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Abstract
Two classes of graphs were introduced with certain properties. The First one was the SM

sum graph and other was the SM balancing Graph. These graphs together with its subgraphs,
complement graphs are named here after as SM family of Graphs. Here we discuss some
parameters of SM family of graphs. These are systematically arranged graphs. Since the
systematic array of graphs are more significant in real life , science and technology, we are
using these types of graphs to form a family of graphs with certain properties. Graphs with
fixed parameters are required in real life applications in many fields. Also the topological
indices like wiener indices are more important in life science and computer science. Most of
the real life problems can be illustrated diagrammatically with a set of points joined together
with lines or arcs. Here we are dealt with some of the graph parameters like wiener indices
and Zagreb indices of these graphs.

AMS subject classification: 05C'99

keywords: Center and Radius of n®*SM Balancing graphs and n'*SM sum graphs, Zagreb indices
and Wiener indices of SM graphs - n'* SM(B,) and n'" SM(Z,) graphs.

Introduction

Graph theory is one of the most research focused branch of Mathematics. It has been
witnessed a tremendous growth due to a number of applications in computer communication, IT
networks, molecular Physics, Chemistry, Social network and biological sciences, computational
linguistics and in many other areas. Graph Parameters have a worthy role in all these applications.
Many Graph parameters have been introduced and applied in various fields. The mainly used graph
parameters are various types of domination numbers, domatic numbers, independence number,
covering number, matching number, Zagreb indices, Harary indices, wiener indices etc. In this paper
we discuss some of these parameters and its applications. Two classes of graphs were introduced by
us in earlier papers. Now we are exploring these graphs up to applications. Some preliminaries are
given below.

1 n'™ SM Balancing Graphs and n

th

SM sum Graphs

Definition 1.1. [§] Consider the set T = {3™,0 < m < n — 1} for a fized positive integer n > 2.

Let I = {—1,0,1}. Any positive integer p < %(3“— 1) which is not a power of 3 can be expressed as
mn

p= > a;y; for somea; €1 andy; €T . If o; # 0, then each y; is called a balancing component
j=1

of p.

Definition 1.2. [8/ let T be the set T = {3™,0 < m < n — 1} for a fized positive integer n > 2.

Consider the simple directed graph G=(V,E), where the verter set V = {vy,vs,... ,t-—‘%wn_u} and

adjacency of vertices defined by, two distinct vertices v, is adjacent to vy; if (1) holds and a = —1

and two distinct vertices vy; is adjacent to v, if (1) holds and oo = 1. This directed graph G is

called the n'™*SMD Balancing Graph, SMD(By). The underlying undirected graph is called n'*

SM Balancing Graphs, SM(B,,).

Definition 1.3. If p < 2", is a positive integer which is not a power of 2, then p = 37 z;, with

;= 0 or2™, forsome(0 < m <n—1 and x;5 are distinet. Here we call each x; # 0 as an

additive component of p.
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Definition 1.4. For a firedn > 2, define a simple graph SM(Y",), called n'* SM sum graph, with
vertex set {vy,va,...,von_1} and adjacency of vertices defined by, v; and v; are adjacent if either
i is an additive component of j or j is an additive component of 1.

Definition 1.5. [ 3] If G(V, E) is a graph, then wiener index, w(G) is defined as the sum of
distances between all unordered pairs of vertices of G. ie., w(G)= Y. d(u,v), where d(u,v) is
{uv}Cv

the distance between u and v.
Definition 1.6. [3] If G(V, E) is a graph, then hyper wiener index, ww(G) is defined as
ww(G) == 3 [d(u,v)? +d(u,v)

2 funycy
Definition 1.7. [8§] Let G = SM(Y_,) or SM(B,,) with vertex set V be an n'* SM graph. The Adi
-R-set of degrees, denoted by AR is defined as AR = {degvi(m}, v; € V'}, where = is the number of
times each deguv; repeats.

2 Parameters of complement of SM(} ) and SM(B,)

Here we are considering the complement of graphs SM(} ) and SM(B,). In most of the cases
graph parameters are useful to study the nature of graph up to isomorphism. The complement G
of a graph G is the graph with the same vertices as of G and with the property that two vertices
are adjacent in G if and only if they are not adjacent in G. Some parameters of the complement
of these graphs are discussed here.

Definition 2.1. Consider the graph SM(>,). If z;, i = 1,2,...n, are the additive components
of =, where x < 2", is a positive integer which is not a power of 2, then C, = {z;,1 =1,2,3,..n}
where x; € P, is called a “component set” associated with the number x. Also we say that r is
formed by C..

