seems natural to model certain processes 

and systems in engineering and other sciences with this kind of equations, only in the last few years has the attention of the 

scientific community been devoted to them [11], [12], [13].This paper is organized as follows: In section 2 we recall the 

definitions of fractional derivatives and fractional integration, in section 3, a review of generalized Hatfunctions and their 

properties is described. In section 4, the operational matrices of integration for generalized Hat functions is derived. In 

section 5, the proposed methodis described. In section 6, some illustrative examples are presented. Finally, a conclusion is 

drawn in section 7. 

 
II. Fractional integral and differential operators 

In this section, we review basic definitions of fractionaldifferentiation and fractional integration [3]. 

Definition2.1: The Riemann–Liouville fractional order integral operator𝐼𝑡
𝛼of order 𝛼 ≥ 0,  of a function 𝑢(𝑡) ∈ 𝐿2[𝑎,𝑏] is 

given by: - 
 

𝐼𝑡
𝛼𝑢(𝑡) =  

1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1𝑢 𝑠 𝑑𝑠,   𝛼 > 0,   
𝑡

0

𝑢 𝑡 ,                                       𝛼 = 0,

                                                                                               … (1) 

where𝑎 ≤ 𝑡 ≤ 𝑏 . 

 

Definition 2.2:The Riemann-Liouville fractional order derivatives operator 𝐷𝑡
𝛼of order 𝛼 ≥ 0,  of a function 𝑢(𝑡) ∈ 𝐿2[𝑎, 𝑏] 

is given by: - 

𝐷𝑡
𝛼𝑢 𝑡 =

1

𝛤(𝑛−𝛼)
(
𝑑

𝑑𝑡
)𝑛   𝑡 − 𝑠 𝑛−𝛼−1𝑢 𝑠 𝑑𝑠                                                                                                 …

𝑡

0
(2) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼∈𝑅+ and 𝑛 is integer. 

mailto:dr_usama79@yahoo.com


A modified method for solving Delay differential equations of fractional order 

DOI: 10.9790/5728-1203071521                                         www.iosrjournals.org                                     16 | Page 

The Riemann–Liouville derivatives have certain disadvantages when trying to model real-world phenomena with fractional 

differential equations. Therefore, we shall introduce a modified fractional differential operator 𝐷𝑡
𝛼𝑐 which is proposed by 

Caputo [9]. 

 

Definition 2.3: The Caputo fractional derivative of a function  𝑢(𝑡) ∈ 𝐿1[a, b] is given by:  

𝐷𝑡  
𝛼𝑢 𝑡 =

1

𝛤(𝑛−𝛼)
  𝑡 − 𝑠 𝑛−𝛼−1(

𝑑

𝑑𝑡
)𝑛𝑢 𝑠 𝑑𝑠                                                                                              …

𝑡

0
𝑐 (3) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼∈𝑅+ and 𝑛 is integer. 

 

For 𝑓 𝑡 ∈ 𝐶𝑚  𝑎, 𝑏 ,   𝛼,𝛽 ≥ 0,   𝑛 − 1 < 𝛼 ≤ 𝑛,   𝛼 + 𝛽 ≤ 𝑚, 𝜈 ≥ −1, the fractional integral and derivatives satisfy the 

following: 

 

1.   𝐼𝑡
𝛼 𝐼𝑡

𝛽
𝑢  𝑡 =  𝐼𝑡

𝛽
𝐼𝑡
𝛼𝑢  𝑡 =  𝐼𝑡

𝛼+𝛽
𝑢  𝑡 . 

2.  (𝐼𝑡
𝛼 𝐷𝑐 𝛼𝑢) 𝑡 = 𝑢(𝑡) −  𝑢 𝑘 (0+)

𝑡𝑘

𝑘 !
𝑛−1
𝑘=0  . 

3.  (𝐼𝑡
𝛼𝑡𝑣) =

𝛤(𝑣+1)

𝛤(𝑣+𝛼+1)
𝑡𝛼+𝑣 . 

