Contra Ir*-Continuous And Almost Contra ir*-Continuous Functions in Ideal Topological Spaces

Renu Thomas* & Santhiya.S**

* Asst. Professor, Dept of Mathematics, Sree Narayana Guru College, Coimbatore (TN) ** Dept of Mathematics, Sree Narayana Guru College, Coimbatore (TN)

Abstract: In this paper we apply the notion of IR^* -closed sets to present and the study a new class of function called contra IR^* -continuous & almost contra IR^* -continuous functions in ideal topological space. The relationship between their new sets and other sets of functions are established and some properties are discussed.

Keywords: IR^* -continuous functions, contra IR^* -continuous functions, almost contra IR^* - continuous functions, IR^*-T_1 space, IR^*-T_2 space, $IR^*-T_{1/2}$ space.

I. Introduction

The notion of ideal topological spaces was studied by Kuratowski [15] and Vaidynathaswamy [21]. In 1996, Dontchev [4] introduced the notion of contra continuity. Almost contra continuous functions was introduced by Ekici [17]. The purpose of this paper is to introduce and study the notion of contra IR*-continuous & almost contra IR*-continuous in ideal topological space. C.Janaki and Renu Thomas [12] introduced the concepts of contra R*-continuous & almost contra R*-continuous functions in topological spaces and IR*-closed sets in ideal topological spaces [11].

II. Preliminaries

An ideal [15] I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : \rho(X) \rightarrow \rho(X)$, called a local function [15] of A with respect to τ and I is defined as follows. $A \subseteq X$, $A^*(I, \tau) = \{ x \in X \mid U \cap A \notin I \text{ for every } U \in \tau (x) \}$ where $\tau (x) = \{ U \in \tau \mid x \in U \}$. A Kuratowski closure operator [14] cl $^*(.)$ for a topology $\tau^*(X, \tau)$ called the * - topology finer than τ is defined by cl $^*(A) = A \cup A^*(I, \tau)$. cl * A and int * A will denote the closure and interior of A in (X, τ^*) . When there is no chance for confusion, A^* is substituted for $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$. A subset A of an ideal space (X, τ, I) is * -closed (τ^* -closed) [14] if $A^* \subset A$.

Definition 2.1: [16] A subset A of a topological space (X, τ) is called a regular open if A = int (cl(A)) and regular closed if A = cl(int(A)). The intersection of all regular closed subset of (X, τ) containing A is called the regular closure of A and is denoted by rcl(A).

Definition 2.2: [5] A subset A of a topological space (X, τ) is called a regular semi open set if there is a regular open set U such that $U \subset A \subset cl$ (U). The family of all regular semi open sets of X is denoted by RSO(X).

Definition 2.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

1. [4] contra continuous if $f^{-1}V$ is closed in (X, τ) for every open set V of (Y, σ) .

2. [7] R- map if $f^{-1}(V)$ is regular closed in (X, τ) for every regular closed set V of (Y, σ) .

3. [1, 6] perfectly continuous if $f^{-1}(V)$ is clopen in (X, τ) for every open set V of (Y, σ) .

4. [17] almost continuous if $f^{-1}(V)$ is open in (X, τ) for every regular open set V of (Y, σ) .

5. [9] regular set connected if $f^{-1}(V)$ is clopen in (X, τ) for every regular open set V of (Y, σ) .

6. [17] RC-continuous if $f^{-1}(V)$ is regular closed in (X, τ) for every open set V of (Y, σ)

Definition 2.4: A subset A of an ideal topological space (X, τ, I) is called

1. [10] IR-closed if A = $cl^*(int (A))$ and is denoted by IR-C(X). The intersection of all IR-closed sets containing A is called the IR*-closure and is denoted by r_i^{**} cl (A).

2. [10] IR*-closed if r_i^{**} cl (A) \subset U whenever A \subset U and U is regular semi-open and is denoted by IR*-C(X).

3. [10] IR*-open if A^c is IR*-closed in (X, τ , I).

