Degree Regularity on Edges of S – Valued Graph

S.Mangala Lavanya^{*}, S.Kiruthiga Deepa^{**}And M.Chandramouleeswaran^{***}

*Sree Sowdambika College Of Engineering Aruppukottai-626101. Tamilnadu.India. **Bharath Niketan College Of Engineering Aundipatti - 625536. Tamilnadu. India. ***Saiva Bhanu Kshatriya College Aruppukottai - 626101. Tamilnadu. India.

Abstract: Recently in [6], the authors have introduced the notion of semiring valued graphs, which is a generalization of both the crisp graph and fuzzy graph. In [3] the authors have studied the regularity conditions on S - valued graphs. In [7] the authors have studied the notion of vertex degree regularity on S - valued graphs. In this paper, we study the edge degree regularity of S - valued graphs.

Keywords: Semirings, Graphs, S-valued graphs, d_s - edge regular graph.

I. Introduction

The concept of semiring was studied by several mathematicians such as Dedekind [2], Krull [5] and H.S.Vandiver [8]. Jonathan Golan [4] in his book, has introduced the notion of S - graph where S is a semiring. However, the theory was not developed further. In [6], the authors have introduced the notion of semiring valued graphs, which is a generalisation of both the crisp graph and fuzzy graph theory. In [3], the authors have studied the regularity conditions on S - valued graphs. In [7] the authors have studied the notion of vertex degree regularity on S - valued graphs. In this paper we study the edge degree regularity of S-valued graphs.

II. Preliminaries

In this section, we recall some basic definitions that are needed for our work. **Definition 2.1:** [4] A semiring (S, +, .) is an algebraic system with a non-empty set S together with two binary operations + and . such that (1) (S, +, 0) is a monoid. (2) (S, .) is a semigroup. (3) For all a, b, c \in S , a . (b+c) = a . b + a . c and (a+b) . c = a . c + b . c (4) 0. x = x . 0 = 0 $\forall x \in$ S.

Definition 2.2: [4] Let (S, +, .) be a semiring. \preceq is said to be a Canonical Pre-order if for a, $b \in S$, $a \prec b$ if and only if there exists an element $c \in S$ such that a + c = b.

Definition 2.3: [1] A set F of edges in a graph G = (V,E) is called an edge dominating set in G if for every edge $e \in E - F$ there exist an edge $f \in F$ such that e and f have a vertex in common.

Definition 2.4: [1] A dominating set S is a minimal edge dominating set if no proper subset of S is a edge dominating set in G.

Definition 2.5: [6] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring (S, +, .), a semiring-valued graph (or a S - valued graph), G^S is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \to S$ and $\psi : E \to S$ is defined to be

$$\psi(x, y) = \begin{cases} \min \left\{ \sigma(x), \sigma(y) \right\}, & \text{if } \sigma(x) \preceq \sigma(y) \text{or } \sigma(y) \preceq \sigma(x) \\ 0, & \text{otherwise} \end{cases}$$

for every unordered pair (x, y) of $E \subset V \times V$. We call σ , a S - vertex set and ψ , a S - edge set of S - valued graph G^S. Henceforth, we call a S - valued graph simply as a S - graph.

Definition 2.6: [6] If $\sigma(x) = a, \forall x \in V$ and some $a \in S$ then the corresponding S - graph G^S is called a vertex regular S - graph (or simply vertex regular). An S - graph G^S is said to be an edge regular S - graph (or

simply edge regular) if $\psi(x, y) = a$ for every $(x, y) \in E$ and $a \in S$. A S - valued graph is said to be S - regular if it is both vertex and edge regular.

Definition 2.7: [3] Let G^S be a S - graph corresponding to an underlying graph G, and let $a \in S$. G^S is said to be (a, k) - vertex regular if the following conditions are true. (1) The crisp graph G is k - regular.

(1) The ensp graph Θ is a (2) $\sigma(v) = a, \forall v \in V$

Definition 2.8: [7] The Order of a S - valued graph G^S is defined as $p_S = \left(\sum_{v \in V} \sigma(v), n\right)$

where n is order of the underlying graph G.

Definition 2.9: [7] The Size of the S - valued graph G^S is defined as $q_S = \left(\sum_{(u,v) \in E} \psi(u,v), m\right)$

where m is the number of edges in the underlying graph G.

Definition 2.10: [7] The Degree of the vertex v_i of the S - valued graph G^S is defined

as deg_S(v_i) = $\left(\sum_{(v_i, v_j) \in E} \psi(v_i, v_j), \ell\right)$, where ℓ is the number of edges incident with v_i .