Lemma 2.2, If G =SM(}_,). is the complement of SM(},), n >3
and P={2":0<m <n—1} , then

d( ) {2 Jif 1 is an additive component of j or j is an additive component of i
Vi, Vj) =

1 | otherwise

Proof. Let G=SM(>_,), P={2":0<m <n—1},V ={vi,ve,...,Von_1}.

case 1: If i is an additive component of j or j is an additive component of i, In this case v;
and v; are non adjacent in G. Then v; and v; have a common neighbour v, where t is formed by
(Ci —{iHU(P = C;) or (C; — {i}) U(P — C;) and it follows that d(v;, v;) = 2.

case 2:

1 ow let i, j € P. In this case v; and v; are adjacent in G, then it follows that d(v;,v;) =
i) Now 1 P. In thi d v, dj in G, then it foll hat d N 1
(ii) Also when i,j € P, v; and v; are adjacent in G, then it follows that d(v;, v;) =1

(ili) When i € P and j € P , i1is not an additive component of jor j € Pand i ¢ P, j is not
an additive component of 1. In these cases, v; and v; are adjacent in G, then it follows that

d(l’;_s: UJ) =1.
- O
Corollary 2.3. Suppose G = SM(}_ ) graph ,n > 3, then diam(G) = 2
Proof. By lemma 2.2 , the corollary follows. |
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Proposition 2.4. Let G = SM(Y_,) be the complement of n'™ SM sum graph.n > 3. Let dy(v;, v;)
denotes the number of unordered pairs of vertices for which d(v;,v;) =r. Then:

n.(2"1 — 1) Jifr =2
dy(v;,v5) = £ (97 — n_

SRR FEiE DRSS S
Proof. when r = 2, by lemma 2.2, i is an additive component of j or j is an additive component
of 4. In this case the number of unordered pairs is equal to n.(2"~t —1) .
Also we have |[V| =2" — 1.
Now let us consider the remaining cases, ie, the cases in which » = 1. In this case the number of
(2" - 2)2(2 - n.(2"=1 —1). Hence the proof. O
Theorem 2.5. Let G = SM(Y.,), n >3 . Then w(G) =2"""1 —32" 1+ p2" 1 —n+1. Also
ww(G) = 3[22" — 32" + 2+ n.2" — 4n].

unordered pairs is equal to

Proof. By the definition of w(G) and proposition 2.4,

w(G) = Z d(u,v)
{up}Cv

=21 — 1)+ l'[(Qn _ 2)2(2“ -1) (2 — 1)]

=121 =32+ ) 40 (2" - 1)
=271 32" 42t —n 1

Now we get,

Z (d(u,v))* = 4n.(2"" 1) + 1. [{:Qn - 2)2(2n - _ n.(2"1 —1)]

{uv}cv

= 1,221 - 321 4 1)+ 30 (201 — 1)
=21 _ 3911 3p2" 1 —3pn+1
w(@+ 3 (du,v)]
{uv}cv

(271 =327+ 3n 2™ = 3n 4+ 1422 =327 4 n 2" -+ ]

Therefore, ww(G) =

= o] = b

=—[2"" = 32"+ 2+ n2""" —4n]

)

Hence the theorem. O

Corollary 2.6. Let G = SM(>_,), n > 3 .Let m be the number of edges of G.
Then w(G) =m+2n.(2"1 —1).

on __ no__
Proof. We have, m = (2 2)2{2 D) -

Definition 2.7. Consider the graph SM(B,). T ={3m":0<m <n-—1}. Ifz,.i=12 n,
are the balancing components of the positive integer =, where ¥ < %(3“ — 1) which is not a power
of 3, then By = {xy,i=1,2,3,..n} where x; € T is called a “component set” associated with the
number x. Also we say that x is formed by B;.

Lemma 2.8. [f G = SM(B,).is the complement of SM(B,,). T={3":0<m<n-1} ,n>3,
then

n.(2"~!' —1). Hence the proof. O

d( ) 2 ,ifi1s a balancing component of j or j is a balancing component of i
v, U5) =
o 1 ., otherwise.
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Proof. Let G = SM(B,), T={3":0<m <n—1}, V={vy,vs,...,v}. , where t = %(3ﬂ -1
case 1: Consider the case when i is a balancing component of j or j is a balancing component
of 7, In this case v; and v; are non adjacent in . Assume j is a balancing component of i. Then
v; and v; have a common neighbour v, where k is formed by (B; — {j}) |J(T — B;) and it follows
that d(v;,v;) = 2.

case 2:

(i) i.j € T. In this case v; and v; are adjacent in G, then it follows that d(v;,v;) = 1.

(i) 4,7 € T, v; and v; are adjacent in G,and therefore d(v;, v;) = 1.