4. [17] regular I-closed if $A = (int(A))^*$

Definition 2.5: A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is called

1. [13] IR*-continuous if $f^{-1}(V)$ is IR*- closed in (X, τ, I) for every closed set V of (Y, σ) .

2. [13] IR*- irresolute if $f^{-1}(V)$ is IR*- closed in (X, τ, I) for every IR*- closed set V of (Y, σ) .

Definition 2.6: The collection of all IR* open subset of X containing a fixed point x is denoted by IR*-O (X, x).

Definition 2.7: A function f: $A \rightarrow B$ is said to be injective (or 1-1) if for each pair of distinct points of A their image under f are distinct.

Definition 2.8: [18] A topological space (X, τ) is called a ultra normal space if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 2.9: [6] For a function f: $X \to Y$ the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 2.10: [8] A subset A of a topological space (X, τ) is said to be clopen if it is both open and closed in (X, τ) .

Definition 2.11: [19] A topological space X is said to be hyperconnected if every open set is dense.

Definition 2.12: A subset A of a topological space X is called dense (in X) if every point x in X either belongs to A (or) is a limit point of A. Also A is dense in X if $\overline{A} = X$.

Definition 2.13 : A topological space X is termed a Urysohn space if for any two distinct points $x, y \in X$ there exist disjoint open subsets $x \in U$ and $y \in V$ such that the closures \overline{U} and \overline{V} are disjoint closed subsets of X.

Definition 2.14: A topological space X is termed a T_1 -space (or Frechet space or accessible space) if it satisfies the following equivalent conditions:

1. Given two distinct points $x, y \in X$ there exists an open subset U and V of X such that $x \in U$ and $y \notin V$.

2. For every $x \in X$ the singleton set $\{x\}$ is a closed subset.

3. For every $x \in X$ the intersection of all open subsets of X containing $\{x\}$ is precisely $\{x\}$.

Definition 2.15: A space (X, τ) is said to be an Ultra Hausdroff space if for pair of distinct points *x* and *y* in X there exist two clopen sets U and V containing *x* and *y* such that $U \cap V = \phi$.

Definition 2.16: [9] Let X be a space such that one point set closed in X. Then X is said to be regular if for all $x \in X$ and for all closed set B not containing x there exist disjoint open sets U and V containing x and B respectively.

Definition 2.17: [20] A space (X, τ) is said to be weakly Hausdroff is each element of X is an intersection of regular closed sets.

III. Contra Ir*- Continuous In Ideal Topological Space.

Definition 3.1: A function $f : (X, \tau, I) \to (Y, \sigma)$ is called contra IR*-continuous if $f^{-1}(V)$ is IR*-closed in (X, τ, I) for every open set V in (Y, σ) .

Example 3.2: Let $X = \{a, b, c, d\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$, and $I = \{\phi, \{a\}\}$, IR*- C(X) = $\{X, \phi, \{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$, $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Define a mapping f: (X, τ , I) \rightarrow (Y, σ) as f(a) = a, f(b) = b, f(c) = d, f(d) = c so the function f is contra IR*-continuous.

Remark 3.3: The composition of two contra IR*-continuous function need not be contraIR*-continuous.

Example 3.4: Let $X = Y = Z = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{ac\}, \{b, c\}, \{a, b, c\}\}, \text{and } I = \{\phi, \{a\}, \sigma = \{Y, \phi, \{a\}, \{d\}, \{a, d\}\}, \eta = \{Z, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}.$ Define $f : (X, \tau, I) \rightarrow (Y, \sigma)$ be the identity mapping and $g : (Y, \sigma) \rightarrow (Z, \eta)$ by g(a) = a, g(b) = b, g(c) = d, g(d) = c. Here both f and g are contra IR*-continuous but *gof* is not contra IR*-continuous.

Remark 3.5: contra IR*-continuity and contra continuity are independent concepts.

Example 3.6: Let $X = \{a, b, c, d\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, and $I = \{\phi, \{a\}, \tau^* = \{X, \phi, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\}$, $IR^*-C(X) = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$, $\sigma = \{Y, \phi, \{a\}, \{d\}, \{a, d\}\}$. Define a mapping f: $(X, \tau, I) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d then f is contra IR*-continuous function but not contra continuous. Since $f^{-1}\{a\} = a$ is not closed in (X, τ, I) .

