Prime Graph vs. Zero Divisor Graph

Satyanarayana Bhavanari ${ }^{1}$, Srinivasulu Devanaboina ${ }^{2}$, Srinivas Thota ${ }^{3}$, Nagaiah Thandu ${ }^{4} \&$ MallikarjunBhavanari ${ }^{5}$
${ }^{1}$ Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510,Andhra Pradesh, INDIA.
${ }^{2}$ Department of BSH, NRI Institute of Technology, Agiripalli- 521 212, Andhra Pradesh, INDIA.
${ }^{3}$ Department of Mathematics,Kakatiya University,Warangal-506 009, Telangana, INDIA.
${ }^{4}$ Department of mathematics, Kakatiya University, Warangal-506 009, Telangana, INDIA
${ }^{5}$ Institute of Energy Engineering, Department of Mechanical Engineering, National Central University Jhongli, Taoyuan, TAIWAN - 32001, R.O.C.

Abstract

In this paper we consider prime graph of R (denoted by $P G(R)$) of an associative ring R (introduced by Satyanarayana, Syam Prasad and Nagaraju [22]). We also consider zero divisor graph of a finite associative ring R (denoted by $Z D G(R)$). It is proved that every prime graph is a subgraph of the zero divisor graph but the converse need not be true. An example of a ring for which $P G(R) \neq Z D G(R)$ was presented.

Keywords: Prime graph, Associative ring,zero divisor graph.
Mathematics subject classification: 05C20, 05C76, 05C99, 13E15, 68R10.

I. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph consist of a finite non-empty set V of vertices and finite set E of edges such that each edge e_{k} is identified as an unordered pair of vertices $\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$, where v_{i}, v_{j} are called end points of e_{k}. The edge e_{k} is also denoted by either $v_{i} v_{j}$ or $\overline{v_{i}} v_{j}$. We also write $G(V, E)$ for the graph. Vertex set and edge set of G are also denoted by $V(G)$ and $E(G)$ respectively. An edge associated with a vertex pair $\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right\}$ is called a self-loop. The number of edges associated with the vertex is the degree of the vertex, and $\delta(\mathrm{v})$ denotes the degree of the vertex v. If there is more than one edge associated with a given pair of vertices, then these edges are called parallel edges or multiple edges. A graph that does not have self-loop or parallel edges is called a simple graph. We consider simple graphs only. For an associative ring R, prime graph ofR(denoted by $P G(R)$) was introduced in Satyanarayana, Syam Prasad and Nagaraju [22].For a commutative ring R, the notion of 'zero divisor graph' is given in Beck [1988]. In this paper, we consider the associative rings (need not be commutative) and provided some examples on the zero divisor graphs of Z_{n} where n is a positive integer.

1.2 Definitions:

(i) A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a star graph if there exists a fixed vertex v (called the center of the star graph) such that $E=\{v u / u \in V$ and $u \neq v\}$. A star graph is said to be an \mathbf{n}-star graph if the number of vertices of the graph is n .
(ii) In a graph G, a subset S of $V(G)$ is said to be a dominating set if every vertex not in S has a neighbour in S. The domination number, denoted by $\gamma(\mathrm{G})$ is defined as $\min \{|\mathrm{S}| / \mathrm{S}$ is a dominating set in G$\}$.
(iii) In a connected graph, a closed walk running through every vertex of G exactly once (except the starting vertex at which the walk terminates) is called as Hamiltonian circuit. A graph containing a Hamiltonian circuit is called as Hamiltonian graph.
1.3 Theorem: (Th. 13.8, page 361, [18]) A given connected graph G is an Eulerian graph if and only if all the vertices of G are of even degree.
For other preliminary results and notations we use [18], [20] or [21]

II. Prime Graph of a Ring

2.1 Definition: (Satyanarayana, Syam Prasad and Nagaraju [22]) Let R be an associative ring. A graph G(V, E) is said to be a prime graph of $\mathrm{R}($ denoted by $\mathrm{PG}(\mathrm{R}))$ if $\mathrm{V}=\mathrm{R}$ and $\mathrm{E}=\{\overline{x y} / \mathrm{xRy}=0$ or $\mathrm{yRx}=0$, and $\mathrm{x} \neq \mathrm{y}\}$.

