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Abstract: In this paper, motivated by the works of Jenkins [11], Leung [12] and Panigrahi and
Murugusundaramoorthy [16] we defined a subclass of p - valent analytic functions using a generalized
differential operator and compute coefficient differences. We also point out, as particular cases, the results
obtained earlier by various authors.

Keywords and phrases: Multivalent functions, p-valent starlike functions, p-valent convex functions,

Toeplitz determinant, Hankel determinant, Differential operator

2000 Mathematics Subject Classification: 30C45.

l. Introduction and Definition

Let A denote the class of analytic functions in the open unit disk U :={z e[l :| z |< I} of the form

f()=2+Ya,.,2"" (pel ={1.23.3}) (L.1)

and let A=A
Let S denote the subclass of A consisting of multivalent functions.
A function f e A given by (1.1) is said to be p—valently starlike if it satisfies the inequality
Re( o '(Z)J >0, (zeU).
pf (2)
We denote this class of functions by S . Note that the class S, reduces to'S; :=S", the class of starlike
functions in U, introduced by Robertson [17].

A function f e A is said to be p-valently convex if it satisfies the condition
Rel[l+ zf,(z)j>0, (zel).
p f'(2)
We denote by C, the familiar subclass of A . In particular p=1, G = Cthe class of convex functions in U,
introduced by Robertson [17] (also see [4]).

For n> 2, Hayman [9] showed the difference of successive coefficients is bounded by an absolute constant i.e.
la,.,|-la, <A
Using different technique, Milin [15] showed that A<9. llina [10] improved this to A<4.26. Further,
Grispan [8] restricted to A<3.61.For starlike function S”, Leung [12] proved that the best possible bound is
A=1.0n the other hand, it is known that for the class S, A cannot be reduced to 1. When n =2, Golusin [5,6],
Jenkins [11] and Duren [4] showed that for f €S, -1<a,|—|a,[<1.029..and that both upper and lower
bounds in (1.1) are sharp. When n=2and n=3, Panigrahi [16] showed that for f €C, |a,|—|a,|<0.521 and

la,|—]a,|<0.521. Also for f eS", |a,|—|a,|<1.25 and |a, |—]|a, |<2 both the inequalities are sharp.

We now define the following differential operator D/j','f;,p A, DA,

by
D/ £(2)=2"+ Y[+ p)* +(n+ p-D)(n+ p)” 1]'C(S.1, p)ay, 2" (12)
n=1
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where
C(5,n,p) = M
(n+)Yr(s+p)

and jaell, =0 u{0}, pell,u,6=0.

By specializing the parameters j,a,u,6 and pwe obtain the following operators studied earlier by various
researchers: Namely,

> Ifa=p=1, u=0,6=00r a=5=0, u=p=1the operator DJ;, =D/;% =D’ is the popular Salagean
operator [19];

When j=0, p=1, then Df,’f,f which is the Ruscheweyh differential operator (see [18]);

For ¢ =0,0=0, p=1, then D/j;fj,1 = Dj which is the differential operator studied by Al-Oboudi (see [1]);
If @=0and p=21then D)%, =D/ has been studied by Darus and Ibrahim (see [2]);

YV V VYV V

When p =1,then D}f;;l = Dj;g which is the generalized differential operator studied by Panigrahi and
Murugusundaramoorthy (see [16]).

Motivated by the above concept, in this paper, making use of the differential operator D}f;;p we introduce
and investigate a new subclass of multivalent functions, as in

Definition 1.1. A function f e A is said to be in the class M e

o @920k, f @)+ t @)
L-0D“ f(z)+tD) " f (2)

1,6, p

(@) if it satisfies the inequality

j>q (zeU) (1.3

1,6,p

where 0<t<1 j,aell,, pel, gand 5=0.

Note that by taking t=j=06=0and t=a=1 j=u=06=0the class My"j;vp(a), reduces the classes S;
and G, , respectively.

Remark 1.1. If t=j=06=0and p=1, then M ‘f;;p(a) reduces to the well-known class of starlike functions

inU. Similarly, if we let t=a=p=1 j=u=6=0then M}*

a5.p(@) reduces to the well-known class of
convex functions in U.