 

III. Generalized Hat functions and their properties [14] 
The traditional Hat functions are continuous functions, also called triangle, tent or triangular functions are defined 

on the interval [0,1].The generalized Hat functions are extension of traditional Hat functions on the finite interval [0,𝐴]. The 

interval [0,𝐴]is divided into n equidistant subintervals, 𝑖,  𝑖 + 1   of equal lengths  where  =
𝐴

𝑛
and 𝑛is an arbitrary 

positive integer. The generalized Hat function’s family of first (𝑛 + 1)  Hat functions are usually defined on [0,𝐴] as [15]: 

 

𝜑0 𝑡 =

 
 
 

 
      

−𝑡


 ,   0 ≤ 𝑡 <        

          

0,  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒         

                                                                                                                       … (4) 

 

𝜑𝑖 𝑡 =

 
 
 
 

 
 
    

𝑡−(𝑖−1)


 ,    𝑖 − 1  ≤ 𝑡 <                                                        

 

   
 𝑖+1 −𝑡


 ,  𝑖 ≤ 𝑡 <  𝑖 + 1 .  𝑖 = 1,2,… ,𝑛 − 1                     

          

0,  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                                         

                                              … (5) 

 

𝜑𝑛 𝑡 =

 
 
 

 
      

𝑡−(𝐴−)


 ,   𝐴 −  ≤ 𝑡 ≤ 𝐴                

          

    0,  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                                      

                                                              … (6) 

 

According to the definition of Hat functions: 

 

𝜑𝑖 𝑗 =

 
 
 

 
  1,                  𝑖 = 𝑗

           

0,            𝑖 ≠ 𝑗  

                                                                                                                                 … (7) 

 

 

and 

𝜑𝑖 𝑡 𝜑𝑗  𝑡 = 0,       𝑖 − 𝑗 ≥ 2.  

and 
 𝜑𝑖(t)𝑛

𝑖=0 = 1. 

 

3.1 Function Approximation 

An arbitrary function 𝑔 ∈ 𝐿2 [𝑎, 𝑏] is approximated in vector form as: 
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𝑔 𝑡 =  𝑓𝑖𝜑𝑖(t)𝑛
𝑖=0  =𝐺𝑛+1

𝑇 Φ𝑛+1(t) =Φ𝑛+1
𝑇 (t) 𝐺𝑛+1                                                                                          …(8) 

where 

𝐺𝑛+1 ≜ [𝑔0 , 𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇

                                                                                                                                 …(9) 
and 

Φ𝑛+1(t) ≜ [𝜑0(t),𝜑1(t),𝜑2(t),…,𝜑𝑛(t)] 
𝑇

                                                                                                        …(10) 

The important aspect of using generalized Hat functions in theapproximation of function 𝑔 𝑡 , lies in the fact that the 

coefficients 𝑔𝑖  in the Eq. (9), are given by 
 

𝑔𝑖 = 𝑔 𝑖 ,   𝑖 = 0,1,2,… ,𝑛. 

 

IV. Operational Matrices of the Integration for Generalized Hat Functions 
The integer order and fractional order operational matrices of integration for generalized Hat functions is given in the 

subsections (4.1) and (4.2) respectively. 

4.1. Integer OrderOperational Matrix of Integration of the Generalized Hat Functions  

Since  𝜑𝑖 𝜏 𝑑𝜏 ∈ 𝐿2[0,𝐴]
𝑡

0
, Eq. (10) is used to approximate it in the terms of the generalized Hat basis functions 

as 

 𝜑𝑖 𝜏 𝑑𝜏
𝑡

0
≃  𝑏𝑖𝑗

𝑛
𝑗=0 𝜑𝑗  𝑡 ,    𝑖 = 0,1, 2,… ,𝑛                                                                                               …(11) 

Using Eq. (11), we calculate the coefficients 𝑎𝑖𝑗 as 

𝑏𝑖𝑗 =  𝜑𝑖 𝜏 𝑑𝜏,   
𝑖

0
𝑗 = 0,1,2,… ,𝑛                                                                                                                   …(12) 

The coefficients 𝑏𝑖𝑗  will form a (𝑛 + 1) × (𝑛 + 1) matrix  𝑃𝑛+1  with (𝑖 + 1, 𝑗 + 1)𝑡  entry as𝑏𝑖𝑗  , for𝑖 = 0,1,2,… ,𝑛,   𝑗 =

0,1,2,… ,𝑛.Using the values of 𝑏𝑖𝑗 ’s from Eq. (12), we obtain the matrix 𝑃𝑛+1 as: 

 

𝑃𝑛+1=(
   

2
)

 
 
 
 
 
 
 
 
 0    

0    

0    

1   

1   

0   

1   

2   

1   

1   

2   

2   

⋯
⋯
⋯

1   

2   

2   

1   

2   

2   

1

 2 
2

⋯  ⋯  ⋯  ⋯  ⋯  ⋯  ⋯  ⋯

0    

0    

0    

0   

0   

0   

0   

0   

0   

0   

0   

0   

⋯
⋯
⋯

1   

0   

0   

2   

1   

0   

2

 2 
1  

 
 
 
 
 
 
 
 

 𝑛+1 ×(𝑛+1)

                                                                                     …(13) 

 

The matrix 𝑃𝑛+1 is called the integer order Hat functions operational matrix of integration. 

