Prime Graph vs. Zero Divisor Graph

Satyanarayana Bhavanari¹, Srinivasulu Devanaboina², Srinivas Thota³, Nagaiah Thandu⁴&MallikarjunBhavanari⁵

¹Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar – 522 510, Andhra Pradesh, INDIA.

 ²Department of BSH, NRI Institute of Technology, Agiripalli - 521 212, Andhra Pradesh, INDIA.
³Department of Mathematics, Kakatiya University, Warangal-506 009, Telangana, INDIA.
⁴Department of mathematics, Kakatiya University, Warangal-506 009, Telangana, INDIA
⁵Institute of Energy Engineering, Department of Mechanical Engineering, National Central University Jhongli, Taoyuan, TAIWAN – 32001, R.O.C.

Abstract: In this paper we consider prime graph of R (denoted by PG(R)) of an associative ring R (introduced by Satyanarayana, Syam Prasad and Nagaraju [22]). We also consider zero divisor graph of a finite associative ring R (denoted by ZDG(R)). It is proved that every prime graph is a subgraph of the zero divisor graph but the converse need not be true. An example of a ring for which $PG(R) \neq ZDG(R)$ was presented. **Keywords:** Prime graph, Associative ring,zero divisor graph. **Mathematics subject classification**: 05C20, 05C76, 05C99, 13E15, 68R10.

I. Introduction

Let G = (V, E) be a graph consist of a finite non-empty set V of vertices and finite set E of edges such

that each edge e_k is identified as an unordered pair of vertices $\{v_i, v_j\}$, where v_i, v_j are called end points of e_k .

The edge e_k is also denoted by either $V_i V_j$ or $\overline{v_i V_j}$. We also write G(V, E) for the graph. Vertex set and edge

set of G are also denoted by V(G) and E(G) respectively. An edge associated with a vertex pair $\{v_i, v_i\}$ is called a self-loop. The number of edges associated with the vertex is the degree of the vertex, and $\delta(v)$ denotes the degree of the vertex v. If there is more than one edge associated with a given pair of vertices, then these edges are called parallel edges or multiple edges. A graph that does not have self-loop or parallel edges is called a simple graph. We consider simple graphs only. For an associative ring R, prime graph ofR(denoted by PG(R)) was introduced in Satyanarayana, Syam Prasad and Nagaraju [22].For a commutative ring R, the notion of 'zero divisor graph' is given in Beck [1988]. In this paper, we consider the associative rings (need not be commutative) and provided some examples on the zero divisor graphs of Z_n where n is a positive integer.

1.2 Definitions:

(i) A graph G (V, E) is said to be a **star graph** if there exists a fixed vertex v (called the center of the star graph) such that $E = \{vu \mid u \in V \text{ and } u \neq v\}$. A star graph is said to be an **n-star graph** if the number of vertices of the graph is n.

(ii) In a graph G, a subset S of V(G) is said to be a *dominating set* if every vertex not in S has a neighbour in S. The *domination number*, denoted by $\gamma(G)$ is defined as min {|S| / S is a dominating set in G}.

(iii) In a connected graph, a closed walk running through every vertex of G exactly once (except the starting vertex at which the walk terminates) is called as **Hamiltonian circuit**. A graph containing a Hamiltonian circuit is called as **Hamiltonian graph**.

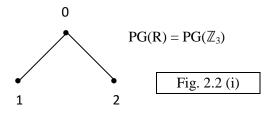
1.3 Theorem: (Th. 13.8, page 361, [18]) A given connected graph G is an Eulerian graph if and only if all the vertices of G are of even degree. For other preliminary results and notations we use [18], [20] or [21]

II. Prime Graph of a Ring

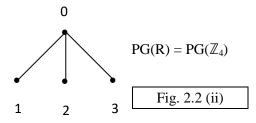
2.1 Definition: (Satyanarayana, Syam Prasad and Nagaraju [22]) Let R be an associative ring. A graph G(V, E) is said to be a *prime graph* of R (denoted by PG(R)) if V = R and $E = \{ \overline{xy} / xRy = 0 \text{ or } yRx = 0, \text{ and } x \neq y \}$.

For convenience of the reader we included the following example.