Definition 2.11: A subset $D \subseteq V$ is said to be a weight dominating vertex set if for each $v \in D$, $\sigma(u) \preceq \sigma(v), \forall u \in N_s[v]$.

III. Degree Regularity on Edges of S - Valued Graph

In this section, we introduce the notion of the degree of an edge in S – valued graph G^S , analogous to the notion in crisp graph theory, and discuss the regularity conditions on such edges of G^S . We start with the definition

Definition 3.1: Let $G^{S} = (V, E, \sigma, \psi)$ be a S - valued graph. Let $e \in E$. The open neighbourhood of e, denoted by $N_{S}(e)$, is defined to be the set $N_{S}(e) = \{(e_{i}, \psi(e_{i})) | e \text{ and } e_{i} \in E \text{ are adjacent}\}$ The closed neighbourhood of e, denoted by $N_{S}[e]$, is defined to be the set $N_{S}[e] = N_{S}(e) \cup (e, \psi(e))$

Definition 3.2: Let $G^{S} = (V, E, \sigma, \psi)$ be a S - valued graph. The degree of the edge e is defined as

$$\deg_{S}(e) = \left(\sum_{e_{i} \in N_{S}(e)} \psi(e_{i}), m\right), \text{ where m is the number of edges adjacent to e.}$$

Example 3.3: Let $(S = \{0,a,b,c\}, +, ...)$ be a semiring with the following Cayley Tables:

+	0	а	b	c
0	0	а	b	c
а	a	a	a	a
b	b	а	b	b
с	с	a	b	с

	0	a	b	c
0	0	0	0	0
a	0	а	а	а
b	0	b	b	b
с	0	b	b	b

Let \leq be a canonical pre-order in S, given by

 $0 \ \preceq 0, 0 \ \preceq \ a, 0 \ \preceq \ b, 0 \ \preceq \ c, a \ \preceq \ a, b \ \preceq \ b, b \ \preceq \ a, c \ \preceq \ c, c \ \preceq \ a, c \ \preceq \ b$ Consider the S - graph G^S ,

Define
$$\sigma: V \to S$$
 by $\sigma(v_1) = \sigma(v_5) = a, \sigma(v_2) = \sigma(v_3) = b, \sigma(v_4) = c$ and
 $\psi: E \to S$ by $\psi(e_1) = \psi(e_2) = \psi(e_6) = b, \psi(e_3) = \psi(e_4) = \psi(e_7) = c, \psi(e_5) = a$
Here $N_s(e_1) = \{(e_2, b), (e_5, a), (e_6, b), (e_7, c)\}, \deg_s(e_1) = (a, 4)$
 $N_s(e_2) = \{(e_1, b), (e_3, c), (e_6, b), (e_7, c)\}, \deg_s(e_2) = (b, 4)$
 $N_s(e_3) = \{(e_2, b), (e_4, c), (e_7, c)\}, \deg_s(e_3) = (b, 3)$
 $N_s(e_4) = \{(e_3, c), (e_5, a), (e_6, b), (e_7, c)\}, \deg_s(e_4) = (a, 4)$
 $N_s(e_5) = \{(e_1, b), (e_4, c), (e_6, b)\}, \deg_s(e_5) = (b, 3)$
 $N_s(e_6) = \{(e_1, b), (e_2, b), (e_4, c), (e_5, a), (e_7, c)\}, \deg_s(e_6) = (a, 5)$
 $N_s(e_7) = \{(e_1, b), (e_2, b), (e_3, c), (e_4, c), (e_6, b)\}, \deg_s(e_7) = (b, 5)$
Definition 3.4: If $D \subset$ E in G^s then the scalar cardinality of D is defined by $|D| = \sum \psi(e)$

Definition 3.4: If $D \subseteq E$ in G^S then the scalar cardinality of D is defined by $|D|_S = \sum_{e \in D} \psi(e)$

Definition 3.5: Let $G^{S} = (V, E, \sigma, \psi)$ be a S - valued graph. For any $e \in E$, the neighbourhood degree of e is defined as $N \deg_{S}(e) = (|N_{S}|_{S}, |N_{S}|)$

Remark 3.6: From definition 3.2 and 3.4 we observe that the degree of an edge is the same as its neighbourhood degree.