It plays a pivotal role in determination of   𝑔 𝜏 𝑑𝜏
𝑡

0
 for an arbitrary 𝑔 ∈ 𝐿2[0,𝐴]. with the help of Eq. (10) and Eq. (11), we 

have 
 

 𝜑𝑛+1 𝜏 𝑑𝜏
𝑡

0
=𝑃𝑛+1Φ𝑛+1(t). 

4.2.Fractional orderOperational Matrix of Integration of the Generalized Hat Functions  
The fractional integration of generalized Hat function in Eq. (10) can be approximated as 

(𝐼𝑡
𝛼Φ𝑛+1)(t)=𝑃𝑛+1

𝛼 Φ𝑛+1(𝑡(. 

where 

𝑃𝑛+1
𝛼 =

𝛼

𝛤(𝛼+2)

 
 
 
 
 
0 𝛾1 𝛾2

0 1 𝜁1

0 0 1
 ⋯

𝛾𝑛
𝜁𝑛−1

𝜁𝑛−2

⋮ ⋱ ⋮

0 0        0 ⋯ 1  
 
 
 
 

 𝑛+1 ×(𝑛+1)

 

where  

𝛾𝑘 = 𝑘𝛼  𝛼 − 𝑘 + 1 + (𝑘 − 1)𝛼+1,  𝑘 = 1,2,… ,𝑛. 
and 

𝜁𝑘 = (𝑘 + 1)𝛼+1−2𝑘𝛼+1 + (𝑘 − 1)𝛼+1 ,  𝑘 = 1,2,… ,𝑛 − 1. 

For more details,one can see[15]. 

 

V. The Approach 
In this section, we shall approximate solution of the following fractional order delay differential equations: 
 

𝐷𝑡
𝛼𝑢𝑐  𝑡 = 𝐹  𝑡,𝑢 𝑡 ,𝑢 𝜙 𝑡   , 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0                                                                          …(14) 
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𝑢 𝑡 = 𝜓 𝑡  , 𝑡 ∈  −𝜏, 0                                                                                                                                     …(15) 

𝑢(𝑖) 0 = 𝑢0 
(𝑖)

   , 𝑖 = 0,1,2,… ,𝑛 − 1                                                                                                                  …(16) 
 

where 𝐷𝑡  
𝛼𝑐 isCaputo fractional derivative of order 𝛼, 𝐹 is a nonlinear operator, 𝑡 is the independent variable, 𝑢(𝑡) is the 

unknown function, 𝜙 𝑡  is the delay function 𝜓 𝑡  is given functions and 𝑢0 
(𝑖)

 are given constants. 

First we convert the fractional order delay differential equation to fractional order non-delay differential equation by 

applying the method of steps [13], as 
 

𝐷𝑡  
𝛼𝑢𝑐  𝑡 = 𝐹  𝑡,𝑢 𝑡 ,𝜓 𝜙 𝑡   , 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0                                                                         …(17) 

𝑢(𝑖) 0 = 𝑢0 
(𝑖)

   , 𝑖 = 0,1,2,… ,𝑛 − 1                                                                                                                  …(18) 
 

Now in order to solve Eq.'s (17)- (18) by using the operational matrices of generalized Hat functions, we 

approximate 𝐷𝑡  
𝛼𝑢𝑐 (𝑡) and 𝑢 𝑡  in terms of generalized Hat functions as follows 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)                                                                                                                                    …(19) 

And upon operating 𝐼𝑡  
𝛼 to the both sides of equation (19) leads to 

𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ𝑛+1(𝑡) +  𝑢 𝑘  0+ 
𝑡𝑘

𝑘 !
𝑛−1
𝑘=0                                                                                                     …(20) 

where  

Φ𝑛+1(t) ≜ [𝜑0(t),𝜑1(t),𝜑2(t),…,𝜑𝑛(t)] 
𝑇
, 

and 

𝐶𝑛+1(t) ≜ [𝑐0 , 𝑐1,𝑐2,…,𝑐𝑛 ] 
𝑇
.       