The purpose of the present study is to estimate the coefficient differences for the function class M j;;yp(a),
when n=p+land n=p+2.
I1.  Preliminary Results

In order to derive our main results, we have to recall the following preliminary lemmas:

Let P be the family of all functions h analytic in U, for which Re{h(z)} > 0and
h(z)=1+chz“, V zeU. (2.1)
n=1
Lemma2.1. [4] If he P, then |c, [<2, for each k >1.

Lemma 2.2. [7] The power series for h given in (2.1) converges in the unit disc Uto a function in P if and
only if the Toeplitz determinants.

2 ¢ C, ... G
c 2 .o G
D=t T T T 5 k=123
¢ k C—k+1 C—k+2 2
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itz

J— m
and c_, =c,,are all non-negative. These are strictly positive except for h(z) = Zpkhoe
k=1

.+ P >0, t, real and
t, =t;, for k= j, inthiscase D, >0for k<(m-1)and D, =0for k >m.
This necessary and sufficient condition due to Caratheodory and Toeplitz can be found in [7].

We may assume without restriction that ¢, >0and on using [Lemma 2.2], for k =2 and k = 3 respectively, we
get

2 Cl CZ
D,=|c, 2 ¢|=[8+2Re{cic,}-2]|c, [ —4c | >0,
c, ¢ 2
which is equivalent to
2, ={cf +x(4—c7)}, forsome X, |x|<1. (2.2)
2 ¢ C C
D, =& 24
¢, & 2 ¢
c, ¢, ¢ 2
Then D, >0is equivalent to
(4c, —4c,C, +6))(4-¢)) +¢, (2, —¢))* <2(4-¢))* ~ 2| 2¢, —¢] [ (2.3)

From the relations (2.2) and (2.3), after simplifying, we get
ac, ={c} +2¢,(4—c0)x—¢ (40 )X + 2(4- ) (1= | x )z}
for some real value of z, with |z 1.

(24)

1. Main Results

In this section, we prove to estimate the coefficient differences for the function class M ' ().

_ : - 2) (p+2)
Theorem 3.1. Let f given by (1.1) be in the class M Af (DL <A< , then

8pA’ +(p+DA; (3.1)
4p(p+DA’A,

” ap+2 I - | ap+l ”S

and
(Bp+1)*A +8p(p+DA;

A A2 : 3.2)
Ap(p+1)°AA

18,5 l=la,., lI<

where
A =(p+D)“ @+ pu) (6+ p)L+((p+1)* 1+ pu) - D],

A, =(p+2) (Lt (p+D)2)! wm((p+2)“(1+(p+1)ﬂ)—1)t],

and

i i(O+p)+p+Y(o+p+2 a
A= (p+9) @ (pr2)uy RN RINOLL D (g1 (p+ 2000 -1
Proof: Let the function f(z) represented by (1.1) be in the class M }*

.s.0(@). By geometric interpretation, there

exists a function h e P given by (2.1) such that
(1-t)z(D} f(2)) +tz(D}F f (2)) B

St et =h(2) (33)
@-1)D,5, f(2)+tD, 5 f(2)
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Replacing D)% f(z), D)} f(z), (D)5 f(2))'and D}« f(z) by their equivalent expressions and the

u,6,p H,0,P

equivalent expression for h(z) in series (3.3), we have

@-tz(DJs , f(2)) +&(D}7 £ (2)) =h(z){@-1)D}5 , f(2) +tD) e f (2)}.

1.0,p 1,0,p 1,0,p 1,6,p

(1—t)z{pzp‘1 +i(n+ PN+ p)* +(n+ p—1)(n+ p)“ 1]’ C(5,n, p)ampz”*"‘l}

n=1

+t2{pz’” +i(n+ PI(N+ p)* +(n+ p-1)(n+ p)* u " C(S,n, p)ampz““”}

= (1—t){zp +i[(n+ p)* +(n+p-L(n+p)* u ] C(s,n, p)a,, 2" } (3.4)

n=1

+t{zp +i[(n+ p)* +(n+ p-1(n+ p)“y]MC(&,n, p)ampz”*p}x{lJricnz”}

Equating the coefficients of like power of z*,z"**and z"** respectively on both sides of (3.4), we have
(p +1)A1ap+1 =C + A&ap+1’
(p+ Z)A’Zap+2 =C,+CAa,, +Aa,,,,
(p +3)A3a'p+3 =G+ 'Alap+1cz + Azap+2C1 + Aaap+3’
where A, A and A, are given in the statement of theorem.
After simplifying, we get

