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Abstract: Full Bayesian Significance Test (FBST) was derived by Pereira and Stern for testing a sharp 

(precise) null hypothesis. The evidence measure of this test has similar interpretation as the p-value of the 

frequentist significance test. However, it does not suffer from the drawbacks of the p-value. Pereira and his 

associates argued that full posterior distribution be used to obtain the evidence measure. One of the advantages 

of the Bayes procedure is that it can handle nuisance parameters easily by integrating this parameter from the 

posterior distribution. In this paper we derive the Full and the Marginal Bayesian Significance Test (MBST) for 

testing the specified value of the median for the two parameter lognormal distribution. Simulation is used to 

compare the FBST and the MBST in terms of power of the test. The results indicate that the critical value of the 

evidence measure for the MBST is closely related to the p-value of the  test. In terms of evidence, FBST 

provides stronger evidence against the null hypothesis compared to the MBST and the  test. Although  test is 

more powerful compared to the FBST and MBST, there is no difference in the power of FBST and MBST. An 

illustrative example is also provided. 
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I. Introduction 
Full Bayesian Significance Test (FBST) was proposed by Pereira and Stern [1]. It was done with the following 

objectives: 

a) To propose a Bayesian Significance Test for testing a sharp (or precise) null hypothesis. 

b) To propose a Bayesian evidence measure  against the null hypothesis which is similar to the 

frequentist p-value. 

In a series of paper, Pereira and his associates studied the various properties of FBST and the 

advantage of the evidence measure over the p-value. These properties include the invariance property of the 

FBST under coordinate transformation and that FBST is a Bayes rule under an appropriate loss function (see 

[2]). With an appropriate reasoning Pereira et al. [3] argue that FBST is a significant test for testing a sharp null 

hypothesis. Other papers on FBST are the following: Pereira and Stern [4] use FBST for selecting a model in a 

class of nested models, they suggest that FBST can be easily implemented using modern numerical optimization 

and integration techniques and also indicate that FBST needs no additional assumptions. Full Bayesian 

Significance Test for coefficient of variation (CV) was considered by Pereira and Stern [5]. They use FBST to 

compare CV in applications arising in finance and industrial engineering. FBST for testing the hypothesis of 

independence in a Holgate Bivariate Poisson distribution was developed by Stern and Zacks [6]. They compare 

the power of the test with several well known classical tests (Non-Bayesian) and using Monte Carlo simulation 

showed that FBST has better power properties compared to the other tests.  

While proposing FBST, Pereira and Stern [1] strongly advocated the use of full posterior distribution 

for computing the evidence measure. The word „full‟ refers to the joint posterior distribution of all the 

parameters in the model. In their paper Pereira et al. [3] argue that the marginal approach should not be used for 

computing the  measure. They cite Basu [7] and Good [8] to support their claim on the Bayesian inference 

based on full posterior distribution. FBST shares some similarity with likelihood ratio test (LRT) (see section 2 

for details) and is appealing even for a frequentist. However, the insistence that  measure be computed based 

on the full posterior distribution is little disturbing for frequentist as well as some section of the Bayesians.  

Inference based on the marginal posterior distribution for the parameters of interest is well accepted by 

many Bayesians. This is the standard method of eliminating nuisance parameters in Bayesian inference and 

Bayesians cite it as an advantage of the procedure compared to the ad hoc procedure in frequentist approach (see 

[9], [10] and [11]). Dawid [12] and Severini [13] and the references cited therein, use marginal posterior 

approach to justify “the ad hoc procedure of the frequentist”. Although Bayesians call this as ad hoc procedure, 

the conditioning and invariance approach have played a vital role in classical inference. When Bayesians also 

approve the marginal approach, a natural question by the frequentist is that “What is the superiority of the FBST 

compared to the MBST (Marginal Bayesian Significance Test)?” In MBST the marginal posterior distribution of 

the parameter of interest is used to compute the evidence measure. Pereira and Stern [1] have indicated that the 

evidence measure is stronger for testing a real parameter compared to the case of testing the same in the 
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presence of nuisance parameter. This has motivated us to make a frequentist comparison of the FBST and the 

MBST. In this comparison we use the theoretical argument as well as the evidence from a simulation study. The 

results indicate that, in general there is no computational advantage for the MBST, while from the Bayesian 

perspective the evidence in FBST is stronger compared to the evidence measure in MBST. 

