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. Introduction
The notion of ideal topological spaces was studied by Kuratowski [15] and Vaidynathaswamy [21]. In
1996, Dontchev [4] introduced the notion of contra continuity. Almost contra continuous functions was
introduced by Ekici [17].The purpose of this paper is to introduce and study the notion of contra IR*-continuous
& almost contra IR*-continuous in ideal topological space. C.Janaki and Renu Thomas [12] introduced the
concepts of contra R*-continuous & almost contra R*-continuous functions in topological spaces and IR*-
closed sets in ideal topological spaces [11].

Il.  Preliminaries

An ideal [15] I on a topological space (X, 1) is a nonempty collection of subsets of X which satisfies
(i) Aeland B c Aimplies B € I and (ii)A €1 and B € | implies A U B € |. Given a topological space (X, 1)
with an ideal | on X and if P(X) is the set of all subsets of X, a set operator (.)" : p(X) = p(X), called a local
function [15] of A with respect to T and I is defined as follows. A€ X, A" (I, 1) ={x € X|UNA ¢ | for
every U € 1 (x) } where T (x) = { U € 7| x € U }.A Kuratowski closure operator [14] cl " (.) for a topology ©_ (X,
1) called the *- topology finer than t is defined by cl *(A) =A U A*(l, 7). cI* A and int * A will denote the
closure and interior of A in (X, t*).When there is no chance for confusion, A* is substituted for A* (I, t)
and t or T (l) for 7 (1, 1). A subset A of an ideal space (X, 1, I) is *-closed (7" -closed) [14] if A* c A.

Definition 2.1: [16] A subset A of a topological space (X, t) is called a regular open if A = int (cl(A)) and
regular closed if A = cl(int(A)).The intersection of all regular closed subset of (X, t) containing A is called the
regular closure of A and is denoted by rcl(A).

Definition 2.2: [5] A subset A of a topological space (X, 1) is called a regular semi open set if there is a regular
open set U such that U c A c cl (U).The family of all regular semi open sets of X is denoted by RSO(X).

Definition 2.3: A function f: (X, 1) — (Y,0) is called

1. [4] contra continuous if £~1V) is closed in (X, 1) for every open set V of (Y,5).

2. [7]R-map if f~1(V)is regular closed in (X, 1) for every regular closed set V of (Y, o).

3. [1, 6] perfectly continuous if f~1(V) is clopen in (X, t) for every open set V of (Y, o).

4., [17] almost continuous if £~1(V) is open in (X, 1) for every regular open set V of (Y,5).

5. [9] regular set connected if f~1(V) is clopen in (X, 1) for every regular open set V of (Y,0).
6. [17] RC-continuous if f~1(V) is regular closed in (X, 1) for every open set V of (Y, o)

Definition 2.4: A subset A of an ideal topological space (X, 1, I) is called

1. [10] IR-closed if A = cl*(int (A)) and is denoted by IR-C(X). The intersection of all IR-closed sets containing
Ais called the IR*-closure and is denoted by 7;"*cl (A).

2. [10] IR*-closed if r;""cl (A) < U whenever A c U and U is regular semi-open and is denoted by IR*-C(X).

3. [10] IR*-open if A€ is IR*-closed in (X, 1, I).

4. [17] regular I-closed if A = (int(A4))”
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Definition 2.5: A function f: (X, 1, 1) — (Y,0) is called
1. [13] IR*-continuous if f~1(V) is IR*- closed in (X, 1, I) for every closed set V of (Y,5).
2. [13] IR*- irresolute if £~1(V) is IR*- closed in (X, 1, I) for every IR*- closed set V of (Y,c).

Definition 2.6: The collection of all IR* open subset of X containing a fixed point x is denoted by IR*-O (X,
x).

Definition 2.7: A function f: A — B is said to be injective (or 1-1) if for each pair of distinct points of A their
image under f are distinct.

Definition 2.8: [18] A topological space (X, 1) is called a ultra normal space if each pair of disjoint closed sets
can be separated by disjoint clopen sets.

Definition 2.9: [6] For a function f: X — Y the subset {( x, f(x)) : x € X}c X x Y is called the graph of f and is
denoted by G(f).

Definition 2.10: [8] A subset A of a topological space (X, 1) is said to be clopen if it is both open and closed in
X, 7).

Definition 2.11: [19] A topological space X is said to be hyperconnected if every open set is dense.

