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Abstract: Let P be the partition of a graph G with chromatic number, P is puzzle on G, if there is a vertex 

coloring of G using 1,2,…  (G) Such that the sums of the numbers assigned to the partition pieces are all same. 

P is a puzzle if there is unique vertex coloring such that the sums are all different. We investigate the concept of 

some graphs are puzzling, a puzzling and neither. 
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I. Introduction 
This work here is in a tradition of  research into graphs with special colorings, a tradition that include 

the “vertex colorable” graphs[4], “magic” graphs[5-6] and  more recently,” Anti magic” graphs. In this paper 

we determine the puzzlity and a puzzlity of a number of common classes of graphs. 

 Many graphs are neither puzzling nor a puzzling. It is easy to see, for example, then for n>1, Kn, the complete 

graph on n vertices, is not puzzling. A puzzle must have a piece with at least two vertices. Any solution to the 

puzzle generates the another solution by switching the colors of the two vertices in the piece. A similar 

argument shows that Kn, is not puzzling. 

By “vertex coloring”, we mean a minimal coloring of the vertices using the numbers 1,2,3,…  (G).For 

this paper," partition" will mean a partition where the pieces are all connected. 

In section I, the fan graphs are neither puzzling nor a puzzling. In section II, we show that the ladder graphs are 

puzzling and which are a puzzling. In section III, we determine wheels are puzzling and there conditions. 

Definition 1:Let G be a connected graph with chromatic number  (G).A puzzle on G such that there is exactly 

one vertex coloring with the property that the sums of the vertex labels of the partition pieces are all same. 

A graph is puzzling if there is a puzzle on the graph. 

Definition 2: An a puzzle on a graph G is a partition of  G such that there is exactly one vertex coloring such 

that the sums of the vertex labels of  the partition pieces are all different. 

A graph is a puzzling if there is and a puzzle on the graph.  

                                

II. Fan Graphs 
Theorem 1: For all n, Fn, the fan graphs on n vertices is not puzzling. 

Proof:  Suppose a fan graph partitioned into connected pieces. In any equal coloring, a piece of length 2k must 

have a vertex sum of 5k.A piece of length 2k+1 must have a vertex sum of 5k+2 or 5k+4.In equal coloring 

exists, all pieces must  have the same length. If the length is even, both vertex coloring are equal coloring. 

Hence there is no equal coloring. 

If the length of all pieces of the partition is odd, then the adjacent pieces must have different sums (one begins 

and ends with ‘1’, the other begins and ends with ‘2’) If the partition has more then one piece then here is no 

unique equal coloring. The partition has only one piece there is no unique equal coloring. 

 

Theorem 2: For all n, Fn , the fan graph of  n vertices , is not a puzzling. 

Proof:  A partition of a fan graph on unequal coloring if the pieces are all of different lengths. In that case, both 

vertex coloring are unequal. So there is no unique unequal coloring. 

 

III. Ladder Graphs 
Theorem 3: The ladder graph of n vertices are puzzling. 

Proof: If  ladder graph of  n vertices are chromatic number of  Ln is 2.In any equal coloring, a piece of length 

either 2k or 2k+1 must have a vertex sum of  3k.Any coloring of  Ln  must either color of  all vertices in one or 

two  and the reverse. Now all the partition pieces are same length, is puzzling. In that pieces are either odd or 

even the sums of the vertex labelling the partitions are same. One piece or more than pieces of the ladder graphs 

are all unique coloring. 
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Theorem 4: For n, Ln are a puzzling if and only if 2<n≤5, and if n≥5, where n is odd. 

Proof: Case 1: Suppose n<5, the minimum vertex coloring is two. In that the argument all the partitions are 

different length. 

Case 2: If n is greater than 5 and n is odd, clearly the proof of the case 1, is a puzzling. 

If n is even, there exist two coloring. The one of partition must have a repeated coloring. There is no unique 

unequal coloring.  

                        

IV. Wheel Graphs 
Theorem 5: Wheels are apuzzling if n≥4. 

Proof: As with puzzles, if the number of vertices are either odd or even the proof of the theorem (2).So that 

wheels are a puzzling. 

 

Theorem 6: Wheels are puzzling. 

Claim 1: For all n, Wn, the wheel graph is puzzling if n not equal to either 5 or 9. 

Proof: If n≥4, Wn be the set of n vertices and the chromatic number 3 if n is odd and 4 if n is even such that the 

center vertex v0 and every edge connected the all vertices in v0. Suppose that Wn  is puzzling. Let P be the 

puzzle on Wn and Let us say that in the solution, the center vertex v0 is labeled one and all the other adjacent 

pieces labeled the other colors which the property that adjacent vertices does not the same color. Since all piece 

have the same sum. Hence, it is puzzling. 

Claim 2: If n is 5 or 9. 

Proof: For the last clause it is easy to check that W5 and W9 is not puzzling only the center vertex v0  labeled 

one. 

For the other direction, v0 is either two or three, the proof of in this case, must break up into above claim (1). 

Case 1: W5 is not puzzling where the center vertex v0  is one. 

In this case, the partition must contain the following pieces (212) (312) (23) (231) (32) (21) (31).Thus the 

multiple solution can be obtain the different length. Thus the piece of partition cannot the same length. 

Case 2: W5 is puzzling where the center vertex v0 is either two or three. 

Now the center vertex is two, the possible pieces that sums five by (131) (23).Hence obtained by theorem 

(2).Then the same argument of the center vertex is three. Therefore, W5 is puzzling. 

Case 3: W9 is not puzzling where the center v0  is one. 

Suppose the center vertex v0  can be either two or three, there are possibilities the same length. Hence, proved.     
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