Example 3.7: Let X = {a, b, c, d} = Y, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$, and I = { ϕ , {a}}, $\tau^* = \{X, \phi, \{a\}, \{b\}, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$, IR*- C(X) = {X, $\phi, \{a\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$, $\sigma = \{Y, \phi, \{b\}, \{d\}, \{b, d\}\}$. Define f : (X, τ , I) \rightarrow (Y, σ) by the identity mapping. Hence f is continuous but not contra IR*-continuous. Since $f^{-1}\{b\} = b$ is not IR*- closed.

Theorem 3.8: If f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is a contra IR*- continuous function an g : $(Y, \sigma) \rightarrow (Z, \eta)$ is a continuous function then the function *gof* : $(X, \tau, I) \rightarrow (Z, \eta)$ is contra IR*-continuous.

Proof: Let V be open in (Z,η) . Since g is continuous, $g^{-1}(V)$ is open in (Y,σ) . Since f is contra IR*-continuous. So $f^{-1}(g^{-1}(V))$ is IR*-closed in X. That is $(gof)^{-1}(V)$ is IR*-continuous. Hence *gof* is contra IR*-continuous.

Theorem 3.9: If f: $(X, \tau, I) \rightarrow (Y,\sigma)$ is IR*- irresolute and g: $(Y,\sigma) \rightarrow (Z,\eta)$ is a contra IR*- continuous function then $gof: (X, \tau, I) \rightarrow (Z, \eta)$ is contra IR*-continuous.

Proof: Let V be open in (Z,η) . Since g is contra IR*-continuous $g^{-1}(V)$ is IR*- closed in (Y,σ) . Since f is IR*-irresolute $f^{-1}(g^{-1}(V))$ is IR*-closed in (X, τ, I) . Hence *gof* is contra IR*-continuous.

Theorem 3.10: Suppose IR*-O(X) is closed under arbitrary union then the following are equivalent for a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$.

(i) f is contra IR*- continuous

(ii) for every closed subset V of (Y, σ) , $f^{-1}(V) \in IR^*-O(X)$

(iii) for each $x \in X$ and each $V \in C(Y, f(x))$ there exist a set $U \in IR^*-O(X, x)$ such that $f(U) \subset V$

Proof: (i) \Rightarrow (ii) Let f be contra IR*- continuous. Then $f^{-1}(V)$ is IR*-closed in (X, τ, I) for every open set V of (Y, σ) . That is $f^{-1}(V)$ is IR*-open in (X, τ, I) for every closed set V of (Y, σ) . Hence $f^{-1}(V) \in IR*-O(X)$. (ii) \Rightarrow (i) obvious (ii) \Rightarrow (iii) For every closed subset V of Y, $f^{-1}(V) \in IR*-O(X)$ then for each $x \in X$ and each $V \in C(Y, f(x))$, there exists a set $U \in IR*$ -open (X) such that $f(U) \subset V$ (iii) \Rightarrow (ii) For each $x \in X$ and each $V \in C(Y, f(x))$ there exists a set $U_x \in IR*-O(X, x)$ Such that $f(U_x) \subset V$. That is $x \in f^{-1}(V)$ and $f(x) \subset V$. So there exists $U \in IR*-O(X, x)$, $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$ and Hence $f^{-1}(V)$ is IR*-O(X).

Definition 3.11: A space (X, τ, I) is said to be IR^*-T_1 if for each pair of distinct points x and y in (X, τ, I) there exist IR^* - open set U and V containing x and y respectively. Such that $y \notin U$ and $x \notin V$.

Definition 3.12: A space (X, τ, I) is said to be IR^*-T_2 if for each pair of distinct points x and y in (X, τ, I) there exist IR^* - open sets U and V containing x and y respectively. Such that $U \cap V = \phi$.