(111)) When i € T and j ¢ T , 1 is not a balancing component of jor j € T and i € T , j is not
a balancing component of i. In these cases, v; and v; are adjacent in G, then it follows that

d(v;, v;) = 1.
O
Corollary 2.9. Suppose G = T(Bn) graph , then
diam(G) = 2
Proof. By lemma 2.8 | the corollary follows. O

Proposition 2.10. Let G = SM(B,) be an n'™ SM sum graph. Let d,(v;,v;) denotes the number
of unordered pairs of vertices for which d(v;,v;) =r. Lett = 3(3" — 1), n > 3, Then:

n.(3n1—1) Jifr =2
dr{:vi.'?""jf) = {t — l}t _ _n_(g‘n.—l _ 1) , 3'f',r’ =1

Proof. when r = 2, by lemma 2.8, 7 is a balancing component of j or j is a balancing component
of i. In this case the number of unordered pairs is equal to n.(3"~' — 1) . Also we have |V| =t.
Now let us consider the remaining cases, ie the cases in which » = 1. In this case the number of

unordered pairs is equal to d4 2_ D _ n.(3"~! — 1). Hence the proof. -

Theorem 2.11. Let G = SM(B,,), n > 3 . Then w(G) = n.3""! —n + % ~ ¥ 43 Also
ww(G) =2n.3""1 —2n 4 8 3" 1 3

Proof. Let t= %(3“ — 1). By the definition of w(G) and proposition 2.10,

w(G) = Z d(u,v)

{up}cv
t—1)t
=m.(3" T —1)+ ( 5 ) —n.(3"1-1)
3 3n 3
=n3"'—n+—— —+ =
n n+ 3 5 + 8
Now we find, Z (d(u,v))* = 4n.(3" 1 — 1) + (Ul _2 Dt _ n.(3"' —1)
{uw}CV
3 3n 3
— 9y an—1 _ o - 4z
=3n.3 3n + 3 5 + 3
Therefore,
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. 1
ww(G) = 5[w(G)+ D (d(u,v))’]
{uw}CV

1 3211 an 3 32n an 3
=3 —nt+ " -+ 433" 3~ D
Q[rz n—|—8 2+8+n n—|—8 2+8]

3m  3n 3

=2m3" ! —2n 4 — 4 =

n n -+ 3 5 -+ 3

Hence the theorem. O

Corollary 2.12. Let G = SM(B,), n > 3 .Let m be the number of edges of G.
Then w(G) = m + 2n.(3"1 - 1).

I111.  Centre and Radius of SM Graphs
The diameter of a connected simple graph G , denoted by diam(G) is the maximum distance
between two vertices. The eccentricity, e(v), of a vertex is defined as the maximum distance from
it to any other vertex. The radius of G, denoted by rad(G) is the minimum eccentricity among
all vertices of G. These parameters have been computed for many other graphs. Here we provide
these parameters for the SM Graphs. The centre of a graph ,C(G), is the subgraph induced by the
set of vertices of minimum eccentricity. The periphery of G is P(G) = {v € V : e(v) = diam(G)}.
Proposition 3.1. If G=SM(3_,).n=>4, P={2":0<m < n— 1} , then the eccentricity is
given by
3 ifieP
e(vi) =42 ,ifi=2"—-1
4 ifi#£2"—1andig P
Proof. Let G =SM(>_,), P={2":0<m <n— 1}, V={v,vs, ..., Van_1}.
case 1: If i € P, then j € P orj ¢ P. Now there are 3 cases.
(i) If j € PP, then d(v;,v;) = 2.
(ii) If 7 € P and i is not an additive component of j, then d(v;,v;) = 3

Therefore e(v) = 3
case 2: If i = 2" — 1 thatisi=1+2+4+4+ ...+ 2" ', Then d(v;,v;) = 2 or 1. Therefore e(v) = 2
case 3: When i # 2" — 1 and ¢ ¢ P | then there are 4 cases.

(a) j € P and is not an additive component of i . So d(v;,v;) = 3

(b) j € P and is an additive component of i . So d(v;,v;) = 1

(c) 7 & P and, i and j have no common additive components . So d(v;, v;) =4
(d) 7 € P and, ¢ and j have common additive components . So d(v;, v;) = 2

Therefore e(v) = 4. Hence proved. O
Corollary 3.2. If G = SM(>_,). n =3, P ={2" : 0 <m < n — 1} , then the eccentricily is

given by
. 2 Lifi=2"—1
e(vi) = )
3 , otherwise

Theorem 3.3. Let G = SM(>_,,). n = 4 .Then the radius of G ., rad(G) = 2. The centre of G is
C(G) ={van_1} and P(G) ={v;, i #2" — 1 and i ¢ P}.