The paper is organized as follows: Section 2 describes FBST and MBST. In Section 3, the problem of 

testing for the median of the two parameter lognormal distribution is discussed. Numerical power comparison of 

the FBST and MBST is presented in Section 4. Section 5 presents results and discussions while Section 6 takes 

up the analysis of a real life data. The paper concludes in Section 7.  

 

II. Full And Marginal Bayesian Significance Test 
2.1 Full Bayesian Significance Test (FBST) 

Let  be a random variable with density  real. Let  denote the realized value 

of the sample. Let  be a generic notation of a probability density. The problem of interest is to test 

 Let  denote the prior density of  and  denote the posterior density given the data. Let 

. The evidence measure  is defined as  In FBST the null hypothesis 

is rejected for small values of  

To understand the similarity between FBST and the likelihood ratio test (LRT), in fig 2.1a and 2.1b, we 

have plotted separately the posterior density  and the density of the Likelihood ratio statistic 

, where  is the maximum likelihood estimator (MLE) of . 

 

 
 

In fig 2.1a, the unshaded region corresponds to the tangential set for the null hypothesis and  

corresponds to the probability of this tangential set. In fig 2.1b, the shaded region is the region of rejecting the 

null hypothesis. The probability of the tail areas of the posterior distribution of  is the  measure while the 

probability of the tail areas of the density function of  refers to the p-value. The figures clearly prove the 

closeness between the logical reasoning of FBST and the LRT. This idea is further elaborated in Section 3.  

Let  be vector valued,  where  be real and  may be real or vector valued. The hypothesis 

of interest and  is now defined as . The  measure, as in 

previous case is . In multi parameter set up the plotting of posterior density and the likelihood 

function is difficult. Nevertheless, if one looks at the expression for , one can realize the closeness between the 

FBST and the LRT. 

 

 2.2 Marginal Bayesian Significant Test (MBST) 

Pereira and his associates did not propose the Bayesian Significance Test based on marginal posterior 

distribution. Using the previous notation, the null hypothesis of interest is  We can define the 

evidence measure based on the marginal posterior distribution  using the same logic of Pereira and Stern 

[1]. Let  and the  measure is given by  

The computation of FBST involves two steps: a) Optimization and b) Integration. It is computationally 

very tedious, while the MBST involves only one step, i.e integration. One can use MCMC for computation of   

(FBST) and (MBST). The generation of samples from a multivariate posterior distribution is computationally 

more tedious than generating observations from a univariate posterior distribution. In order to overcome the 

computational burdens Cabras et al. [14] obtained higher order approximation for the evidence measure in 

MBST and thereby for FBST. In Section 3 we show the closeness between the MBST and UMPU test for 

testing parameters of the lognormal (in turn normal) distribution.  
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III. FBST and MBST for Testing the Specified Value of the Median in Lognormal Distribution 
3.1 Notations and test procedure 

Given a random sample of size  from two parameter lognormal distribution with log location 

parameter  and log scale parameter   and  are sufficient statistic for  and  where 

 and  and  denote the sample mean and sample variance, respectively for the 

transformed variable  The likelihood for  and  is given by,  

  (1) 

Lognormal distribution was the topic of interest in the papers by Zellner [15], Zhou and Tu [16], 

Krishnamoorthy and Mathew [17], Harvey et al. [18], Harvey and Merwe ([19],[20]) and D‟Cunha and Rao 

([21],[22]). The commonly used priors are: i) Right invariant prior   ii) Left invariant Jeffreys prior 

 iii) Jeffreys rule prior  and iv) Uniform prior . Jeffreys rule prior is 

proportional to where  is the Fisher information matrix for the normal distribution. This 

prior was used in the past by Harvey and Merwe [20]. Some of these priors were used in the past by Zellner 

[15], Harvey et al. [18], Harvey and Merwe ([19],[20]) and D‟Cunha and Rao ([21], [22]).The additional prior 

used in the present investigation is the probability matching prior  Although this prior is not 

commonly used, the use of this prior leads to agreement between the UMPU/UMP invariant test and the 

Marginal Bayesian Test based on the t statistic defined on the parameter space. The posterior distribution is the 

product of gamma for  and the conditional normal distribution for  To save space we give below the 

posterior distribution of  and  for the right invariant prior.  