For convenience of the reader we included the following example.
2.2Example (Example 9.4.2 of Satyanarayana and Syam Prasad [20]):Consider \mathbb{Z}_{n}, the ring of integersmodulo n.
(i) Let us construct the graph $\operatorname{PG}(\mathrm{R})$, where $\mathrm{R}=\mathbb{Z}_{3}$. We know that $\mathrm{R}=\mathbb{Z}_{3}=\{0,1,2\}$. $\operatorname{So} \mathrm{V}(\mathrm{PG}(\mathrm{R}))=\{0,1$,
$2\}$. Since $0 R 1=0,0 R 2=0$ there exists an edge between 0 and 1 , and also an edge between 0 and 2 . There are no other edges, as there are no two non-zero elements $x, y \in R$ with $x R y=0$. $\operatorname{So} \operatorname{E}(\operatorname{PG}(R))=\{01,02\}$. Now $\mathrm{PG}(\mathrm{R})$ is given in Figure 2.2 (i).

(ii) Let us construct the graph $\operatorname{PG}(\mathrm{R})$, where $\mathrm{R}=\mathbb{Z}_{4}$. We know that $\mathrm{R}=\mathbb{Z}_{4}=\{0,1,2,3\}$. So $\mathrm{V}(\operatorname{PG}(\mathrm{R}))=\{0$, $1,2,3\}$. Since $0 R 1=0,0 R 2=0,0 R 3=0$, we have that $01,02,03 \in E(P G(R))$. There are no other edges, as there are no two distinct non-zero elements $x, y \in R$ such that $x R y=0$. $\operatorname{So} \operatorname{E}(\operatorname{PG}(R))=\{01,02,03\}$. Now $\mathrm{PG}(\mathrm{R})$ is given in Figure 2.2 (ii).

III. Zero Divisor Graph of an Associative Ring

In this section, we wish to studyzero divisor graph of an associative ring
3.1 Definition: (Vasantha kandasamy and Florentin Smarandache [23])A graph $G=(V, E)$ is said to be the zero divisor graph of a commutative ring R if $V=R$ and E $\{\overline{x y} / x \neq y, x, y \in R, x \neq 0 \neq y, x y=0\} \cup\{\overline{x 0} / 0 \neq x \in R\}$ where $\overline{x y}$ denotes an edge between $x, y \in V$.
This definition 'zero divisor graph' is same as that of Beck [1988].
3.2 Notation: (i) We denote zero divisor graph of ring R by $\operatorname{ZDG}(\mathrm{R})$
(ii) In the graph $\mathrm{ZDG}(\mathrm{R})$, we have that $V(Z D G(R))=R$ and
$E(Z D G(R))=\{\overline{x y} / x \neq y, x, y \in R, x \neq 0 \neq y, x y=0\} \cup\{\overline{x 0} / 0 \neq x \in R\}$
3.3 Example:(Vasantha kandasamy and Florentin Smarandache [23])

Consider Z_{n}, the ring of integers modulo n .
Consider $\operatorname{ZDG}(\mathrm{R})$ with $R=Z_{10}$. We know that $R=Z_{10}=\{0,1,2,3, \ldots, 9\}$,

So $V(Z D G(R))=\{0,1,2,3,4,5,6,7,8,9\}$. Since $5.8=5.4=5.6=0(\bmod 10)$, there exist edges between the vertices 5 and 8 ; 5 and 4 ; also between 5 and 6 . Since ' 0 ' is adjacent to all the elements in R, we get $\overline{01}, \overline{02}, \overline{03}, \overline{04}, \overline{05}, \overline{06}, \overline{07}, \overline{08}, \overline{09} \in E(Z D G(R))$.
Therefore, $\mathrm{E}(\mathrm{ZDG}(\mathrm{R}))=\{\overline{01}, \overline{02}, \overline{03}, \overline{04}, \overline{05}, \overline{06}, \overline{07}, \overline{08}, \overline{09}, \overline{25}, \overline{58}, \overline{54}, \overline{56}\}$.
Now $\operatorname{ZDG}(\mathrm{R})$ given by the figure 3.3.

Figure-3.3
3.4 Observations: (i) $\operatorname{ZDG}\left(Z_{10}\right)$ contains 10 -star graph as its subgraph;(ii) The domination number is 1 ; (iii) Since $\overline{02}, \overline{25}, \overline{50}$ forms a triangle, we conclude that the graph cannot be a bipartite graph; (iv) $\operatorname{ZDG}\left(Z_{10}\right)$ is not an Eulerian graph (by using the Th. 13.8, p 361 of [18]); and (v) Since $\operatorname{ZDG}\left(Z_{10}\right)$ contains pendent vertices, it contains no Hamiltonian circuit.
The following definition is an extension of the concept " zero divisor graph" to Associative rings.
3.5 Definition: Consider an associative ring R (need not be commutative) with identity 1 . The zero divisor graph (in notation, $\operatorname{ZDG}(\mathrm{R})$) is defined as $V(Z D G(R))=\mathrm{R}$ and $E(Z D G(R))=\{\overline{a b} / a, b \in R$, either $a b=$ O or $b a=0, a \neq b$
3.6 Note: In case of commutative rings, the above concept coincides with the zero divisor graph defined in commutative rings by Beck [1]
3.7 Theorem: For an associative ring R we have that $P G(R)$ is a subgraph of $Z D G(R)$.