2.2Example (Example 9.4.2 of Satyanarayana and Syam Prasad [20]):Consider \mathbb{Z}_n , the ring of integers modulo n. (i) Let us construct the graph PG(R), where $R = \mathbb{Z}_3$. We know that $R = \mathbb{Z}_3 = \{0, 1, 2\}$. So V(PG(R)) = $\{0, 1, 2\}$. Since 0R1 = 0, 0R2 = 0 there exists an edge between 0 and 1, and also an edge between 0 and 2. There are no other edges, as there are no two non-zero elements x, $y \in R$ with xRy = 0. So E(PG(R)) = $\{01, 02\}$. Now PG(R) is given in Figure 2.2 (i).



(ii) Let us construct the graph PG(R), where $R = \mathbb{Z}_4$. We know that $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$. So V(PG(R)) = $\{0, 1, 2, 3\}$. Since 0R1 = 0, 0R2 = 0, 0R3 = 0, we have that $01, 02, 03 \in E(PG(R))$. There are no other edges, as there are no two distinct non-zero elements x, $y \in R$ such that xRy = 0. So $E(PG(R)) = \{0, 02, 03\}$. Now PG(R) is given in Figure 2.2 (ii).



III. Zero Divisor Graph of an Associative Ring

In this section, we wish to studyzero divisor graph of an associative ring **3.1 Definition:** (Vasantha kandasamy and Florentin Smarandache [23])A graph G = (V, E) is said to be the zero divisor graph of a commutative ring R if V = R and E = $\left\{ \overline{xy} / x \neq y, x, y \in R, x \neq 0 \neq y, xy = 0 \right\} \cup \left\{ \overline{x0} / 0 \neq x \in R \right\}$ where \overline{xy} denotes an edge between x, y $\in V$.

This definition 'zero divisor graph' is same as that of Beck [1988].

3.2 Notation: (i) We denote zero divisor graph of ring R by ZDG(R)

(ii) In the graph ZDG(R), we have that V(ZDG(R)) = R and

$$E(ZDG(R)) = \{ \overline{xy} \mid x \neq y, x, y \in R, x \neq 0 \neq y, xy = 0 \} \cup \{ \overline{x0} \mid 0 \neq x \in R \}$$

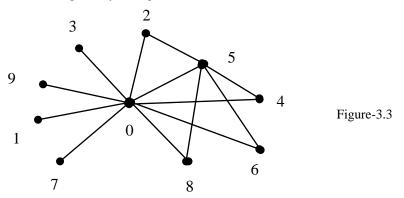
3.3 Example:(Vasantha kandasamy and Florentin Smarandache [23]) Consider Z_n , the ring of integers modulo n.

Consider ZDG(R) with $R = Z_{10}$. We know that $R = Z_{10} = \{0, 1, 2, 3, \dots, 9\}$,

So $V(ZDG(R)) = \{0,1,2,3,4,5,6,7,8,9\}$. Since $5.8 = 5.4 = 5.6 = 0 \pmod{10}$, there exist edges between the vertices 5 and 8; 5 and 4; also between 5 and 6. Since '0' is adjacent to all the elements in R, we get $\overline{01}, \overline{02}, \overline{03}, \overline{04}, \overline{05}, \overline{06}, \overline{07}, \overline{08}, \overline{09} \in E(ZDG(R))$.

Therefore, $E(ZDG(R)) = \{\overline{01}, \overline{02}, \overline{03}, \overline{04}, \overline{05}, \overline{06}, \overline{07}, \overline{08}, \overline{09}, \overline{25}, \overline{58}, \overline{54}, \overline{56}\}$.

Now ZDG(R) given by the figure 3.3.



3.4 Observations: (i) $ZDG(Z_{10})$ contains 10-star graph as its subgraph;(ii) The domination number is 1; (iii) Since $\overline{02}$, $\overline{25}$, $\overline{50}$ forms a triangle, we conclude that the graph cannot be a bipartite graph; (iv) $ZDG(Z_{10})$ is not an Eulerian graph (by using the Th. 13.8, p 361 of [18]); and (v) Since $ZDG(Z_{10})$ contains pendent vertices, it contains no Hamiltonian circuit.

The following definition is an extension of the concept "zero divisor graph" to Associative rings.

