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Abstract: The aim of this paper is to provide some results and applications of continued fractions with matrix
arguments. First, we recall some properties of matrix functions with real coefficients. Afterwards, we give a
continued fraction expansion of the relative operator entropy and for the Ts all is relative operator entropy. At
the end, we study some metrical equations.
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I. Introduction and Motivation

Over the last two hundred years, the theory of continued fractions has been a topic of extensive study.
The basic idea of this theory over real numbers is to give an approximation of various real numbers by the
rational ones. One of the main reasons why continued fractions are so useful in computation is that they often
provide representation for transcendental functions that are much more generally valid than the classical
representation by, say, the power series. Further; in the convergent case, the continued fractions expansions have
the advantage that they converge more rapidly than other numerical algorithms. Recently, the extension of
continued fractions theory from real numbers to the matrix case has seen several developments and interesting
applications (see [6],[8], [13]). The real case is relatively well studied in the literature. However, in contrast to
the theoretical importance, one can nd in mathe- matical literature only a few results on the continued fractions
with matrix arguments. There have been some reasons why all this attention has been devoted to what is, in
essence, a very humble idea. Since calculations involving matrix valued functions with matrix arguments are
feasible with large computers, it will be an interesting attempt to develop such matrix theory.

The main difficulty arises from the fact that the algebra of square matrices is not commutative.

In 1850, Clausius, introduced the notion of entropy in thermodynamics. Since then several extensions
and reformulations have been developed in various disciplines [11,12,14,15]. There have been investigated the
so-called entropy inequalities by some mathematicans, see [2,3,10] and references therein. A relative operator
entropy of strictly positive operators A, B was introduced in non commutative information theory by Fujii and
Kamei [9] by

S(A|B) = AY?In(A~ 2 BA~Y/?)AY?,

as a generalization of the operator entropy
H(A)=5(A|l)=—Aln A.

In the present paper, we also study a parametric extension of the relative
operator entropy which is called T'sallis relative operator entropy. It is firstly
introduced in [18] in the following manner.

Definition 1.1 For two invertible positive operators A and B on Hilbert
space, and any real number A €]0, 1[, the Tsallis relative operator entropy is
defined by
AV2(A-V2ZBA-Y2)A A2 — A

X .

For simplicity and clearness, we restrict ourselves to positive definite matri-

T\(A|B) =

ces, but our results can be, without special difficulties, projected to the case
of positive definite operators from an infinite dimensional Hilbert space into
itself.
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This article is organized as follows: The section 2 contains some basic no-
tions and results about matrix continued fractions that are needed later. In
Section 3, we give a continued fractions expansion of the relative operator
entropy and the Tsallis relative operator entropy. However, the last result of

this paper is devoted to provide the solution of a matrix algebraic equation.

Il. Preleminary an notations
The functions of matrix arguments play a widespreased role in science and

engineering, with applications areas ranging from nuclear magnetic resonance
, ) & Coe ) )

[1]. So for any scalar polynomial p(z) = > _._, a'2" gives rise to a matrix poly-

nomial with scalar coefficients by simply substituting A* for 2 :

E
P(A) =) a'Al
i=0

More generally, for a function f with a series representation on an open disk
containing the eigenvalues of A, we are able to define the matrix function
f(A) via the Taylor series for f [7].

Alternatively, given a function f that is analytic inside a closed contour
I which encloses the eigenvalues of A, f(A) can be defined, by analogy with
Canchy’s integral theorem by

2; /Ff{z)[::f—ﬂ)_ldz.

The definition is known as the matrix version of Cauchy’s integral theorem.

flA) =

Let M,, be the algebra of real square matrices, we now mention an impor-
tant result of matrix functions.

Lemma 2.1 Let f be an analytic function in a domain D.

(i) If two matrices A € M,, and B € M, are similar, with A = ZBZ !,
and sp(A) C D, then the mairices f(A) and f(B) are also similar, with
f(A)=Zf(B)Z~".

(i) If A € M,, is a block diagonal matrizx A = diag(A,, Az, ..., A,) then
F(A) = diag(f(Ar), f(A2), .. F(A)).

Proof. Its proof is obvious.