Definition 3.13: A space (X, τ , I) is said to be IR*- $T_{1/2}$ if every IR*-closed set is regular I-closed.

Theorem 3.14: If (X, τ, I) is an ideal topological space and for each pair of distinct points x_1 and x_2 in X there exists a function f into a Urysohn space (Y,σ) . Such that $f(x_1) \neq f(x_2)$ and f is contra IR*- continuous at x_1 and x_2 then the space (X, τ, I) is IR*- T_2 .

Proof: Let x_1 and x_2 be any distinct points in (X, τ, I) . Then by hypothesis there is a Urysohn space (Y,σ) and a function f: $(X, \tau, I) \rightarrow (Y,\sigma)$ which statisfies the condition of this theorem. Let $y_i = f(x_i)$ for i = 1, 2 then $y_1 \neq y_2$. Since (Y,σ) is Urysohn space, there exists open neighborhoods U_{y_1} and U_{y_2} of y_1 and y_2 respectively in Y. Such that cl $(U_{y_1}) \cap cl(U_{y_2}) = \phi$. Since f is contra IR*- continuous at x, there exists a IR*- open neighbourhoods

 w_{xi} of x_i in X. such that $f(w_{xi}) \subset cl(U_{y_i})$, for i =1, 2. Hence $(w_{x_1}) \cap (w_{x_2}) = \phi$. Because $cl(U_{y_1}) \cap cl(U_{y_2}) = \phi$. Then (X, τ, I) is $IR^* - T_2$.

Corollary 3.15: If f is a contra IR*- continuous injection of an ideal topological space (X, τ, I) into a Urysohn space (Y, σ) then (X, τ, I) is IR*- T_2 space.

Proof: Suppose that $f: (X, \tau, I) \to (Y, \sigma)$ is contra IR*-continuous injection and Y is a Urysohn space. Then for each pair of distinct points x_1 and x_2 in X $f(x_1) \neq f(x_2)$. Therefore by the above theorem 3.14, X is IR*- T_2 space.

Corollary 3.16: If f is a contra IR*-continuous injection of an ideal topological space (X, τ, I) into a Ultra Hausdroff space (Y,σ) then (X, τ, I) is IR*- T_2 .

Proof: Let x_1 and x_2 be any distinct points in (X, τ, I) . Then f is injective and Y is Ultra Hausdroff, $f(x_1) \neq f(x_2)$ and there exist two clopen sets V_1 and V_2 in (Y, σ) . Such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. Then $x_i \in f^{-1}(V_i) \in IR^*$ -O(X) for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Then X is IR^* - T_2 .

Theorem 3.17: If f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is a contra IR*-continuous injection and Y is weakly Hausdroff then X is IR*- T_1 .

Proof: Suppose that Y is weakly Hausdroff for any distinct points x_1 and x_2 in X. There exist regular closed sets U and V in Y. Such that $f(x_1) \in U$ but $f(x_2) \notin U$, $f(x_1) \notin V$ and $f(x_2) \in V$. Since f is contra IR*- continuous $f^{-1}(U)$ and $f^{-1}(V)$ are IR*- open subset of X. Such that $x_1 \in f^{-1}(U)$, $x_1 \notin f^{-1}(V)$, $x_2 \in f^{-1}(V)$, $x_2 \notin f^{-1}(U)$. This shows that X is IR*- T_1 .

Theorem 3.18: If $f: (X, \tau, I) \to (Y, \sigma)$ is a contra IR*- continuous and (X, τ, I) is IR*- $T_{1/2}$ space then f is RC-continuous.

Proof: Let V be open in (Y,σ) . Since f is contra IR*-continuous, $f^{-1}(V)$ is IR*-closed in (X, τ, I) and X is IR*- $T_{1/2}$ space. Hence $f^{-1}(V)$ is regular I-closed in (X, τ, I) . "Every regular I-closed set is regular closed". Then for every open set V of (Y,σ) , $f^{-1}(V)$ is regular closed in (X, τ, I) . Hence f is RC-continuous.