Remark 3.7: The scalar cardinality of N_s[e] will be given by (1) $|N_s[e]| = |N_s(e)| + 1$ (2) $|N_s[e]|_s = |N_s(e)|_s + \psi(e)$

Definition 3.8: An S - valued graph G^S is said to be d_S - edge regular if for any $e \in E$, deg_S(e) = $(|N_S(e)|_S, |N_S(e)|)$

Example 3.9: Consider the semiring (S = {0,a,b,c}, +, .) with canonical pre-order given in example 3.3 Consider the S - graph G^S ,

Define $\sigma: V \to S$ by $\sigma(v_1) = \sigma(v_3) = b, \sigma(v_2) = c, \sigma(v_4) = \sigma(v_5) = a$ and $\psi: E \to S$ by $\psi(e_1) = \psi(e_2) = \psi(e_5) = \psi(e_6) = b, \psi(e_3) = \psi(e_4) = c$ Here degree of every edge $e_i \in E$ is (b, 3). $\therefore G^S$ is an d_S - edge regular graph, d_S(e) = (b, 3).

Remark 3.10: In terms of neighbourhood of an edge, definition 2.9 can be modified as $q_s = \left(\sum_{e \in E} \psi(e), q\right)$,

where q is the number of edges in the underlying graph G.

Theorem 3.11: If S is an additively idempotent semiring and G^S is S-regular then $deg_S(e) \leq q_S \,, \forall e \in E_c$

Proof :

Let $G^S = (V, E, \sigma, \psi)$ be S-regular. $\therefore \sigma(v_i) = a$, $\forall i$ and for some $a \in S$ $\Rightarrow \psi(e_i) = a$, $\forall i$ and for some $a \in S$ Since S is additively idempotent, a + a = a, $\forall a \in S$ Let $e \in E$

Now,
$$q_S = \left(\sum_{e \in E} \psi(e), q\right) = (a, q)$$
, where q is the number of edges in G.

= (a; q) where q is the number of edges in G.

and
$$\deg_{S}(e) = \left(\sum_{e_{i} \in N_{S}(e)} \psi(e_{i}), m\right) = (a, m)$$
, where m is number of edges adjacent with e.

Since S is a semiring, it possess a canonical pre-order.

 $\therefore a \preceq a, \ \forall a \in S$

Since every (a,k)- regular S- valued graph is S-regular, the above theorem holds good for (a, k)- regular S-valued graphs on an additively idempotent semiring. Thus we have the following **Corollary 3.12:** An (a,k)- regular S- valued graph G^S on an additively idempotent semiring S satisfies $\deg_S(e_i) \prec q_S \forall i$

Theorem 3.13: Let $a \in S$ be an additively idempotent element in S.Then every (a, k)- regular S- valued graph G^{S} is ds- edge regular iff deg_S(e) \leq (a,k) for some a and $\forall e \in E$.

Proof :

Let $G^{S} = (V,E,\sigma,\psi)$ be a (a, k)-regular S- valued graph. Assume that G^{S} is d_{S} - edge regular. Then $deg_{S}(e) = (b,k), \forall i$ and for some $b \in S$ That is

$$\left(\sum_{e_i \in N_s(e)} \psi(e_i), k\right) = (b, k)$$
$$(a + a + a + \dots + a, k) = (b, k)$$
$$(a, k) = (b, k) \Longrightarrow a = b$$
$$\therefore \deg_s(e) = (a, k), \text{ for some } a.$$

Conversely, Let $G^S = (V, E, \sigma, \psi)$ be a (a, k)- regular and a be an additively idempotent element in S, and deg_S(e) = (a, k) for some a and for each $e \in E$.

- Let $v_1, v_2 \in V$ be such that $e = v_1 v_2 \in E$.
- Since $G^{\tilde{s}}$ is (a,k) regular, $\sigma(v_1) = \sigma(v_2) = a$.
- Then $\psi(e) = \min \{ \sigma(v_1), \sigma(v_2) \} = a$

This true for every edge $e_i = v_i v_i \in E, \psi(e_i) = a, \forall i$

Now deg_S(e) =
$$\left(\sum_{e_i \in N_S(e)} \psi(e_i), k\right) = (a, k)$$

Since $e \in E$ is arbitrary, G^S is d_{S} edge regular.

Theorem 3.14: Let G^S be a complete bipartite graph with $V = (V_1, V_2)$. If $|V_1| < |V_2|$ and V_1 is a weight dominating vertex set then G^S is a d_{S} edge regular graph. **Proof:**

Let G^{S} be a complete bipartite graph with $V = (V_{1}, V_{2})$. Let V_{1} be a weight dominating vertex set and $|V_{1}| < |V_{2}|$. Then $\sigma(v_{i}) \preceq \sigma(v_{i}), \forall v_{i} \in V_{1}, v_{i} \in V_{2}$.

