Twin Edge Colourings of Wheel Graphs

S.Lakshmi ${ }^{1}$, V.Kowsalya ${ }^{2}$
${ }^{1}$ (Assistant Professor, Department of Mathematics, PSGR Krishnammal College for women, Coimbatore641004, India)
${ }^{2}$ (Research scholar, Department of Mathematics, PSGR Krishnammal College for women, Coimbatore-641004, India)

Abstract

A proper edge colouring of a graph G with the elements of \mathbb{Z}_{k} is said to be a twin edge k-colouring of G if the induced vertex colouring is a proper vertex colouring in which the colour of a vertex v in G is defined as the sum (in \mathbb{Z}_{k}) of the colours of the edges incident with v. Twin chromatic index of G is the minimum k for which G has a twin edge k-colouring. Twin chromatic index of W_{n} is determined, where W_{n} is the wheel graph of order n.

Keywords: edge colouring, vertex colouring.

I. Introduction

Vertex labelling was introduced by Rosa [14] in 1968, which induces an edge-distinguishing labelling defined by subtracting labels. A vertex labelling $f: V(G) \rightarrow\{0,1, \ldots, m\}$ for a graph G of size m was called β valuation by Rosa if the induced edge labelling $f^{\prime}: E(G) \rightarrow\{1,2, \ldots, m\}$ defined by $f^{\prime}(u v)=|f(\mathrm{u})-f(v)|$ was bijective. A β-valuation was called as a graceful labelling and a graph which possessing a graceful labelling was called a graceful graph [9]. A popular conjecture in graph theory, due to Anton Kotzig and Gerhard Ringel, is the following.

The Graceful Tree Conjecture: Every nontrivial tree is graceful.
Definition 1.1.For a connected graph G of order $n \geq 3$, let $f: E(G) \rightarrow \mathbb{Z}_{n}$ be an edge labelling of G that induces a bijective function $f^{\prime}: V(G) \rightarrow \mathbb{Z}_{n}$ defined by $f^{\prime}(v)=\Sigma_{e \epsilon E v} f(e)$ for each vertex v of G, where E_{v} is the set of edges of G incident with a vertex v. Such a labelling f is called a modular edge-graceful labelling, while a graph possessing such a labelling is called modular edge-graceful.

Definition 1.2.For the set \mathbb{N} of positive integers, an edge colouring $c: E(G) \rightarrow \mathbb{N}$, where adjacent edges may be coloured the same, is said to be vertex-distinguishing if the colouring $c^{\prime}: V(G) \rightarrow \mathbb{N}$ induced by c and defined by $c^{\prime}(v)=\Sigma_{e \epsilon E v} c(e)$ has the property that $c^{\prime}(x) \neq c^{\prime}(y)$ for every two distinct vertices x and y of G.

Definition 1.3.A neighbour-distinguishing colouring of a graph G is a colouring in which every pair of adjacent vertices of G are coloured differently. Such a colouring is more commonly called a proper vertex colouring. The minimum number of colours needed in a proper vertex colouring of a graph G is the chromatic number of G and denoted by $\chi(G)$.

Definition 1.4.For $k \in \mathbb{N}$, let $c: E(G) \rightarrow\{1,2, \ldots, k\}$ be an edge colouring of G (where adjacent edges may be assigned the same colour). A vertex colouring $c^{\prime}: V(G) \rightarrow \mathbb{N}$ is defined where $c^{\prime}(v)$ is the sum of the colours of the edges incident with v. If c^{\prime} is a proper vertex colouring of G, then c is called a neighbour-distinguishing edge colouring of G.

The 1-2-3 Conjecture. For every connected graph G of order at least 3, there exists a neighbour-distinguishing edge colouring of G using only the colours $1,2,3$.

Definition 1.5.In a proper edge colouring of a graph G, each edge of G is assigned a colour from a given set of colours where adjacent edges are coloured differently. The minimum number of colours needed in a proper edge colouring of G is called the chromatic index of G and is denoted by $\chi^{\prime}(G)$.

Observation 1.6.For every nonempty graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.(This was proved by Vizing [15]).
Definition 1.7.Total colouring of a graph G that assigns colours to both the vertices and edges of G so that not only the vertex colouring and edge colouring are proper but no vertex and an incident edge are assigned the
same colour. The minimum number of colours required for a total colouring of G is the total chromatic number of G, denoted by χ " (G).

The Total Colouring Conjecture.For every graph $G, \chi^{\prime \prime}(G) \leq 2+\Delta(G)$.