Hence 

𝐹  𝑡,𝑢 𝑡 ,𝑢 𝜙 𝑡   = 𝐹(𝑡,𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡) +  𝑢(𝑘) 0+ 
𝑡𝑘

𝑘!
𝑛−1
𝑘=0 ,𝜓(𝜙 𝑡 ))…(21) 

Substituting Eq.'s (19) and (21) into Eq. (17) gives 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐹(𝑡,𝐶𝑛+1

𝑇 𝑃𝑛+1
𝛼 Φ𝑛+1(𝑡) +  𝑢(𝑘) 0+ 

𝑡𝑘

𝑘!
𝑛−1
𝑘=0 ,𝜓(𝜙 𝑡 ))                                                       …(22) 

Also, by substituting Eq.'s (11) and (19) into Eq. (18), we get 

𝑢(𝑖) 0 = 𝐶𝑛+1
𝑇 Φ𝑛+1(0)=𝑢0 

 𝑖 
   , 𝑖 = 0,1,2,… ,𝑛 − 1                                                                                       …(23) 

From Eq. (22)-(23), we can obtain the coefficients 𝐶𝑛+1
𝑇 . Then using Eq.(20), we can get the output response 𝑢 𝑡 . 

 

VI. Illustrative Examples 
In this section, we shall solve linear and nonlinear delay differential equations of fractional order by using the 

approach given in section 5, and compare the results that we have been obtained with the existing methods and the exact 

solution. we refer 𝑢𝑎𝑡  to represent the solution by generalized Hat functions, 𝑢𝑐  to represent the solution by Chebyshev 

wavelets method and 𝑢𝑒𝑥𝑎𝑐𝑡  to represent the exact solution. 

 

Example (1): 

Consider the delay differential equations of fractional order with nonlinear delay function 

𝐷𝑡  
𝛼𝑢𝑐 (𝑡) =1-2𝑢2  

𝑡

2
 , 0 <  𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1                                                                                          …(24) 

𝑢 𝑡 = sin(𝑡),   −1 ≤  𝑡 ≤ 0                                                                                                                            …(25) 

𝑢 0 = 0                                                                                                                                                                  …(26) 

The exact solution, when 𝛼 = 1 , is  𝑢 𝑡 = sin(𝑡). 
 

Solution: 

 First we convert the delay differential equation of fractional order to non-delay differential equation of fractional 

order by applying the method of steps, as    

𝐷𝑡  
𝛼𝑢𝑐 (𝑡) =1-2𝑠𝑖𝑛2  

𝑡

2
 . 0 < 𝛼 ≤ 1.  0 < 𝑡 ≤ 1                                                                                             …(27) 

𝑢 0 = 0                                                                                                                                                                  …(28) 

Now we approximate 𝐷𝑡 
𝛼𝑢𝑐 (𝑡) in Eq. (27), in terms of generalized Hat functions as follows 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)…(29) 

Hence 

𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ𝑛+1(𝑡)…(30) 

Also writing the term 1 − 2𝑠𝑖𝑛2  
𝑡

2
  in Eq. (27) in terms of generalized Hat functions leads to 

1 − 2𝑠𝑖𝑛2  
𝑡

2
 = 𝐺𝑛+1

𝑇 Φ𝑛+1(𝑡)                                                                                                                            …(31) 

Where 

𝐺𝑛+1 ≜ [𝑔0 ,𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇

, 
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and 

𝑔𝑖 = 1 − 2𝑠𝑖𝑛2  
𝑖

2
 ,   𝑖 = 0,1,2,… ,𝑛. 

Substituting Eq.'s (29) and (31) into Eq. (27), we have 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐺𝑛+1

𝑇 Φ𝑛+1(𝑡)                                                                                                                                 …(32) 

 which implies that 

𝐶𝑛+1
𝑇 =𝐺𝑛+1

𝑇                                                                                                                                                                …(33) 

Solving Eq. (33), we can obtain the coefficients 𝐶𝑛+1
𝑇 . Then using Eq.(30), one can get the output response𝑢 𝑡 . 

For 𝑛 = 8, it seems from Table (1) that the results obtained from the proposed method when 𝛼 = 1 provides better results as 

compared with the existing methods such as Chebyshev wavelet method and the exact solution. 
 

(Table 1)comparison of the approximate solution of example (1) using the proposed method and Chebyshev wavelet 

method when 𝜶 = 𝟏 and the exact solution. 
 

t 𝒖𝒄𝒉𝜶 = 𝟏 𝒖𝒉𝒂𝒕𝜶 = 𝟏 𝒖𝒆𝒙𝒂𝒄𝒕𝜶 = 𝟏 

0 0 0 0 

0.125 0.124 0.124 0.124 

0.250 0.246 0.247 0.247 

0.375 0.355 0.365 0.366 

0.500 0.464 0.478 0.479 

0.625 0.581 0.584 0.585 

0.750 0.682 0.680 0.681 

0.875 0.755 0.766 0.767 

1 0.846 0.840 0.841 

 

Following Figure (1) represent the approximate solution of example (1) using the proposed method for different values of 

𝛼and the exact solution when 𝛼 = 1 . 