IV. Almost Contra Ir*- Continuous Function In Ideal Topological Space

Definition 4.1: A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be almost contra IR*-continuous if $f^{-1}(V)$ is IR*closed set in (X, τ, I) for each regular open set V in (Y, σ) .

Example 4.2: Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $I = \{\phi, \{a\}\}, IR^*- C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ Regular open = $\{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Define a mapping $f : (X, \tau, I) \rightarrow (Y, \sigma)$ as f (a) = a, f(b) = b, f(c) = c, f(d) = d, so the function f is almost contra IR*-continuous.

Theorem 4.3: The following are equivalent for a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ 1. f is almost contra IR*- continuous 2. for every regular closed set F of (Y, σ) , $f^{-1}(F)$ is IR*- open set of (X, τ)

Proof: (1) \Rightarrow (2) Let F be a regular closed set in (Y, σ), then Y-F is a regular open set in (Y, σ) By $f^{-1}(Y - F) = X - f^{-1}(F)$ is IR*- closed in (X, τ , I) therefore (2) holds. (2) \Rightarrow (1) let G be a regular open set in (Y, σ). Then (Y-G) is regular closed in (Y, σ) by (2) $f^{-1}(Y-G)$ is an IR*- open set in (X, τ , I). This implies X $-f^{-1}(G)$ is IR*- open. This implies $f^{-1}(G)$ is IR*- closed set in (X, τ , I). Therefore (1) holds.

Theorem 4.4: For two functions f: $(X, \tau, I) \rightarrow (Y, \sigma)$ and k: $(Y, \sigma) \rightarrow (Z, \eta)$. Let the function $kof : (X, \tau, I) \rightarrow (Z, \eta)$ is a composition function. Then the following holds. If f is almost IR*-continuous and k is perfectly continuous then kof is contra IR*-continuous.

Proof: Let V be an open set in (Z,η) . Since k is perfectly continuous, $k^{-1}(V)$ is clopen in (Y,σ) . Since f is an almost contra IR*-continuous $f^{-1}(k^{-1}(V)) = (kof)^{-1}(V)$ is IR*- open and IR*-closed set in (X, τ, I) . Therefore *kof* is contra IR*- continuous.

Theorem 4.5: If f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is an almost contra IR*- continuous injection and (Y, σ) is weakly Hausdroff then X is IR*- T_1 .

Proof: Suppose Y is weakly Hausdroff for any distinct points x and y in (X, τ , I). There exist V and W regular closed sets in (Y, σ). Such that $f(x) \in V$, $f(y) \notin V$ and $f(y) \in W$ and $f(x) \notin W$. Since f is almost contra IR*-continuous f^{-1} (V) and f^{-1} (W) are IR*- open subset of X. Such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. Therefore X is IR*- T_1 .

Theorem 4.6: If a function f: $(X, \tau, I) \rightarrow (Y,\sigma)$ is contra IR*-continuous then it is almost contra IR*continuous.

Proof: obvious because "Every regular open set is open set".

Remark 4.7: The converse of the theorem need not be true in general as seen from the following $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}, \text{ and } I = \{\phi, \{a\}\}, IR^* - C(X) = \{X, \phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{b, c\}, \{a, b, d\}, \{a, c, d\}\}, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}, Regular open = \{Y, \phi, \{a\}, \{c, d\}\}.$ Define f(a) = a, f(b) = b, f(c) = c, f(d) = d, f : (X, \tau, I) \rightarrow (Y, \sigma) is almost contra IR*-continuous but $f^{-1}(c) = c$ which is not IR*- continuous in (X, τ, I) .

Remark 4.8: The composition of two almost contra IR*- continuous function need not be almost contra IR*- continuous as seen in the following example.

Theorem 4.10: For two function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ and k : $(Y, \sigma) \rightarrow (Z, \eta)$. Let $kof : (X, \tau, I) \rightarrow (Z, \eta)$ is a composition function. If f is almost contra IR*-continuous and k is an R-map then kof is almost contra IR*-continuous.