Consider
$$\deg_{S}(e_{ij}) = \left(\sum_{e_{is \in N_{S}}[e_{ij}]} \psi(e_{is}), |V_{2}|\right) = \left(\sum_{v_{s} \in N_{S}[v_{i}]} \sigma(v_{s}), |V_{2}|\right)$$

And $\deg_{S}(e_{ik}) = \left(\sum_{e_{ir \in N_{S}}[e_{ik}]} \psi(e_{ir}), |V_{2}|\right) = \left(\sum_{v_{r} \in N_{S}[v_{i}]} \sigma(v_{r}), |V_{2}|\right)$

Here $\deg_{s}(e_{ij}) = \deg_{s}(e_{ik})$ iff $\sum \sigma(v_{s}) = \sum \sigma(v_{r}) = a$, for some $a \in S$ Therefore for any edge $e_{ij}, e_{ik} \in N_{s}[v_{i}], \deg_{s}(e_{ij}) = \deg_{s}(e_{ik}) = (a, |V_{2}|)$ Therefore G^{s} is a d_{s} - edge regular graph.

Corollary 3.15: Let G^S be a complete bipartite graph with $V = (V_1, V_2)$. If $|V_1| = |V_2|$ and either V_1 or V_2 is a weight dominating vertex set then G^S is a d_S - edge regular graph.

Theorem 3.16: Let G^S be a star with n vertices. If its pole has the maximum weight then G^S is a d_s edge regular graph.

Proof:

Let G^S be a star with n vertices. Let the pole v_1 have the maximum weight . Then $\sigma(v_j) \preceq \sigma(v_1)$, $\forall v_j \in V - \{v_1\}$

$$\sum_{\text{Consider}} \deg_{S}(e_{1j}) = \left(\sum_{e_{1s} \in N_{S}[e_{1j}]} \psi(e_{1s}), n-2 \right) = \left(\sum_{v_{s} \in N_{S}[v_{1}]} \sigma(v_{s}), n-2 \right)$$

$$\sum_{\text{And}} \deg_{S}(e_{1k}) = \left(\sum_{e_{1r \in N_{S}}[e_{1k}]} \psi(e_{1r}), n-2 \right) = \left(\sum_{v_{r} \in N_{S}[v_{1}]} \sigma(v_{r}), n-2 \right)$$

$$\sum_{v_{r} \in N_{S}[v_{1}]} \sum_{v_{r} \in N_{S}[v_{1}]} \sigma(v_{r}) = \sum_{v_{r} \in N_{S}[v_{r}]} \sigma(v_{r})$$

Here $\deg_{s}(e_{1j}) = \deg_{s}(e_{1k})$ iff $\sum \sigma(v_{s}) = \sum \sigma(v_{r}) = a$, for some $a \in S$ Therefore for any edge $e_{1j}, e_{1k} \in N_{S}[v_{1}], \deg_{S}(e_{1j}) = \deg_{S}(e_{1k}) = (a, n-2)$

Therefore G^{s} is a d_{s} – edge regular graph.

IV. Conclusion Unlike the crisp graph theory, in S- valued graphs, in this paper we have introduced the notion of degree of an edge in S- valued graph. Also we have studied the degree regularity conditions on the edges of S- valued graph. In our future work, we would like to extend the study of S- valued graphs with irregularity conditions.

Reference

- Bondy J A and Murty U S R Graph Theory with Applications, North Holland, New York (1982). [1].
- [2]. Dedekind. R: Uber die Theorie der ganzen algebraischen zahlen, Supplement XI to P.G. Lejeune Dirichlet : Vorlesungen Uber zahlentheorie, 4 Au., Druck and Verlag, Braunschweig, 1894.
- Jeyalakshmi.S, Rajkumar.M, and Chandramouleeswaran.M: Regularity on S- Graphs, Global Journal of Pure and Applied [3]. Mathematics.ISSN 0973-1768 Volume 11, Number 5 (2015), pp. 2971-2978.
- Jonathan Golan Semirings and Their Applications, Kluwer Academic Publishers, London. [4].
- Krull. R: Aximatische Begrundung der Algemeinen ideals theory, Sit. Z. Phys. Med. Soc. Erlangen, 56 (1924), 4763. [5].
- [6]. Rajkumar.M., Jeyalakshmi.S and Chandramouleeswaran.M: Semiring-valued Graphs, International Journal of Math. Sci. and Engg. Appls., Vol. 9 (III), 2015, 141 - 152.
- [7]. Rajkumar.M. and Chandramouleeswaran.M: Degree Regular S- valued Graphs, Mathematicial Sciences International Research Journal: Volume 4 Issue 2 (2015).
- [8]. Vandiver. H.S: Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., Vol 40, 1934, 916 - 920.