Definition 2.12: A subset A of a topological space X is called dense (in X) if every point x in X either belongs
to A (or) is a limit point of A. Also A is dense in X if 4 =X.

Definition 2.13 : A topological space X is termed a Urysohn space if for any two distinct points x,y € X there
exist disjoint open subsets x € U and y € V such that the closures U and V are disjoint closed subsets of X.

Definition 2.14: A topological space X is termed a T;-space (or Frechet space or accessible space) if it satisfies
the following equivalent conditions:

1. Given two distinct points x,y € X there exists an open subset U and V of X suchthatx e U andy ¢ V.

2. Forevery x € X the singleton set {x} is a closed subset.

3. Forevery x € X the intersection of all open subsets of X containing {x} is precisely {x}.

Definition 2.15: A space (X, 1) is said to be an Ultra Hausdroff space if for pair of distinct points x and y in X
there exist two clopen sets U and V containing x and y such that UnV = ¢ .

Definition 2.16: [9] Let X be a space such that one point set closed in X. Then X is said to be regular if for all x
€ X and for all closed set B not containing x there exist disjoint open sets U and V containing x and B
respectively.

Definition 2.17: [20] A space (X, 1) is said to be weakly Hausdroff is each element of X is an intersection of
regular closed sets.

I11.  Contra Ir*- Continuous In Ideal Topological Space.
Definition 3.1: A function f : (X, 1, 1) — (Y,o0) is called contra IR*-continuous if £~1(V) is IR*-closed in (X, T,
1) for every open set V in (Y,c).

Example 3.2: Let X = {a, b, ¢, d}=Y, © = {X, ¢,{a},{b}.{c}.{a, b}.{a, c}.{b, c}{a, b, c}}, and | = { ¢, {a}},
IR*- C(X) = {X, ¢, {a}, {d}.{a, d}.{b, d}{c, d}.{a b, c}{a b, d}{a c, d}, {b,c, d}}, o={Y,p{a}{c}{a
c}{a, b, c}.{a, c, d}}. Define a mapping f: (X, 1, I) = (Y,0) as f(@) = a, f(b) = b, f(c) = d, f(d) = ¢ so the
function f is contra IR*-continuous.

Remark 3.3: The composition of two contra IR*-continuous function need not be contralR*-continuous.

Example 3.4: Let X =Y =Z={a, b, ¢, d}, = = { X, ¢,{a}.{b}.{c}{a, b}.{ac}.{b, c}{a b, c}}.and | = { ¢,

{a}}o ={Y, ¢.{a}, {d}, {a d}}, n = { Z, ¢{a}{c}{a c}{b, c}{a b, c}{b, c, d}}. Define f: (X, 7, 1) -
(Y,o) be the identity mapping and g : (Y,c ) = (Z,n) by g(a) = a, g(b) =b, g(c) =d, g(d) = c. Here both f and
g are contra IR*-continuous but gof is not contra IR*-continuous.

Remark 3.5: contra IR*-continuity and contra continuity are independent concepts.
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Example 3.6: Let X ={a, b, ¢, d} =Y, t={X, ¢, {a}, {b}.{c}{a b}.{a c}{b, c}{a b, c}}, and [1={¢,
{a}}, v* = {X, ¢ {d}.{c, d}{a d}.{b, d}.{b, c, d}{a c, d}{a b, d}}, IR*-C(X) = { X, ¢.{a}.{d}.{a, d}.{b,
d}.{c, d}{a, b, c},{a, b, d}{a, c, d}.{b,c,d} }, c ={ Y, ¢, {a}.{d}.{a, d} }. Define a mapping f: (X, 7, I) =
(Y,0) by f(a) =a, f(b) =b, f(c) = c, f(d) =d then fis contra IR*-continuous function but not contra continuous.
Since f~'{a} =a isnot closed in (X, 1, I).

Example 3.7: Let X ={a, b, ¢, d} = Y, t = {X, ¢,{a}.{c}.{a, c}.{a, b, c}{a c, d}}, and | = { ¢, {a}}, t* =
{X, ¢ {a}.{b}.{d}{a d}.{b, d}{a b, d}.{b, c, d}}, IR*- C(X) = {X, ¢.{a}, {a c}{a b, c}{a c, d}{b,c,
d}}, o ={Y, ¢.{b}{d}.{b, d}}. Define f: (X, 1, I) — (Y,o) by the identity mapping. Hence f is continuous but
not contra IR*-continuous. Since f~1{b} = b is not IR*- closed.