Proof: We know that $V(P G(R))=\mathrm{R}=V(Z D G(R))$.
Let $\overline{u v} \in \mathrm{E}(P G(R))$. Then $u R v=0$ or $v R u=0$. Since $1 \in \mathrm{R}$ we have that either $\quad u v=0$ or $v u=0$. By definition 3.5 we have that $\overline{u v} \in \mathrm{E}(Z D G(R)$. This shows that $\operatorname{PG}(\mathrm{R})$ is a subgraph of $\operatorname{ZDG}(\mathrm{R})$.
3.8 Corollary: If R is a commutative ring then $\mathrm{PG}(\mathrm{R})=\mathrm{ZDG}(\mathrm{R})$.

Proof: Let $\overline{v u} \in \mathrm{E}(Z D G(R)$ with $u, v \in V(Z D G(R))=\mathrm{R}$. Then $v u=0$ or $u v=0$. Suppose that $v u=0$.This implies $v u x=0$ for all $x \in R$. Since R is commutative $v x u=0$ for $x \in R$ and so $v R u=0$. This shows that $\overline{v u} \in \mathrm{E}(P G(R))$. Hence $\mathrm{ZDG}(\mathrm{R})$ is a subgraph of $\mathrm{PG}(\mathrm{R})$.
By theorem 3.7 we have that $\operatorname{PG}(\mathrm{R})=\mathrm{ZDG}(\mathrm{R})$.
3.9 Remark: In case of associative ring which is not commutative, the converse of the theorem 3.7 need not be true. This was made clear by the example presented in the next section.

IV. An Example

In this section, we present an example of an associative ring for which $\operatorname{PG}(R) \neq \operatorname{ZDG}(R)$.
4.1 Example: Let $\mathrm{F}=\mathrm{Z}_{2}$ be the field of integers modulo 2. Write $\mathrm{R}=$ Set of 3×3 matrices over the field F . We know that R is an associative ring with respect to usual matrix addition and multiplication. Consider the two elements $x, y \in R$ mentioned below
$x=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], y=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Since $x y=0$ and $x \neq y$ we conclude that $\overline{x y} \in E(Z D G(R))$.
Consider $z=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \in R$.
Now $x z y=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \neq 0$ Since $0 \neq x z y \in x R y$, we have that $x R y \neq 0$.
Also $y z x=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \neq 0$ Since $0 \neq y z x \in y R x$, we have that $y R x \neq 0$
Since $x R y \neq 0$ and $y R x \neq 0$, we have that $\overline{x y} \notin E(P G(R))$
Hence $E(Z D G(R)) \nsubseteq E(P G(R))$.
Thus we verified that for the ring of 3×3 matrices over Z_{2}, the two graphs: prime graph and zero divisor graph are not equal.