Proof: Let V be any regular open set in (Z,η) . Since k is an R- map $k^{-1}(V)$ is regular open in (Y, σ) . Since f is almost contra IR*-continuous $f^{-1}(k^{-1}(V)) = (kof)^{-1}(V)$ is IR*- closed in (X, τ, I) . Therefore kof is almost contra IR*-continuous.

Theorem 4.11: For two function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ and $k : (Y, \sigma) \rightarrow (Z, \eta)$ is a composition function. If f is almost contra IR*- continuous and k is almost continuous then *kof* is almost contra IR*- continuous.

Proof: Let V be any open set in (Z,η) . Since k is almost continuous k^{-1} (V) is open in (Y, σ) . Since f is almost contra IR*- continuous $f^{-1}(k^{-1}(V)) = (kof)^{-1}(V)$ is IR*-closed in (X, τ, I) . Therefore *kof* is almost contra IR*-continuous.

Definition 4.12: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be almost IR*-continuous if $f^{-1}(V)$ is IR*- open set in (X, τ, I) for each regular open set V in (Y, σ) .

Theorem 4.13 : If $f : (X, \tau, I) \to (Y, \sigma)$ is a contra IR*-continuous map and $g : (Y, \sigma) \to (Z, \eta)$ is a regular set connected function then *gof* : $(X, \tau, I) \to (Z, \eta)$ is IR*-continuous and almost IR*-continuous .

Proof: Let V be regular open in (Z,η) . Since g is regular set connected $g^{-1}(V)$ is clopen in (Y, σ) . Since f is a contra IR*-continuous $f^{-1}(g^{-1}(V))$ is IR*-closed in (X, τ, I) . Hence *gof* is almost IR*-continuous.

Definition 4.14: A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is strongly IR*-open if the image of every IR*-open set of (X, τ , I) is IR*-open (Y, σ).

Theorem 4.15: If $f: (X, \tau, I) \to (Y, \sigma)$ is a surjective, strongly IR*-open (or strongly IR*-closed) and g: $(Y,\sigma) \rightarrow (Z,\eta)$ is a function such that $gof: (X,\tau, I) \rightarrow (Z,\eta)$ is almost contra IR*-continuous then g is almost contra IR*-continuous.

Proof: Let V be any regular closed set (respectively regular open) set in (Z, η) . Since *gof* is almost contra IR*continuous $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is IR*-open (respectively IR*-closed) in (X, τ, I) . since f is surjective and strongly IR*-open (or) strong IR*-closed $f(f^{-1}(g^{-1}(V)) = g^{-1}(V)$ is IR*-open (respectively IR*- closed). Therefore g is almost contra IR*- continuous.

Theorem 4.16: Let $f: (X, \tau, I) \to (Y, \sigma)$ is a contra IR*-continuous function and $g: (Y, \sigma) \to (Z, \eta)$ is IR*continuous. If Y is IR*- $T_{1/2}$ then $gof : (X, \tau, I) \rightarrow (Z, \eta)$ is an almost contra IR*-continuous function.

Proof: Let V be regular open and hence open set in (Z, η). Since g is IR*- continuous $g^{-1}(V)$ is IR*- open in (Y,σ) and Y is IR*- $T_{1/2}$ space implies $g^{-1}(V)$ is regular open in (Y,σ) . Since f is almost contra IR*-continuous $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is IR*-closed set in (X, τ, I) . Therefore gof is almost contra IR*- continuous.

Definition 4.17: A ideal topological space X is called a IR*-normal space [19] if each pair of disjoint closed sets can be separated by disjoint IR*-open sets.

Theorem 4.18: If $f: (X, \tau, I) \to (Y, \sigma)$ is an almost contra IR*-continuous closed injective function and (Y, σ) is ultra normal then (X, τ, I) is IR*- normal.

Proof: Let E and F be disjoint closed subsets of (X, τ, I) . Since f is closed and injective f(E) and f(F) are disjoint closed sets in (Y,σ) . Since Y is ultra normal there exist disjoint clopen sets in U and V in Y such that $f(E) \subset U$ and f(F) \subset V. This implies E $\subset f^{-1}(U)$ and F $\subset f^{-1}(V)$. Since f is an almost contra IR*- continuous injection $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint IR*- open sets in (X, τ, I) . Therefore X is IR*-normal.