Proof. The proof follows from the proposition 3.1. O
Proposition 3.4. If G = SM(B,).n =4, T={3":0<m <n—1}. V = {vy,va, ..., v} ,where
t= %(3"rl — 1), then
3 ,ifieT
e(v;)) =42 ,ifi=t
4 Jifi#tandigT

Proof. Let G =SM(Bn), T={3":0<m<n—1}, V={vy,va,...,0:}. ,where { = %(3” -1
case 1: If i € T, then j € T orj ¢ T. Now there are 3 cases.

(a) If j € T, then d(v;, v;) = 2.

DOI: 10.9790/5728-1206020713 www.iosrjournals.org 11 | Page



Some Parameters of SM family of Graphs

(a) If j € T, then d(v;, v;) = 2.
(b) If j ¢ T and i is a balancing component of j, then d(v;,v;) = L.
(c) If j € T and i is not a balancing component of j, then d(v;,v;) = 3. Therefore e(v) =3

case 2: If i =¢, that isi =14+ 349+ ... + 3! Then d(v;,v;) = 2 or 1. Therefore e(v) = 2.
case 3: When i #t and i ¢ T, then there are 4 cases.

(i) 7 € T and is not a balancing component of 7 . So d(v;,v;) = 3.
(ii) j € T and is a balancing component of i . So d(v;,v;) =1
(iii) j € T and, 7 and j have no common balancing components . So d(v;,v;) =4
(iv) j € T and, i and j have common balancing components. So d(v;,v;) =2
Therefore e(v) = 4. Hence proved O

Theorem 3.5. Let G = SM(B,), n >4 and t = (3" — 1). Then the radius of G , rad(G) = 2.
The centre of G is C(G) = {v;} and P(G) ={v;, i #t andi ¢ T}.

b3 =

Proof. The proof follows from the proposition 3.4. -

IV. First Zagreb indices of SM graphs
There are many vertex- degree based indices and distance based indices. The Zagreb indices are
the examples of this kind of indices which are studied and given focus in recent research fields.
The Zagreb indices was introduced by Gutman and Trinajstic [2]. Let G = (V, E) be a simple
graph. The degree of a vertex v € V is denoted by d(v). The first Zagreb index was defined as
Mi(G) = Y d(v)?. The first Zagreb eccentricity index was defined as M*(G) = Y_ e(v)?, where
vel veV

e(v) is the eccentricity of the vertex v.

Theorem 4.1. Let G = SM(Y_,) be the n'™ sum graph. Forn > 4, first Zagreb index is given

by Mi(SM(Y,)) = X (1).r* + n. (2" — 1)? and the first Zagreb eccentricity index is given by
r=2

M*(SM(,)) = 2"+ — 7n — 28,

Proof. For SM(3",), we have A = {2({;)},3({3)},.... () 27— 1} n>4
mn
Therefore Mi(SM(Y,)) = X d@w)* =Y (1).r* +n.(2"1 = 1)%
veV r=2

By the proposition 3.1,
M*(G) =) e(v)* =9n+16(2" —n—2) +4
vel

= 2" —Tn — 28

Theorem 4.2. Let G = SM(B,) be the n'* SM ba!ancmg graph. T ={3":0<m <n—1}.
n > 3. First Zagreb index is given by M;(SM(B,)) = Z (M)t (3n 1 — 1)
First Zagreb eccentricity index is given by M*(SM (B, )} =8.3"—Tn —20.
Proof. We have A¥ = {2(2{ L (22( N an-1(m))s 3" = 1w}, forn > 3.
Therefore M, (SM(B,)) = Z d(v)? = Z M)t + (3" = 1)%
By the proposition 3.4,

M*(SM(B,)) =) _e(v)* =9n+ 16[%(3“ —1)—-n—1]+4

vel

=83"-Tn-20
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V. Conclusion

These n'* SM graphs form a special family of graphs with certain properties. Since the construction
of these classes of graphs are based on different combinations of powers of 3 or 2, it will be useful
in combinatorics, computer Science and IT related fields. A comprehensive study of these graphs
may help in solving many real life network problems or other graph theory problems. It may be
useful to study the nature and different graph theoretic parameters by the help of Zagreb indices
of n'* SM Balancing graphs and n'® SM sum graphs. These graphs have some similarity in nature
and structure. So the similar way of approach can be done in the proof as well as in the formation
of results regarding these family of graphs. Also the similar nature of distance based indices may
help in further comparative study of these family of graphs which will lead to many combinatorial
results.
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