2

ap+1 = i' ap+2 CZ Cl (35)
PA (p+1)A2 p(p+DA,’
and
4 - G . (@p+lec, o
T (p+2)A p(p+)(p+2)A  p(p+1)(p+2A
Since,

” an+p+1 | _lan+p ” < | an+p+1 _an+p |l

we need to consider |a,,, —a,,|and [a,,,-a, ]|

Taking into account (3.5) and (2.2) we obtain

c o

p+2 ap+1 |= 2 + T
(p+DA,  p(p+DA,  pA

|a

2

o (e 54_2J ___‘
<p+1>A2[2+2( S DA A
p+2 2 G

“Jone0a % oA A

(3.6)

We can assume without loss of generality that c, >0.For convenience of notation, we take
¢, =c(ce[0;2]) (see Lemma 2.1). Applying triangle inequality and replacing | x| by 7 in the right hand side of
(p+2)
(p+D
c (p+2)c? N 4-¢?

(3.6) and using the inequality A, <-——=A, it reduces to

B N T R T CRE T o0
= x(c,n) 0<nHx|£Y),
where
x(c n)—i— (p+2)c” b2 ¢ (3.8)

PA 2p(p+DA,  2(pDA,
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We assume that the upper bound for (3.7) occurs at an interior point of the {(7,c):7[0,1]}and c<[0,2].
Differentiating (3.8) partially with respect to 7, we get
oy 4-c
on 2Ap+DA,’

From (3.9) we observe that 2—Z>Ofor 0<n<land for fixed cwith 0<c <2 Therefore F(c,77)is an
n

increasing function of 7, which contradicts our assumption that the maximum value of y occurs at an interior
point of the set {(7,¢) : 7 €[0,1]}and c €[0, 2]. So, fixed ¢ [0, 2], we have
max y(c,7) = x(c,1) =7(c) (say).

0<p<1

Therefore replacing « by 1 in (3.8), we obtain

(3.9)

c 2p—(p+1c?

r(c)=—+ , (3.10)
PA  p(p+DA,
1 2c
') =—-—— (3.11)
PA  PA
and
7"(c)=———<0
For optimum value of z(c), consider z'(c) =0. It implies that ¢ =2i.Therefore, the maximum value of z(c) is
2 2
w which occurs at ¢ = i.from the expression (3.10), we get
4p(p+DA'A, 2A
2 2
ZT[QJZM_ (3.12)
2A ) 4p(p+DA'A,
From (3.7) and (3.12), we have
8pA’ +(p+1)A;

- <
1802 =% I 4p(p+)A’A,

which proves the assertion (3.1) of Theorem 3.1.

Using the same technique, we will prove (3.2). From (3.5) and an application of (2.4) we have

la . —a ,|= Cs + (2p+2cec, + c G ¢ |
P (p+2)A  p(p+D(p+2)A, p(p+D(p+2)A, (p+DA,  p(p+D)A,|
W{Cf +2(4—-c)ex—c (4—c))x* +2(4—cf)(1-| x[*)z}
_ (2p+1c, o2 4_c? Cf
+2p(p+1)(p+2)A3‘C1+X( C1)}+|o(|0+l)(|0+2)A3
CZ
= P x(4-c)y——2
2(p+1)A2{Cl+X( w} p(p+1A,
(p+3c  (p+2) o, (P°43p+DC ) oy
4(p+2)A 2p(p+DA, 2p(p+D(p+2)A
_ _ _01(4_012))(2 1 A2\ v ]2
la, s —a,,|= Hp DA +2(p+2)A3(4 ¢ x[*)z (3.13)
1 2
“a(pena, T
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As earlier, we assume without loss of generality that ¢, =cwith 0<c<2. Applying triangle inequality and

replacing | x| by # in the right hand side of (3.13) and using the fact that A, < —— A2 it reduces to
p+

(P43 (p+2) o, (P°43p4DC o

pe3 ~8p.2 | T 4(p+2)A, 2p(p+DA, - 2p(p+D(p+2)A

C(4_02)772 1 a2\ 2
Tupro)a 2pra ST (3.14)