3.5 Definition: Consider an associative ring R(need not be commutative) with identity 1. The zero divisor graph (in notation, ZDG(R)) is defined as V(ZDG(R)) = R and $E(ZDG(R)) = \{\overline{ab} \mid a, b \in R, either ab = 0 \text{ or } ba=0, a \neq b\}$

3.6 Note: In case of commutative rings, the above concept coincides with the zero divisor graph defined in commutative rings by Beck [1]

3.7 Theorem: For an associative ring R we have that PG(R) is a subgraph of ZDG(R). **Proof:** We know that V(PG(R)) = R = V(ZDG(R)). Let $\overline{uv} \in E(PG(R))$. Then uRv = 0 or vRu = 0. Since $1 \in R$ we have that either uv = 0 or vu = 0. By definition 3.5 we have that $\overline{uv} \in E(ZDG(R)$. This shows that PG(R) is a subgraph of ZDG(R).

3.8 Corollary: If R is a commutative ring then PG(R) = ZDG(R). **Proof:** Let $\overline{vu} \in E(ZDG(R))$ with $u, v \in V(ZDG(R)) = R$. Then vu = 0 or uv = 0. Suppose that vu = 0. This implies vux = 0 for all $x \in R$. Since R is commutative vxu = 0 for $x \in R$ and so vRu = 0. This shows that $\overline{vu} \in E(PG(R))$. Hence ZDG(R) is a subgraph of PG(R). By theorem 3.7 we have that PG(R) = ZDG(R).

3.9 Remark: In case of associative ring which is not commutative, the converse of the theorem 3.7 need not be true. This was made clear by the example presented in the next section.

IV. An Example

In this section, we present an example of an associative ring for which $PG(R) \neq ZDG(R)$.

4.1 Example: Let $F = Z_2$ be the field of integers modulo 2. Write R = Set of 3×3 matrices over the field F. We know that R is an associative ring with respect to usual matrix addition and multiplication. Consider the two elements $x, y \in R$ mentioned below

	0	0	1]		0	0	0]
<i>x</i> =	0	0	0	, <i>y</i> =	1	0	0
	0	0	0		0	0	0

Since xy = 0 and $x \neq y$ we conclude that $\overline{xy} \in E(ZDG(R))$. 1 1 1 $Consider z = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \in R.$ Now $xzy = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq 0$ Since $0 \neq xzy \in xRy$, we have that $xRy \neq 0$. Also $yzx = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \neq 0$ Since $0 \neq yzx \in yRx$, we have that $yRx \neq 0$. Since $xRy \neq 0$ and $yRx \neq 0$, we have that $\overline{xy} \notin E(PG(R))$

Hence $E(ZDG(R)) \not\subseteq E(PG(R))$.

[1].

Thus we verified that for the ring of 3×3 matrices over Z_2 , the two graphs: prime graph and zero divisor graph are not equal.