,  (2) 

(using right invariant prior)                                                            

The difference with respect to various priors is only in the shape parameter of the gamma distribution for  

in the posterior distribution and is symbolically given below, 

  (using left invariant prior)              (3)       

  (using Jeffreys Rule prior   (4) 

  (using Uniform prior)   (5) 

  (using Probability matching prior)  (6) 

where . The median of the lognormal distribution is  and testing for the specified 

value of the median is equivalent to testing  For this hypothesis UMPU/UMP invariant test exists 

(see [23]). And the test statistic is given by . Under  follows central  distribution with  

degrees of freedom (d.f). The null hypothesis is rejected when  where refers to the 

upper  percentile value of  distribution with  degrees of freedom. For any posterior distribution 

 the evidence measure against the null hypothesis is  where  is given by 

 Closed form solutions exist for  which maximizes the posterior 

density of   For the frequentist comparison, the test statistic is the evidence measure  for 

which no closed form solution exists. In Section 4, Importance Sampling Approach is used to generate 

observations from the posterior distribution and to carry out the Monte Carlo Integration.  

The marginal posterior density function of  for the probability matching prior is given below, 

 
              (7) 

We observe that  follows  distribution with  d.f. The distinction between the 

distribution of  and  is that,  is defined on the sample space while  is defined on the parameter space. To 

save space the marginal posterior distribution of  for the other priors is not shown here. Let , the 
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marginal posterior distributions of  are central  distribution with degrees of freedom  equal to  (for 

Right invariant),  (for Left invariant Jeffreys),  (for Jeffreys rule),  (for Uniform) priors, 

respectively. Thus the marginal posterior distribution of  is the location shifted scaled  distribution for all the 

priors. The evidence measure for the MBST for any prior is given by   which is also 

the test statistic for frequentist comparison. Although this probability can be evaluated analytically, we have 

used Monte Carlo integration so as to have the uniform accuracy for the FBST and the MBST in Section 4.  

 

IV. Finite Sample Comparison on the Performance of FBST, MBST and t test 
In this Section we compare the power of the FBST, MBST and test for finite (small) samples. For this purpose 

an extensive simulation is carried out. 

 

4.1 Simulation experiment for the estimation of the critical values 

For a given sample we have to estimate the evidence measure using Monte Carlo Integration by 

generating observations from the posterior distribution. This constitutes the inner simulation and corresponds to 

one estimate of the evidence measure. For estimating the critical values, the experiment has to be repeated by 

generating observations from the normal distribution with the same values of the parameters. This constitutes 

the outer simulation. 

A sample of size  is generated from normal distribution with  and a given value of . 

For this sample, the observations for  and  is generated from the posterior distribution  Since 

the posterior distribution is the product of gamma distribution for  and the conditional normal distribution 

given  observation for  is generated from the gamma distribution; and using this value of , the observation 

for  is generated from the conditional normal distribution. This constitutes a pair of observation ( . Thus 

for each sample we are generating 10,000 observations from the posterior distribution. Using the generated 

values of   we have estimated the number of times .This constitutes the 

estimated value of  and  Using 1000 samples, the  measure is obtained. The lower  

percentile of the simulated distribution of the  measure is noted down. This is the estimated critical value for 

the evidence measure in FBST. 

For the MBST, for generating observations from the marginal posterior distribution, observations are 

generated from the distribution with  degrees of freedom. The generated observation for  is obtained by the 

relation, , where  denotes the generated value from the  distribution and  denotes the degrees 

of freedom and  (Right Invariant),  (Left Invariant),  (Jeffreys Rule),  

(Uniform) and  (Probability Matching) priors, respectively. Using these 10,000 values of  is 

computed by estimating the proportion of times  By generating 1000 samples from 

normal distribution the critical value of the  is estimated.  

The sample sizes considered are and . Various values of  are 

used in the simulation. Since  is related to the coefficient of variation (CV) of the lognormal distribution by 

the relation  the values for  is estimated corresponding to the CV values of 0.1, 0.3, 0.5, 

0.7, 1, 1.5, 2 and 2.5. The level of significance is fixed at . 