 
Fig. 1: The approximate solution of example (1) by using the proposed method at different values of 𝜶 and the exact 

solutions at 𝜶 = 𝟏 . 

Example (2): 

Consider the delay differential equation of fractional order 

𝐷𝑡  
𝛼𝑢𝑐  𝑡 −  𝑢  

𝑡

2
 = 0,   0 < 𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1                                                                                           …(34) 

𝑢 𝑡 = 1 + 𝑡 ,  −1 ≤  𝑡 ≤ 0                                                                                                                               …(35) 

𝑢 0 = 1                                                                                                                                                                  …(36) 

The exact solution is 𝑢 𝑡 =  
(

1

2
)

1
2𝑘(𝑘−1)

𝑘!
𝑡𝑘∞

𝑘=0 .  

Solution: 

First we convert the delay differential equation of frractional order  tonon-delay differential equation of fractional 

order by applying the method of steps, as:  

𝐷𝑡  
𝛼𝑢𝑐  𝑡 = 1 +

𝑡

2
,0 < 𝛼 ≤ 1,  0 < 𝑡 ≤ 1                                                                                                         …(37) 

𝑢 0 = 1                                                                                                                                                                  …(38) 

Now we approximate 𝐷𝑡 
𝛼𝑢𝑐 (𝑡) in Eq. (37),  in terms of generalized Hat functions as follows 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)                                                                                                                                     …(39) 

Hence 
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𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ𝑛+1(𝑡) + 1                                                                                                                                 …(40) 

Also writing the term 1 +
𝑡

2
 in Eq. (37) in terms of generalized Hat functions leads to 

1 +
𝑡

2
= 𝐺𝑛+1

𝑇 Φ𝑛+1(𝑡)…(41) 

where 

𝐺𝑛+1 ≜ [𝑔0 ,𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇

, 

and 

𝑔𝑖 = 1 +
𝑖

2
,   𝑖 = 0,1,2,… ,𝑛. 

Substituting Eq.'s (39) and (41) into Eq. (37), we have 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐺𝑛+1

𝑇 Φ𝑛+1(𝑡)                                                                                                                                 …(42) 

which implies that 

𝐶𝑛+1
𝑇 =𝐺𝑛+1

𝑇                                                                                                                                                                …(43) 

Then using Eq.(40), one can get the  output  response 𝑢 𝑡 . 

For 𝑛 = 8, it seems from Table (2) that the results obtained from the proposed method when 𝛼 = 1 provides better results as 

compared with the existing methods such as Chebyshev wavelet method and the exact solution.  

 
(Table 2)comparison of the approximate solution of example (2) using the proposed method and Chebyshev wavelet 

method when 𝜶 = 𝟏 and the exact solution. 
 

t 𝒖𝒄𝒉 𝜶 =1 𝒖𝒉𝒂𝒕 𝜶 = 𝟏 𝒖𝒆𝒙𝒂𝒄𝒕 𝜶 = 𝟏 

0 1 1 1 

0.125 1.13 1.13 1.12 

0.250 1.28 1.26 1.26 

0.375 1.44 1.41 1.41 

0.500 1.62 1.56 1.56 

0.625 1.82 1.72 1.72 

0.750 2.03 1.89 1.90 

0.875 2.26 2.06 2.08 

1 2.50 2.25 2.27 

 

 

Following Figure (2)represent the approximate solution of example (2) using the proposed method for different values of 

𝛼and the exact solution when 𝛼 = 1. 

 

 
 

Fig. 2: The approximate solution of example (2) by using the proposed method at different values of 𝜶 and the exact 

solutions at 𝜶 = 𝟏 . 

 

VII. Conclusion 
In this paper, wepresent the integer and fractional orders of integration for the generalized hat functions 

operational matrices and combined them with the method of steps to solve linear and nonlinear delay differential equations 

of fractional order numerically. The obtained results are compared with the exact solutions and with the solutions obtained 

by some other numerical methods such as Chebyshev wavelet method. The results obtained from the proposed methodare 

more accurate and better than the results obtained from Chebyshev wavelet methodand are in good agreement with the exact 

solution. 
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