Definition 4.19: A ideal topological space (X, τ , I) is said to be IR*- ultra connected if every two non empty IR*-closed subsets of X intersect.

Theorem 4.20: If (X, τ, I) is IR*- ultra connected and $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is an almost contra IR*-continuous surjection then (Y,σ) is hyperconnected.

Proof: Let X be IR*- ultraconnected and $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is an almost contra IR*-continuous surjection. Suppose Y is not hyperconnected. Then there is an open set V such that V is not dense in Y. Therefore there exist an nonempty regular open subsets B_1 = int (cl(V)) and B_2 =Y - cl(V) in (Y, σ). Since f is an almost contra IR*-continuous surjection. $f^{-1}(B_1) \& f^{-1}(B_2)$ are disjoint IR*-closed in (X, τ). Which is a contradiction to the fact that X is IR*-ultra connected. Therefore Y is hyperconnected.

Reference

- S.P Arya and R.Gupta "on strongly continuous mappings" Kyunpook Math., J.14 (1974), 131-143. [1].
- [2]. J. Bhuvaneswari, A. Keskin, N.Rajesh, contra-continity via Topological Ideals., J.Adv.Res.Pure Math., 3(1)(20), 4051
- [3]. Cameron D.E, Properties of S-closed spaces, Proc.amer.Math.Soc.72 (1978), 581-586
- [4]. J.Dontchev contra-continuous functions and strongly S-closed spaces, Internal J.Math.Math.Sci., 19(1996), 303-310
- [5]. J.Dontchev On generalizing semi pre opensets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math 16(1995), 35-48.
- [6]. E.Ekici, almost contra pre-continuous functions, Bull Malaysian.Math.Sci.Soc.27:53:65, 2004.
- [7]. E.Ekici, "On contra π g-continuous functions", cha08, solitons and fractals 35,(2000) 71-81.
- ľ81. G.L.Garg and D.Sivraj, On sc-compact and S-closed spaces, Boll.Un.Math.Ital.6 (3B)(1984),321-332.
- [9]. Gangster.M and Reilly.I, More on almost S-continuity Indian J.Math.1999, 41:139-146
- [10]. C.Janaki and Renu Thomas, On R*- closed sets in topological spaces, International Journal of Mathematical Archive - 3[8], 2012, 3067-3074.
- [11]. C.Janaki and Renu Thomas, IR*- closed sets in Ideal Topological spaces [under publishing]
- [12]. C.Janaki and Renu Thomas, contra R*-continuous and almost contra R*-contra function
- ISSN: 2278-3008, p-ISSN: 2319-7676.volume, Issue 1(Nov -Dec 2013), pp 63-69.
- [13]. Renu Thomas and Sheepa. K. S, On IR*-continuty in Ideal Topological spaces [under publishing]
- [14]. D. Jankovic and T. R. Hamlett, "New topologies from old via ideals," The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
- [15].
- Kuratowski .K. Topology, Vol.I. New York: Academic Press, 1966. Palaniappan and KC Rao, "Regular generalized closed sets" Kyungpook, Math. J.33 (1993), 211-219 [16].
- [17]. Singal M.K and Singal A.R, Almost continuous mapping, Yokohama. Math.J.16 (1968) 63-73.

- [18]. R.Staum, The algebra of bounded continuous functions into a non-archiemedian field. Pacific. J.Math 50:169-185(1974).
- [19]. Steen L.A and steeback Jr.J.A 1970, counter examples in topology, Holt, Rinenhart and wiston, newyork 1970.
- [20]. Soundarajan.T weakly Hausdroff spaces and the cardinality of topological spaces in general topology and its relation to modern analysis and algebra. III proc.Taum, conf.Kanpur (1968) Academic, Prague (1971) 301-306 R. Vaidyanathaswamy, Set Theory, Chelsea Publishing Company, New York, 1960
- [21].