 

4.2 Estimation of the power of the test 

For the estimation of the power of the test, observations from the normal distribution are generated for 

various values of  by fixing the value of  as in the null hypothesis. The power of the test corresponds to the 

proportion of times the  value under the alternative hypothesis is less than or equal to the estimated critical 

value. The estimation of for the alternative hypothesis is similar to the null hypothesis. The power of the t test 

is computed using the critical values of the t distribution as this test is exact.  

 

V. Results And Discussion 
5.1 Estimated critical values for the FBST and the MBST 

Table 5.1 and 5.2 presents the estimated critical values for the FBST and MBST, when  for 

the sample sizes n = 10, 20, 60 and 100 and for various combinations of CV. To save space the critical values 

for other sample sizes are not reported. 
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Table 5.1: Estimated critical values for FBST for various combinations of CV and sample sizes when =0.05 
Sample 

Size 

Prior Critical Values for Evidence measure when CV equal to 

0.1 0.3 0.5 0.7 1 1.5 2 2.5 

 

10 

Right Invariant 0.0730 0.0612 0.0730 0.0612 0.0683 0.0577 0.0575 0.0826 

Left Invariant 0.0559 0.0494 0.0559 0.0494 0.0515 0.0446 0.0462 0.0661 

Jeffreys Rule 0.0410 0.0385 0.0410 0.0385 0.0398 0.0340 0.0333 0.0507 

Uniform 0.1003 0.0902 0.1003 0.0902 0.0952 0.0871 0.0863 0.1166 

Probability matching 0.1412 0.1267 0.1446 0.1256 0.1297 0.1521 0.1182 0.1468 

 

20 

Right Invariant 0.1079 0.0938 0.1079 0.1079 0.0938 0.1344 0.0743 0.1017 

Left Invariant 0.0979 0.0817 0.0979 0.0979 0.0817 0.1229 0.0719 0.0909 

Jeffreys Rule 0.0852 0.0754 0.0852 0.0852 0.0754 0.1071 0.0580 0.0820 

Uniform 0.1209 0.1085 0.1209 0.1209 0.1085 0.1472 0.0908 0.1209 

Probability matching 0.1293 0.1336 0.1363 0.1293 0.1363 0.1316 0.1403 0.1514 

 

60 

Right Invariant 0.1348 0.1237 0.1741 0.1231 0.1417 0.1477 0.1650 0.1024 

Left Invariant 0.1275 0.1248 0.1695 0.1220 0.1350 0.1415 0.1602 0.0988 

Jeffreys Rule 0.1261 0.1187 0.1640 0.1153 0.1321 0.1399 0.1585 0.0963 

Uniform 0.1411 0.1321 0.1788 0.1300 0.1471 0.1545 0.1689 0.1088 

Probability matching 0.1374 0.1402 0.1330 0.1876 0.1404 0.1514 0.1382 0.0920 

 

100 

Right Invariant 0.1320 0.1239 0.1452 0.1320 0.1239 0.1239 0.1718 0.1452 

Left Invariant 0.1278 0.1218 0.1399 0.1278 0.1218 0.1218 0.1705 0.1399 

Jeffreys Rule 0.1179 0.1181 0.1433 0.1179 0.1181 0.1181 0.1647 0.1433 

Uniform 0.1350 0.1273 0.1489 0.1350 0.1273 0.1273 0.1757 0.1489 

Probability matching 0.1471 0.1443 0.1400 0.1441 0.1483 0.1600 0.1081 0.1285 

  

From table 5.1 we notice that for a small sample size n=10 and all the priors the critical values for the 

FBST ranges from 0.03 to 0.15 while it is 0.05 to 0.15 for n=20. As the sample size increases the critical values 

ranges from 0.10 to 0.18 for sample size n =60 and it ranges from 0.12 to 0.18 for sample size n =100. No 

systematic pattern can be identified in the critical values as the CV increases from 0.1 to 2.5. For each prior, as 

the sample size increases, the estimated critical values converge to a point which is slightly higher than 0.10. 

This conclusion is based on all the sample sizes and not necessarily to the values reported in the table. 