II. Twin Chromatic Index

For a connected graph G of order at least 3, a proper edge colouring $c: E(G) \rightarrow \mathbb{Z}_{\mathrm{k}}$ for some integer $k \geq$ 2 is sought for which the induced vertex colouring $c^{\prime}: V(G) \rightarrow \mathbb{Z}_{\mathrm{k}}$ defined by

$$
c^{\prime}(v)=\Sigma_{e \epsilon E v} c(e) \text { in } \mathbb{Z}_{k},
$$

(where the indicated sum is computed in \mathbb{Z}_{k}) results in a proper vertex colouring of G. We refer to such a colouring as a twin edge k-colouring or simply twin edge colouring of G. The minimum k for which G has a twin edge k-colouring is called the twin chromatic index of G and is denoted by $\chi_{t}^{\prime}(G)$. Since a twin edge colouring is not only a proper edge colouring of G but induces a proper vertex colouring of G, it follows that
$\chi_{\mathrm{t}}^{\prime}(G) \geq \max \left\{\chi(G), \chi^{\prime}(G)\right\}$.
Since $\max \left\{\chi(G), \chi^{\prime}(G)\right\}=\chi^{\prime}(G)$ except when G is a complete graph of even order, we have $\chi_{t}^{\prime}(G) \geq \chi^{\prime}(G)$ except possibly when G is a complete graph of even order.

While $\chi_{t}^{\prime}(G)$ does not exist if G is the connected graph of order 2 , every connected graph of order at least 3 has a twin edge colouring. To see this, let G be a connected graph of size $m \geq 2$. If $m=2$, then assign the colours 1 and 2 in \mathbb{Z}_{3} to the two edges of G. If $m \geq 3$, then assign the m elements $0,1,2,4, \ldots, 2^{m-1} \in \mathbb{Z}_{2^{m-1}}$ to the m edges of G in a one-to-one manner so that the colour 0 is assigned to a pendant edge if G has such an edge. Hence the sets of edges coloured by nonzero elements in \mathbb{Z}_{2}^{m-1} that are incident with every two adjacent vertices are distinct. Since the base 2 representations of the colours of these vertices are different, it follows that adjacent vertices are assigned distinct colours in \mathbb{Z}_{2}^{m-1}. Thus, this colouring is a twin edge colouring. This observation yields the following.

Proposition 2.1. If G is a connected graph of order at least 3 and size m, then $\chi_{t}^{\prime}(G)$ exists. Furthermore, $\chi_{t}^{\prime}(G) \leq 2^{m-1}$ if $m \geq 3$.

Proposition 2.2. If P_{n} is a path of order $n \geq 3$, then $\chi_{t}^{\prime}\left(P_{n}\right)=3$.
Observation 2.3.If a connected graph G contains two adjacent vertices of degree $\Delta(G)$, then $\chi_{t}^{\prime}(G) \geq 1+\Delta(G)$.
Proposition 2.4.If C_{n} is a cycle of order $n \geq 3$, then

$$
\chi_{t}^{\prime}\left(C_{n}\right)=\left\{\begin{aligned}
3, & \text { if } n \equiv 0(\bmod 3) \\
4, & \text { if } n \neq 0(\bmod 3) \text { and } n \neq 5 \\
5, & \text { if } n=5
\end{aligned}\right.
$$

III. Wheel Graphs

We now investigate twin edge colourings of wheel graphs W_{n}.
Proposition 3.1.If W_{n} is a wheel of order $n \geq 5$, then $\chi_{t}^{\prime}\left(W_{n}\right)=n(n-1) / 2$.
Proof: Let $W_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a wheel of order $n \geq 5$ and let v_{n} be the mid vertex of the wheel, where
$e_{i}=v_{n} v_{i}, \quad i=1,2, \ldots, n-1$
$e_{n-l+i}=v_{i} v_{i+1}, \quad i=1,2, \ldots, n-2$
$e_{2 n-2}=v_{n-1} v_{1}$, since the number of edges in a wheel graph is $2 n-2$.
Now $\Delta\left(W_{n}\right)=n-1$. From the observation 1.6, we have $\Delta\left(W_{n}\right) \leq \chi^{\prime}\left(W_{n}\right) \leq \Delta\left(W_{n}\right)+1$. Therefore $n-1 \leq \chi^{\prime}\left(W_{n}\right) \leq n$. We show that $\chi^{\prime}\left(W_{n}\right)=n-1$. Let c be a proper edge colouring of W_{n} and defined as follows.