(4-c’)n

|a

3 1
2(p+DA,
=<&(c,n),
where
(p+3)c? (p+2) (p*+3p+1)c

H = - ’ 4_2
s Xp+2)A  2p(pDA, - +ZMp+Dw+2V£( o

_C(4_Cz)772 1 A2\ 2
ap2A T 2praa T (319

1
- (4-c)n.
2(p+1)A,
Suppose that &(c,77) in (3.15) attains its maximum at an interior point (c,7)of [0,2]x[0,1]. Differentiating
(3.15) partially with respect to 7, we have

o (p? +3p+1)c(4-c?) . c(4-c’)p  (4-c’)ny N (4-c?)
on  2p(p+D(p+2)A,  2(p+2)A, (p+2)A; 2(p+DA,

_ (02—4) ) B (p+2)A3
2mp+n(p+aAJ}(p+3p+1+p(p+Dn) 2p(p D+ |
Now 6_520 which implies
on
(P+2)A
2ND+D(U—]
€= il <0  (0<n<Y,

p(p+Dn+p*+3p+1
which is false since c¢>0.Thus £&(c,#)attains its maximum on the boundary of [0,2]x[0,1]. Thus for fixed
C, we have

max &(c,77) = ¢(c,1) = w(c) (say)

0<p<1

Therefore, replacing 7 by 1 in (3.15) and simplifying we get

Bp+1)c 2 c?
_ s 3.16
VO oD+ DA (p DA A (210
ey @GP+ 22 3.17
VO oA o, YO TR e
For an optimum value of y(c), consider '(c) =0which impliesc = Gp+DA . Therefore, the maximum value
2(p+DA
of w(c) occursatc = (23(p 1))% From the expression (3.16) we obtain
v :‘//[(3p+1)A2J: (3p+1°Af +Bp(p+ AT (3.18)
2(p+DA 4p(p+1)°AA

From (3.14) and (3.18), we have
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Bp+D)°A +8p(p+DA
4p(p+1)° AA;

lap.s =, I
The proof of Theorem 3.1 is thus completed.
Taking t=a =L u=06= j=0inTheorem 3.1 we get
Corollary 3.2. Let f given by (1.1) be in the class C.then
R2p+(p+h(p+2)°
8p*(p+1)*(p+2)

” ap+2 | _l ap+1 ”S
and
93p+1)* +8p(p+1(p+3)°
2p*(p+1)*(p+2)(p+3)°

” ap+3 | - | ap+2 ”S

Both the inequalities are sharp.

Putting t = j =6 =0in Theorem 3.1 we get

Corollary 3.3. Let f given by (1.1) be in the class S*. Then
32p+(p+1)°

a —la_, |[I<
” p+2| | p+1|| 8p2(p+1)2
and

9Bp+1)° +8p(p+1D(p+2)°

2p*(p+1)*(p+2)°

” ap+3 | - | ap+2 ”S
Both the inequalities are sharp.
For p=1, Theorem 3.1 reduces to the results obtained in

Corollary 3.4. [16] Let f given by (1.1) be in the class M /j; (a).If % <A ss—Al,then

2
AN + A
— <1 "2
lasl-la s 0
and
~ A+A
R
where
A = 2% U+ 1) (S + DL+ (2 @+ ) -,
A =392 O 3200 -0
and

A, =47 (1+3)] (1+3) - D).

(5+l)(6;;2)(5+3) [+ (4°

Remark 3.1. Here we remark that the results obtained in (corollary 1, [16]) is computationally wrong. The

. 25 25 25 25
estimates —la, |K=and||la, |- < — must be —la, |K=and||a, |- <—,
las |-, lis 2o andla, | -]a fl< 22 las |-l i< 2o andlla, |- |a <2

Taking t=a=p=Lu=06=j=0inTheorem 3.1 we get following
Corollary 3.5. [16] Let f given by (1.1) be in the class C. Then
25 25
—la, |K—=and|a, |- <—
a1l i< S andlla, |- |a <2
Both the inequalities are sharp.

Putting t=j=0 =0and p=1in Theorem 3.1 we get following
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Corollary 3.6. [16] Let f given by (1.1) be in the class S”. Then

5
las-la, ||§Zand||a4|—|a3||£2

Both the inequalities are sharp.
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