References

- Beck Istvan, Coloring of Commutative Ring, J. Algebra 116 (1988) PP 208-226.
- Kedukodi B.S., Kuncham S.P. and Satyanarayana Bhavanari, "Nearring Ideals, Graphs and Cliques", International Mathematical [2]. Forum, 8 (2) (2013) PP 73-83.
- Satyanarayana Bhavanari, Godloza L., and Nagaraju D., "Some results on Principal Ideal graph of a ring", African Journal of [3]. Mathematics and Computer Science Research Vol.4 (6), 2011. PP 235-241. (ISSN: 2006-9731).
- Satyanarayana Bhavanari, Mohiddin Shaw, Mallikarjun Bhavanari and T.V.PradeepKumar, "On a Graph related to the Ring of [4]. Integers Modulo n", Proceedings of theInternational Conference on Challenges and Applications of Mathematics in Science and Technology (CAMIST) January 11-13 2010. (Publisher: Macmillan Research Series, 2010) PP.688-697. (India). (ISBN: 978 -0230 - 32875 - 4).
- Satyanarayana Bhavanari, Mohiddin Shaw and Venkata Vijaya Kumari Arava, "Prime Graph of an Integral Domain", Proceedings [5]. of the National Seminar on Present Trends in Mathematics and its Applications, November11-12(2010) PP 124-134.
- [6]. Satyanarayana Bhavanari and Nagaraju D., "Dimension and Graph Theoretic Aspects of Rings,"VDM verlag Dr Muller, Germany, 2011. (ISBN: 978-3-639-30558-6).
- Satyanarayana Bhavanari., Pradeep kumar T.V, Sk. Mohiddin Shaw. "Mathematical Foundations of Computer Science", BS [7]. publications, Hyderabad, A.P, India, 2016. (ISBN: 978-93-83-635-81-8).
- Satyanarayana Bhavanari., Srinivasulu D. "Cartesian Product of GraphsVs.Prime Graphs of Rings", Global Journal of Pure and [8]. Applied Mathematics (GJPAM), Volume 11, Number 2 (2015) PP 199-205. (ISSN 0973-1768)
- [9]. Satyanarayana Bhavanari, Srinivasulu D., and Mallikarjun Bhavanari "A Theorem on the Prime Graph of 2 × 2 - matrix ring of Z₂", International Journal on Recent and Innovation Trends in Computing and Communication, Volume 4, Issue 5, (2016) PP 571-573. (ISSN: 2321 - 8169)
- Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari " A Theorem on the Zero Divisor Graph of the ring of 2 × 2 [10]. - matrices over Z₂", International Educational Scientific and Research journal Volume 2, issue 6, (June 2016), PP 45-46. (E -ISSN: 2455 - 295X)
- Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari " Left Zero Divisor Graphs of Totally Ordered Rings", [11]. International Journal of Advanced Engineering, Management and Science(IJAEMS) Vol-2, Issue-6, (June 2016) PP 877-880. (ISSN: 2454-1311)
- Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari " STAR NUMBER OF A GRAPH" , Research Journal of [12]. Science &IT Management: Volume:05, Number:11, 2016, PP 18-22. (ISSN: 2251-1563)
- [13]. Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari "A Theorem on Degree of Vertices with respect to a Vertex Set" (Communicated)
- Satyanarayana Bhavanari , Srinivasulu D. and Mallikarjun Bhavanari "One sided Zero Divisor Graphs of Totally Ordered Rings" [14]. (Communicated)
- Satyanarayana Bhavanari., Srinivasulu D., and Syam Prasad K. "Some Results on Degree of Vertices in Semitotal Block Graph and [15]. Total – Block Graph", International Journal of computer Applications Vol. 50, No.9 (July 2012) PP19-22. (ISSN: 0975 – 8887) Satyanarayana Bhavanari., Srinivasulu D., Syam Prasad K. "Line Graphs& Quasi-Block Graphs", International Journal of
- [16]. Computer Applications Vol. 105, No.3, (November 2014) PP 12-16.(ISSN: 0975-8887)
- [17]. Satyanarayana Bhavanari, and Syam Prasad K. "An Isomorphism Theorem on Directed Hypercubes of Dimension n", Indian J. Pure & Appl. Math 34 (10) (2003) PP 1453-1457, (ISSN: 0019 - 5588).
- [18]. Satyanarayana Bhavanari. and Syam Prasad K. "Discrete Mathematics and Graph Theory", Prentice Hall India Pvt. Ltd., New Delhi, (2009) (ISBN 978-81-203-3842-5).
- [19]. Satyanarayana Bhavanari and Syam Prasad K., "Dimension of N-groups and Fuzzy ideals in Gamma Near-rings", VDM verlag Dr Muller, Germany, 2011. (ISBN: 978-3-639-36838)
- Satyanarayana Bhavanari. and Syam Prasad K. "Nearrings, Fuzzy Ideals and Graph Theory" CRC Press (Taylor & Francis Group, [20]. London, New York), (2013) (ISBN 13: 9781439873106).
- Satyanarayana Bhavanari. and Syam Prasad K. "Discrete Mathematics and Graph Theory", Prentice Hall India Pvt. Ltd., New [21]. Delhi, 2014 (Second Edition)(ISBN 978-81-203-4948-3).
- [22]. Satyanarayana Bhavanari., Syam Prasad K and Nagaraju D. "Prime Graph of a Ring", J. Combinatorics, Informations & System Sciences 35 (2010) PP 27-42.
- [23]. Vasantha kandasamy W.B. and Florentin Smarandache. "Groups as Graphs", Editura CuArt, 2009. (ISBN-10: 1-59973-093-6).