Theorem 3.8: If f: (X, 7, ) — (Y,o) is a contra IR*- continuous function an g : (Y,o) = (Z, n) is a continuous
function then the function gof : (X, 1, I)= (Z, n) is contra IR*-continuous.

Proof: Let V be open in (Z,). Since g is continuous, g~1(V) is open in (Y,s).Since f is contra IR*-continuous.
So f~Y(g~Y(V) is IR*-closed in X. That is (gof) (V) is IR*-continuous. Hence gof is contra IR*-
continuous.

Theorem 3.9: If f: (X, 1, 1) = (Y,0) is IR*- irresolute and g: (Y,5) = (Z,m) is a contra IR*- continuous
function then gof : (X, t, )= (Z, n) is contra IR*-continuous.

Proof: Let V be open in (Z,m). Since g is contra IR*-continuous g~1(V) is IR*- closed in (Y,s). Since f is IR*-
irresolute f~1(g~1(V)) is IR*-closed in (X, 1, I). Hence gof is contra IR*-continuous.

Theorem 3.10: Suppose IR*-O(X) is closed under arbitary union then the following are equivalent for a
functionf: (X, 1.I) = (Y,0).

(i) fis contra IR*- continuous

(i) for every closed subset V of (Y, &), f~1(V) € IR*-O(X)

(iii) for each x € X and each V € C(Y,f(x)) there exist a set U € IR*-O(X, x) such that f(U)c V

Proof: (i) = (ii) Let f be contra IR*- continuous. Then f~1(V) is IR*-closed in (X, 1, I) for every open set V of
(Y, ). That is f~1(V) is IR*-open in (X, 1, I) for every closed set V of (Y, o).

Hence £~ (V) € IR*-O(X).

(if)y = (i) obvious

(ii) = (iii) For every closed subset VV of Y, f~1(V) € IR*-O(X) then for each x € X and each

V € C(Y, f(x)), there exists a set U € IR*-open (X) such that f(U) c V

(iii) =(ii) For each x € X and each V € C(Y, f(x)) there exists a set U, € IR*-O(X, x) Such that

f(U,) c V. Thatis x € f~1(V) and f(x) cV. So there exists U € IR*-O(X, x),

FHV) = U{U,: x € f~1(V)}and Hence f~1(V) is IR*- O(X).

Definition 3.11: A space (X, 1, I) is said to be IR*-T; if for each pair of distinct points x and y in (X, t, I) there
exist IR*- open set U and V containing x and y respectively. Such that y ¢U and x ¢V.

Definition 3.12: A space (X, 1, 1) is said to be IR*-T, if for each pair of distinct points x and y in (X, t, I) there
exist IR*- open sets U and V containing x and y respectively. Such that UNV= ¢.

Definition 3.13: A space (X, t, I) is said to be IR*—T1/2 if every IR*-closed set is regular I-closed.

Theorem 3.14: If (X, 1, I) is an ideal topological space and for each pair of distinct points x; and x, in X there
exists a function f into a Urysohn space (Y,o). Such that f(x;) = f(x,) and f is contra IR*- continuous at x; and
X, then the space (X, 1, I) is IR*-T,.

Proof: Let x; and x, be any distinct points in (X, t, I). Then by hypothesis there is a Urysohn space (Y,c) and a
function f: (X, 1, I) = (Y,o) which statisfies the condition of this theorem. Let y;=f (x;) for i=1,2 then y;=y,.
Since (,o) is Urysohn space, there exists open neighborhoods U,,, and U,,, of y; and y, respectively in Y. Such
that cl (U,,) Ncl (Uy,) = ¢. Since f is contra IR*- continuous at x , there exists a IR*- open neighbourhoods
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w,; of x; in X. such that f (w,;) c cl (U,,), for i =1, 2. Hence (w,,) N (w,,) = ¢. Because cl (U,,) N cl(U,,)
=¢. Then (X, 7, 1) is IR* - T.

Corollary 3.15: If f is a contra IR*- continuous injection of an ideal topological space (X, 1, I) into a Urysohn
space (Y,o) then (X, 1, I) is IR*-T, space.