- For even n, define an edge colouring
$c: E\left(W_{n}\right) \rightarrow \mathbb{Z}_{n-1}$ as follows.
$c\left(e_{i}\right)= \begin{cases}i, & i=1,2, \ldots, n-1 \\ 0, & i=n, n+2, n+4, \ldots, 2 n-4 \\ 1, & i=n+1, n+3, \ldots, 2 n-3 \\ 3, & i=2 n-2\end{cases}$
- For odd n, define an edge colouring
$c: E\left(W_{n}\right) \rightarrow \mathbb{Z}_{n-1}$ as follows
$c\left(e_{i}\right)=\left\{\begin{array}{l}i, i=1,2, \ldots, n-1 \\ 1, i=n, n+2, n+4, \ldots, 2 n-4 \\ 0, i=n+1, n+3, \ldots, 2 n-3 \\ 3, i=2 n-2\end{array}\right.$
Thus c is a (n-1)-edge colouring. Hence $\chi^{\prime}\left(W_{n}\right)=n$-1.It remains to show that W_{n} has a twin edge $n(n-1) / 2$ colouring. A colouring $c: \mathrm{E}\left(W_{n}\right) \rightarrow \mathbb{Z}_{n-1}$ for both even and odd n is defined as above.
- If n is even, then

$$
c^{\prime}\left(v_{i}\right)= \begin{cases}4, & \text { if } i=1 \\ i+1, & \text { if } i=2,3, \ldots, n-2 \\ n+3, & \text { if } i=n-1 \\ n(n-1) / 2, & \text { if } i=n\end{cases}
$$

For example, if $n=6$, then $\left(c\left(e_{1}\right), c\left(e_{2}\right), \ldots, c\left(e_{10}\right)\right)=(1,2,3,4,5,0,1,0,1,3)$ and $\left(c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{2}\right), \ldots, c^{\prime}\left(v_{6}\right)\right)=$ (4,3,4,5,9,15)

- If n is odd, then

$$
c^{\prime}\left(v_{i}\right)= \begin{cases}4, & \text { if } i=1 \\ i+1, & \text { if } i=2,3, \ldots, n-2 \\ n+3, & \text { if } i=n-1 \\ n(n-1) / 2, & \text { if } i=n\end{cases}
$$

For example, if $n=7$, then $\left(c\left(e_{1}\right), c\left(e_{2}\right), \ldots, c\left(e_{12}\right)\right)=(1,2,3,4,5,6,0,1,0,1,0,3)$ and $\left(c^{\prime}\left(v_{1}\right), c^{\prime}\left(v_{2}\right), \ldots, c^{\prime}\left(v_{7}\right)\right)=$ $(4,3,4,5,6,9,21)$. Hence $\chi_{t}^{\prime}\left(W_{n}\right)=n(n-1) / 2$.

IV. Conclusion

In this paper we determined the twin chromatic index of a wheel graph W_{n}. We may proceed this concept of finding twin chromatic index for some more graphs.

References

[1]. E.Andrews, L. Helenius, D. Johnsonston, J. VerWys and P.Zhang, On twin edge colourings of graphs, Discuss. Math. Graph Theory 34 (2014), 613-627.
[2]. L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237244.
[3]. M. Anholcer, S. Cichaz and M. Milanic, Groupirregularity strength of connected graphs, J. Comb. Optim. (2015) 30: 1-17 Doi: 10.1007/s10878-013-9628-6
[4]. G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, irregular networks, Congr. Numer. 64 (1988) 187192.
[5]. G. Chartrand, L.Lesniak and P.Zhang, Graphs and Digraphs: $5^{\text {th }}$ Edition (Chapman \& Hall/CRC, Boca Raton, FL, 2010).
[6]. G. Chartrand and P.Zhang, Cromatic Graph Theory (Chapman \& Hall/CRC, Boca Raton, FL, 2008). Doi:10.1201/9781584888017
[7]. J.A. Gallian, A dynamic survey of graph labelling, Electron. J. Combin. 16 (2013) \#DS6.
[8]. R.B. GnanaJothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).
[9]. S.W. Golomb, How to number a graph, in: Graph Theory and Computing, R.C. Read (Ed.), (Academic Press, New York, 1972) 2337.
[10]. R. Jones, Modular and Graceful Edge Colourings of Graphs, Ph.D. Thesis, Western Michigan University (2011)
[11]. R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, on modular edge graceful graphs, Graphs Combin29 (2013) 901-912. Doi:10.1007/s00373-012-1147-1
[12]. R. Jones, K. Kolasinski and P.Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455.
[13]. M.Karonski, T. Luczak and A. Thomson, Edge weights and vertex colours, J. Combin Theory (B) 91 (2004) 151-157. Doi:10.1016/j.jctb.2003.12.001
[14]. A. Rosa, on certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.
[15]. V.G. Vizing, on an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).