References

[1]. Beck Istvan, Coloring of Commutative Ring, J. Algebra 116 (1988) PP 208-226.
[2]. Kedukodi B.S., Kuncham S.P. and Satyanarayana Bhavanari, "Nearring Ideals, Graphs and Cliques", International Mathematical Forum, 8 (2) (2013) PP 73-83.
[3]. Satyanarayana Bhavanari, Godloza L., and Nagaraju D., "Some results on Principal Ideal graph of a ring", African Journal of Mathematics and Computer Science Research Vol.4 (6), 2011. PP 235-241. (ISSN: 2006-9731).
[4]. Satyanarayana Bhavanari, Mohiddin Shaw, Mallikarjun Bhavanari and T.V.PradeepKumar, "On a Graph related to the Ring of Integers Modulo n", Proceedings of theInternational Conference on Challenges and Applications of Mathematics in Science and Technology (CAMIST) January 11-13 2010. (Publisher: Macmillan Research Series,2010) PP.688-697. (India). (ISBN: $978-$ 0230 - 32875 - 4).
[5]. Satyanarayana Bhavanari, Mohiddin Shaw and Venkata Vijaya Kumari Arava,"Prime Graph of an Integral Domain", Proceedings of the National Seminar on Present Trends in Mathematics and its Applications, November11-12(2010) PP 124-134
[6]. Satyanarayana Bhavanari and Nagaraju D., "Dimension and Graph Theoretic Aspects of Rings,"VDM verlag Dr Muller, Germany, 2011. (ISBN: 978-3-639-30558-6).
[7]. Satyanarayana Bhavanari., Pradeep kumar T.V, Sk. Mohiddin Shaw. "Mathematical Foundations of Computer Science", BS publications, Hyderabad, A.P, India, 2016. (ISBN: 978-93-83-635-81-8).
[8]. Satyanarayana Bhavanari., Srinivasulu D. "Cartesian Product of GraphsVs.Prime Graphs of Rings", Global Journal of Pure and Applied Mathematics (GJPAM), Volume 11, Number 2 (2015) PP 199-205. (ISSN 0973-1768)
[9]. Satyanarayana Bhavanari, Srinivasulu D., and Mallikarjun Bhavanari "A Theorem on the Prime Graph of 2×2 - matrix ring of \mathbb{Z}_{2} ", International Journal on Recent and Innovation Trends in Computing and Communication, Volume 4, Issue 5, (2016) PP 571 573. (ISSN: 2321-8169)
[10]. Satyanarayana Bhavanari, Srinivasulu D., and Mallikarjun Bhavanari " A Theorem on the Zero Divisor Graph of the ring of 2×2 - matrices over $\mathbb{Z}_{2} "$, International Educational Scientific and Research journal Volume 2, issue 6, (June 2016), PP 45-46. (E ISSN: 2455-295X)
[11]. Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari "Left Zero Divisor Graphs of Totally Ordered Rings", International Journal of Advanced Engineering, Management and Science(IJAEMS) Vol-2, Issue-6, (June 2016) PP 877-880. (ISSN: 2454-1311)
[12]. Satyanarayana Bhavanari , Srinivasulu D., and Mallikarjun Bhavanari " STAR NUMBER OF A GRAPH", Research Journal of Science \&IT Management: Volume:05, Number:11, 2016, PP 18-22. (ISSN: 2251-1563)
[13]. Satyanarayana Bhavanari, Srinivasulu D., and Mallikarjun Bhavanari "A Theorem on Degree of Vertices with respect to a Vertex Set" (Communicated)
[14]. Satyanarayana Bhavanari , Srinivasulu D. and Mallikarjun Bhavanari "One sided Zero Divisor Graphs of Totally Ordered Rings" (Communicated)
[15]. Satyanarayana Bhavanari., Srinivasulu D., and Syam Prasad K. "Some Results on Degree of Vertices in Semitotal Block Graph and Total - Block Graph", International Journal of computer Applications Vol. 50, No. 9 (July 2012) PP19-22. (ISSN: 0975 - 8887)
[16]. Satyanarayana Bhavanari., Srinivasulu D., Syam Prasad K. "Line Graphs\& Quasi-Block Graphs", International Journal of Computer Applications Vol. 105, No.3, (November 2014) PP 12-16.(ISSN: 0975 - 8887)
[17]. Satyanarayana Bhavanari. and Syam Prasad K. "An Isomorphism Theorem on Directed Hypercubes of Dimension n", Indian J. Pure \& Appl. Math 34 (10) (2003) PP 1453-1457, (ISSN: 0019-5588).
[18]. Satyanarayana Bhavanari. and Syam Prasad K. "Discrete Mathematics and Graph Theory", Prentice Hall India Pvt. Ltd., New Delhi, (2009) (ISBN 978-81-203-3842-5).
[19]. Satyanarayana Bhavanari and Syam Prasad K., "Dimension of N-groups and Fuzzy ideals in Gamma Near-rings", VDM verlag Dr Muller, Germany, 2011. (ISBN: 978-3-639-36838)
[20]. Satyanarayana Bhavanari. and Syam Prasad K. "Nearrings, Fuzzy Ideals and Graph Theory" CRC Press (Taylor \& Francis Group, London, New York), (2013) (ISBN 13: 9781439873106).
[21]. Satyanarayana Bhavanari. and Syam Prasad K. "Discrete Mathematics and Graph Theory", Prentice Hall India Pvt. Ltd., New Delhi, 2014 (Second Edition)(ISBN 978-81-203-4948-3).
[22]. Satyanarayana Bhavanari., Syam Prasad K and Nagaraju D. "Prime Graph of a Ring", J. Combinatorics, Informations \& System Sciences 35 (2010) PP 27-42.
[23]. Vasantha kandasamy W.B. and Florentin Smarandache. "Groups as Graphs", Editura CuArt, 2009. (ISBN-10: 1-59973-093-6).