Proof: Suppose that f : (X, 1, I) = (Y,0) is contra IR*-continuous injection and Y is a Urysohn space. Then for
each pair of distinct points x; and x, in X f(x;) # f(x,). Therefore by the above theorem 3.14, X is IR*-T,
space.

Corollary 3.16: If f is a contra IR*-continuous injection of an ideal topological space (X, 1, I) into a Ultra
Hausdroff space (Y,o) then (X, 7, I) is IR*-T,.

Proof: Let x; and x, be any distinct points in (X, 1, I). Then fis injective and Y is Ultra Hausdroff, f(x;) # f(x;)
and there exist two clopen sets V; and V, in (Y,5). Such that f(x;) € V; and f(x,) €V, andV; NV, =¢ .Then
x; € f71(V) € IR*-O(X) fori=1,2and f~1(V,) n f~1(V,) = ¢ . Then X is IR*-T,.

Theorem 3.17: If f: (X, 1, I) = (VY,0) is a contra IR*-continuous injection and Y is weakly Hausdroff then X is
IR*-T;.

Proof: Suppose that Y is weakly Hausdroff for any distinct points x; and x, in X. There exist regular closed
sets U and V in Y. Such that f(x;) € U but f(x,)¢U, f(x;)¢V and f(x;) € V. Since f is contra IR*- continuous
F~1(U) and f~1(V) are IR*- open subset of X. Such that x; € f~1(U), x; ¢ f~1(V), x, € f1(V), x, & f (V).
This shows that X is IR*-T;.

Theorem 3.18: If f: (X, 1, I) = (Y,o0) is a contra IR*- continuous and (X, t, I) is IR*—T1/2 space then f is RC-
continuous.

Proof: Let V be open in (Y,c). Since f is contra IR*-continuous, f~1(V) is IR*-closed in (X, 1, I) and X is IR*-
T1/2 space. Hence f~1(V) is regular I-closed in (X, t, I). “Every regular I-closed set is regular closed”. Then for

every open set V of (Y,c), (V) is regular closed in (X, 1, I). Hence f is RC-continuous.
IV.  Almost Contra Ir*- Continuous Function In Ideal Topological Space

Definition 4.1: A function f : (X, 7, I) = (Y, o) is said to be almost contra IR*-continuous if f~1(V) is IR*-
closed set in (X, 1, |) for each regular open set V in (Y, o).

Example 4.2: Let X =Y = {a, b, ¢, d}, t = {X, ¢ {a}.{c}.{a c}{b, c}{a b, c}{b, ¢, d}} and | = { ¢,
{a}}.IR*- C(X) ={X,¢{a}.{b}, {c}.{d}{a b}.{b, c}{c, d}{a d}{a c}{b, d}, {a b, c}{a c, d}{b, c, d},
{a b, d}}, o = {Y, ¢ {a}.{b}{cHa, b}{a c}{b, c}.{a b, c}}, Regular open = {Y, ¢ {a} {b}.{c}, {a b}.{a
c},{b, c}}.Define a mapping f: (X, 1, I) = (Y, o) as f (a) = a, f(b) = b, f(c) = c, f(d) = d, so the function f is
almost contra IR*-continuous.

Theorem 4.3: The following are equivalent for a function f : (X, , I) - (Y,0)
1. fis almost contra IR*- continuous
2. for every regular closed set F of (Y, o), f(F) is IR*- open set of (X, 1)

Proof: (1) = (2) Let F be a regular closed set in (Y, o), then Y-F is a regular open set in (Y, o)

By f~1(Y - F) = X - f}(F) is IR*- closed in (X, 1, 1) therefore (2) holds.

(2) = (1) let G be a regular open set in (Y, o). Then (Y- G) is regular closed in (Y, o) by (2) f~1(Y-G) is an
IR*- open set in (X, 1, I). This implies X -f~1(G) is IR*- open. This implies f~(G) is IR*- closed set in (X, 1,
). Therefore (1) holds.

Theorem 4.4: For two functions f: (X, 7, I) = (Y,o) and k: (Y,0) = (Z,n). Let the function kof : (X, 7, 1) -
(Z,m) is a composition function. Then the following holds. If f is almost IR*-continuous and k is perfectly
continuous then kof is contra IR*-continuous.
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Proof: Let V be an open set in (Z,n). Since k is perfectly continuous, k~1(V) is clopen in (Y,s). Since f is an
almost contra IR*-continuous f~1(k~1(V)) = (kof)~1(V) is IR*- open and IR*-closed set in (X, t, I).Therefore
kof is contra IR*- continuous.