 

Table 5.2: Estimated critical values for MBST for various combinations of CV and sample sizes when =0.05 
Sample 

size 

Prior Critical Values for Evidence measure when CV equal to 

0.1 0.3 0.5 0.7 1 1.5 2 2.5 

 

10 

Right Invariant 0.0163 0.0199 0.0182 0.0173 0.0174 0.0173 0.0206 0.0180 

Left Invariant 0.0132 0.0166 0.0139 0.0123 0.0130 0.0139 0.0155 0.0132 

Jeffreys Rule 0.0100 0.0118 0.0101 0.0094 0.0103 0.0111 0.0121 0.0113 

Uniform 0.0224 0.0276 0.0259 0.0221 0.0238 0.0223 0.0267 0.0244 

Probability matching 0.0392 0.0470 0.0423 0.0390 0.0423 0.0415 0.0469 0.0427 

 

20 

Right Invariant 0.0379 0.0319 0.0303 0.0292 0.0256 0.0316 0.0393 0.0292 

Left Invariant 0.0327 0.0276 0.0271 0.0286 0.0223 0.0290 0.0340 0.0252 

Jeffreys Rule 0.0286 0.0246 0.0242 0.0239 0.0191 0.0254 0.0306 0.0223 

Uniform 0.0438 0.0364 0.0338 0.0353 0.0291 0.0356 0.0445 0.0328 

Probability matching 0.0531 0.0469 0.0453 0.0464 0.0381 0.0491 0.0536 0.0430 

 

60 

Right Invariant 0.0443 0.0514 0.0378 0.0455 0.0548 0.0548 0.0405 0.0342 

Left Invariant 0.0420 0.0490 0.0372 0.0453 0.0559 0.0559 0.0401 0.0329 

Jeffreys Rule 0.0401 0.0475 0.0349 0.0399 0.0500 0.0500 0.0374 0.0303 

Uniform 0.0438 0.0525 0.0389 0.0486 0.0574 0.0574 0.0431 0.0357 

Probability matching 0.0493 0.0560 0.0432 0.0531 0.0622 0.0622 0.0482 0.0413 

 

100 

Right Invariant 0.0422 0.0410 0.0404 0.0400 0.0463 0.0427 0.0425 0.0466 

Left Invariant 0.0426 0.0402 0.0387 0.0392 0.0450 0.0426 0.0409 0.0462 

Jeffreys Rule 0.0411 0.0408 0.0377 0.0393 0.0451 0.0404 0.0406 0.0461 

Uniform 0.0445 0.0422 0.0420 0.0396 0.0473 0.0421 0.0426 0.0483 

Probability matching 0.0451 0.0446 0.0442 0.0442 0.0501 0.0436 0.0455 0.0504 

 

 From table 5.2 we observe that for all the priors the critical values for MBST for a small 

sample size n=10 ranges from 0.01 to 0.05 while it is 0.02 to 0.05 for n =20. As sample size increases the 

critical value ranges from 0.03 to 0.06 and 0.04 to 0.05 for sample sizes n =60 and 100, respectively. For each 

prior, as sample size increases, the estimated critical values converge to a point which is slightly higher than 

0.05. 

 A significant conclusion that emerges from the tables is that the critical values for the FBST as 

well as MBST is higher for the probability matching prior compared to other priors. This is followed by the 

critical values for Uniform, Right invariant, Left invariant Jeffreys and Jeffreys Rule prior, respectively. It also 

follows that the evidence provided by the MBST is close to the p-value while the evidence provided by FBST is 

much stronger compared to the MBST and the p-value. 
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5.2 Power comparison 

The power curve for the FBST and MBST for the 5 priors along with t test when the sample size is 

n=100 and CV=0.1 is presented in figures 5.1 to 5.5. The power curves are also estimated when CV=1 and 1.5 

and to save space it is not shown here.  