Theorem 4.5: If f: (X, 1, I) > (Y, o) is an almost contra IR*- continuous injection and (Y, o) is weakly
Hausdroff then X is IR*- Tj.

Proof: Suppose Y is weakly Hausdroff for any distinct points x and y in (X, 1, I).There exist V and W regular
closed sets in (Y, o). Such that f(x) € V, f(y) ¢V and f(y) €W and f(x) ¢ W. Since f is almost contra IR*-
continuous £~ (V) and £~ (W) are IR*- open subset of X. Such that x € f~1(V), y ¢f~1(V), y € f~1(W)
and x ¢ f~1(W). Therefore X is IR*- T;.

Theorem 4.6: If a function f: (X, 1, 1) > (Y,c) is contra IR*-continuous then it is almost contra IR*-
continuous.

Proof: obvious because “Every regular open set is open set”.

Remark 4.7: The converse of the theorem need not be true in general as seen from the following

X =Y ={a b, c, d},t = {X, ¢,{a}.{b}.{a, b}.{b, c}.{a, b, c},{a, b, d}}, and | = { ¢, {a}}.IR* - C(X) =
{X, ¢.{a}{a b}, {c, d}{a c}{b, d}.{a b, c}.{b, c, d}.{a, b, d}.{a, c, d}}, o = {Y, ¢ {a}{c}{a c}{c, d}.{a
¢, d}}, Regular open = {Y, ¢,{a},{c, d}}. Define f(a) = a, f(b) = b, f(c) =c, f(d) =d, f: X, 1, 1) = (Y, 0)is
almost contra IR*-continuous but £~1(c) = ¢ which is not IR*- continuous in (X, 1, 1).

Remark 4.8: The composition of two almost contra IR*- continuous function need not be almost contra IR*-
continuous as seen in the following example.

Example 4.9: Let X ={a, b, c,d} =Y =Z, t = { X, ¢ {a}.{b}.{a, b} {b, c}{a, b, c}{a, b, d}}, and | = { ¢,
{a}}IR*- C(X) = {X, ¢, {a}{a, b}{c, d}{a, c}{b, d}{a, b, c}{b, ¢, d}.{a, b, d}{a, ¢, d}}, o =
{Y. ¢ {a}{c}{a c}{c, d}{a c, d}}, IR*-C(Y) ={Y, ¢ {a}.{a c}{a d}{b, c}.{b,d}{a b c}{a b, d}.{a b,
d}.{a, c, d}.{b, c, d}}, Regular open = {Y, ¢{a}.{c, d}}, n = {Z, ¢.{a}.{b}.{a, b}.{b, c}.{a, b, c}{a, b, d}}.
IR*- C(2) ={Z, ¢ {a}.{a, b}.{c, d}{a, c}, {b,d}{a b, c}{b, c, d}.{a, b, d},{a, c, d} }, Regular open={ Z, ¢
{a}.{b, c} }. Define f:(X,1,1) - (Y,o)byf(a) =a, f(b)=b, f(c) =c,f(d)=dand g: (Y, o) = (Z, m) by g(a)
=a, g(b) = b, g(c) = ¢, g(d) = d. Then f and g are almost contra IR*-continuous. Since (gof)~'(b) =
(g () = fY(b) =D, (gof) (c)= f1(g7(c)) =f1(c) = ¢, {b, c} is not IR*- closed in (X, 1, I).

Theorem 4.10: For two function f: (X, 1, I) = (Y, o) and k : (Y, ) = (Z, n). Let kof : (X, 1, 1) = (Zm) isa
composition function. If f is almost contra IR*-continuous and k is an R-map then kof is almost contra IR*-
continuous.

Proof: Let V be any regular open set in (Z,n). Since k is an R- map k~1(V) is regular open in (Y, ). Since fis
almost contra IR*-continuous f~1(k~1(V)) = (kof)~ (V) is IR*- closed in (X, 1, I). Therefore kof is almost
contra IR*-continuous.

Theorem 4.11: For two function f : (X, 7, I) = (Y, o) and k : (Y, ) = (Z,n) is a composition function. If f is
almost contra IR*- continuous and k is almost continuous then kof is almost contra IR*- continuous.

Proof: Let V be any open set in (Z,n). Since k is almost continuous k=1 (V) is open in (Y, o). Since f is almost
contra IR*- continuous f~(k~1(V)) = (kof)~1(V) is IR*-closed in (X, t, 1).Therefore kof is almost contra
IR*-continuous.

Definition 4.12: A function f: (X, 1, I) - (Y, o) is said to be almost IR*-continuous if f~1(V) is IR*- open set
in (X, 7, I) for each regular open set V in (Y, o).

Theorem 4.13 : If f: (X, 1, I) = (Y, o) is a contra IR*-continuous map and g : (Y, o) = (Z,n) is a regular set
connected function then gof : (X, 1,1) - (Z,n) is IR*-continuous and almost IR*-continuous .

Proof: Let V be regular open in (Z,n). Since g is regular set connected g~*(V) is clopen in (Y, o). Since f is a
contra IR*-continuous f~1(g~1(V)) is IR*-closed in (X, 1, I). Hence gof is almost IR*-continuous.
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Definition 4.14: A function f: (X, 7, I) = (Y, o) is strongly IR*-open if the image of every IR*-open set of (X,
7, 1) is IR*-open (Y, o).
Theorem 4.15: If f: (X, 1, I) = (Y, o) is a surjective, strongly IR*-open (or strongly IR*-closed) and g :
(Y,0) = (Z,m) is a function such that gof : (X, 1, I) = (Z,m) is almost contra IR*-continuous then g is almost
contra IR*-continuous.

Proof: Let V be any regular closed set (respectively regular open) set in (Z, n). Since gof is almost contra IR*-
continuous (gof)~1(V) = f~1(g~1(V) is IR*-open (respectively IR*-closed) in (X, t, I). since f is surjective and
strongly IR*-open (or) strong IR*-closed f(f~1(g~1(V)) =g 1(V) is IR*-open (respectively IR*- closed).
Therefore g is almost contra IR*- continuous.

Theorem 4.16: Let f: (X, 1, I) = (Y, o) is a contra IR*-continuous function and g : (Y, o) = (Z,n) is IR*-
continuous. If Y is IR*- T1/2 then gof : (X, 1, 1) = (Zm) is an almost contra IR*-continuous function.

Proof: Let V be regular open and hence open set in (Z,n). Since g is IR*- continuous g~*(V) is IR*- open in
(Y,o)and Y is IR*—T1/2 space implies g~1(V) is regular open in (Y,o). Since f is almost contra IR*-continuous

(g7 HV)) = (gof)1(V) is IR*-closed set in (X, 1, I).Therefore gof is almost contra IR*- continuous.

Definition 4.17: A ideal topological space X is called a IR*-normal space [19] if each pair of disjoint closed
sets can be separated by disjoint IR*-open sets.

Theorem 4.18: If f: (X, 1, 1) = (Y,0) is an almost contra IR*-continuous closed injective function and (Y,c) is
ultra normal then (X, t, I) is IR*- normal.

Proof: Let E and F be disjoint closed subsets of (X, 1, I). Since f is closed and injective f(E) and f(F) are disjoint
closed sets in (Y,o). Since Y is ultra normal there exist disjoint clopen sets in U and V in Y such that f(E) c U
and f(F) cV.This implies E ¢ f~}(U) and F c f~1(V). Since f is an almost contra IR*- continuous injection
f71(U)and f~1(V) are disjoint IR*- open sets in (X, 1, I). Therefore X is IR*-normal.

Definition 4.19: A ideal topological space (X, 1, 1) is said to be IR*- ultra connected if every two non empty
IR*-closed subsets of X intersect.

Theorem 4.20: If (X, 1, I) is IR*- ultra connected and f : (X, 1, 1) = (Y,o) is an almost contra IR*-continuous
surjection then (Y,o) is hyperconnected.

Proof: Let X be IR*- ultraconnected and f: (X, 1, I) = (Y,o) is an almost contra IR*-continuous surjection .
Suppose Y is not hyperconnected. Then there is an open set V such that V is not dense in Y. Therefore there
exist an nonempty regular open subsets #,= int (cl(V)) and 2,=Y - cl(V) in (Y, o). Since f is an almost contra
IR*-continuous surjection. #71(#,) & /~1(#,) are disjoint IR*-closed in (X, t). Which is a contradiction to the
fact that X is IR*-ultra connected. Therefore Y is hyperconnected.
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