 

900 920 940 960 980 1000 1020 1040 1060 1080 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

P
o
w

e
r

The Power Curve for 3 tests using Right Invariant Prior

FBST

MBST

t-test

900 920 940 960 980 1000 1020 1040 1060 1080 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

P
o
w

e
r

The Power Curve for 3 tests using Left Invariant Prior

FBST

MBST

t-test

 
Fig 5.1: Power Curve for Right Invariant prior  Fig 5.2: Power Curve for Left Invariant prior  

            when n=100, CV=0.1     when n=100, CV=0.1 
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Fig 5.3: Power Curve for Jeffreys Rule prior  Fig 5.2: Power Curve for Uniform prior  

            when n=100, CV=0.1     when n=100, CV=0.1 
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Fig 5.5: Power Curve for Probability Matching prior when n=100, CV=0.1 
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From the figures it follows that for the left and right contiguous alternatives the power of the t test is 

marginally higher compared to the FBST and MBST. For these alternatives the power curves for the FBST and 

MBST fluctuates from each other marginally.  This indicates that among FBST and MBST no test is more 

powerful than the other. The rate of convergence of the power curves to the value 1 is equal for all the 3 tests.  

 

VI. Example 
(Source:http://www.nseindia.com/products/content/equities/equities/eq_security.htm) 

To illustrate the use of the tests mentioned in this paper, we have considered a real data set on stock 

prices. The script chosen for the analysis is TATA STEEL which is listed in the National Stock Exchange (NSE) 

Limited, India. The data is considered for the period May and June, 2015. The average price per day is taken as 

the price of the stock. The data is available from the above cited link. The analysis is carried out to check 

whether the median stock price of the script TATA STEEL for the month of June 2015 is same as that for the 

month of May 2015. 
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Fig 6.1: Q-Q plot for log transformed stock price data for the script TATA STEEL 

 

The Q-Q plot for the log transformed data is presented in fig 6.1, which confirms that the underlying 

distribution is normal and there by implies that the underlying distribution for stock prices is lognormal. The 

median value for the month of May 2015 is Rs. 361.035 and the null hypothesis of interest is that, 

 

 
Table 6.1 presents the evidence measure and critical values for the FBST and MBST along with the calculated 

p-value for the t test.  

 

Table 6.1: Computed and critical values of the test statistic 
Test Prior Value of the test 

Statistic 

Critical value Decision 

FBST Right invariant 0 0.1017 Reject 

Left invariant 0 0.0909 Reject 

Jeffreys rule 0 0.0820 Reject 

Uniform 0 0.1209 Reject 

Probability matching 0 0.1514 Reject 

MBST Right invariant 0 0.0292 Reject 

Left invariant 0 0.0252 Reject 

Jeffreys rule 0 0.0223 Reject 

Uniform 0 0.0328 Reject 

Probability matching 0 0.0430 Reject 

T-test - -26.6785 2.0796 Reject 

* Critical value refers to sample size n=20 and CV=2.5 and the p-value for the t test is zero. 

 

Thus the conclusion that arises from the three tests is to reject the null hypothesis.  The p-value for the t 

test as well as the evidence measure for FBST and MBST are all equal to zero. This indicates that we cannot 

distinguish the three tests in terms of evidence against the null hypothesis.  

 

VII. Conclusion 
The purpose of this paper is to compare the performance of the Full Bayesian Significance Test (FBST) 

and the Marginal Bayesian Significance Test (MBST) for testing the specified value of the median for the two 

parameter lognormal distribution. From a frequentist point of view, the MBST is preferable compared to the 

FBST as it is related to the UMPU/UMP invariant test as in the present context. Nevertheless, extensive 

http://www.nseindia.com/products/content/equities/equities/eq_security.htm
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simulation carried out in the paper indicates that there is no difference in the power of the FBST and the MBST 

for contiguous alternatives for all the 5 priors used in the study. However, from the Bayesian perspective the 

evidence provided by the FBST is stronger compared to the MBST. 

Although there may be valid reasons for using the full model compared to the marginal posterior 

distribution, we are of the opinion that no justification for this can be given from the frequentist view point. 

MBST enjoys computational advantage over FBST when closed form solution exists for the marginal posterior 

distribution. For the problem under consideration as well as from a general scenario, we notice that it is simpler 

to obtain the third order evidence measure for the MBST compared to the FBST (see [14] for details). In the 

present context the p-value of the t test and thereby the Likelihood Ratio Test (LRT) is closely related to the Ev 

value of the MBST. Although we do not have a proof, we conjecture that the closeness is true in general.  

Frequentist comparison of the FBST and MBST in non-standard situations is a problem for future research. The 

program for the simulation is written in Matlab software version 7.0. 
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