Let A € M,,, A is said to be positive semidefinite (resp. positive definite) if
A is symmetric and

VereR™, < Ax, 2 >>0 (resp. Vr e R™, x#0 < Ax,r >> 0)
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where < .,. > denotes the standard scalar product of R™,

We observe that positive semidefiniteness induces a partial ordering on the
space of symmetric matrices: if A and B are two symmetric matrices, we
write A < B if B — A is positive semidefinite.

Henceforth, whenever we say that A € A, is positive semidefinite (or posi-

tive definite), it will be assumed that A is symmetric.

For any matrices A, B € M,, with B invertible, we write A/B = B~ 1A,
in particular, if A=I, the matrix identity, then I/B = B~!. It is easy to

verify that for any invertible matrix X we have

A_ XA, AX

B XB’7 BX’
Definition 2.2 Let {4, },=0 and {B, },.>1 be two sequences of matrices in
M,... We denote the continued fraction expansion by

B] Bl Bn]

Aq + = [A.D: —_ ...
B » T4t 1
A+ E A An

Agx + ..

. . . . B, .
Sometimes, we denote this continued fraction by l;—lo; —nl or Ag+K (B,/A,).

M ln=1
n

B P, B;

The fractions — and — = lfilo; —1] are called, respectively, the n‘" par-
_tqn Qn fr'!l-i i=1

tial quotient and the n'® convergent of the continued fraction Ay+K (B, /A,).

We note that the evaluation of n'* convergent according to the definition 2.1
is not practical because we have to repeatedly inverse matrices. The follow-

ing proposition gives an adequate method to calculate Ay + K (B, /A,).
Proposition 2.3 [16]. For the continued fraction Ay + K (B, /A,), define

{ Py=1 I=4 and { o mor n>1l (21)

Q—l = 0: QO =1 Qn = A Qn—] + BnQn—Z

Then Q' P, is the n'™ convergent of the continued fraction Ag+K (B, /Ay)
The proof of the next proposition is elementary and we left it to the reader.

Proposition 2.4 For any two matrices C' and D with C' invertible, we

have

B]" BiD ByC' B]”
C' Ay, — D= |CAyD: — ,— :
{ . AkLZL [ TACTT A AL
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Definition 2.5 Let {A,},{B,} {C,} and {D,} be four sequences of matri-
ces. We say that the continued fractions Ay + K (B, /A, ) and Cy+ K(D,, /C},)
are equivalent if we have F,, = G,, for all n > 1, where F,, and G,, are the
n'™ convergents of Ay + K(B,/A,) and Cy + K(D, /C,,) respectively.

In order to simplify the statements on some partial gquotients of continued
fractions with matrices arguments, we need the following proposition which

is an example of equivalent continued fractions.

[ B,
Proposition 2.6 Let | Ag; ;” be a given continued fraction. Then
L Ak d k=1
B _ |4 By 1" lq Xt By rk__lzr
— = | <0; A = | Aoy == — 1
Qn | -"hc_ k=1 k"_lka_ll =1

where X_| = Xog =1 and Xy, X5, ..., X, are arbitrary invertible matrices.

Proof. Let % and g%, be the nth convergents of the continued frac-
: T ) XpBuXp 1,1 : »
tions [AU, A—J - and {AD, m] - respectively. By proposition 2, for

all n > 1, we can write

Pn = Xni"‘ln r__11pn—1 + XanXn__IQPn—Eu

n

which is equivalent to
X;lpn = An(Xn_—llpn—l) + B r';—lzpn—ﬂ-
This last result joined to the initial conditions prove that for all n > 1,
X 1P, =P,
A similar result can be obtained for €),,. Consequently, both continued frac-

tions have the same convergents and the proof of proposition 2.6 follows. We

also recall the following proposition in real case.

Proposition 2.7 Let (r,) be a non-zero sequence of real numbers. We

prove easily that the following continued fractions

by by by, ] { r1by rariby Tn-1Tnby
- = | and |ag:; .

aU.‘ 1 poeey 3 5 T
ay ag Qp iy  Taag Tpdy

are equivalent.
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Definition 2.8 ( Contraction of a continued fraction)

Let B,, A, and f,, denote the n'® numerator, denominator and approximant,
respectively of a continued fraction ag + K(b,/a,) and we let D,, C, and
gn denote the n'® numerator, denominator and approximant, respectively of
a continued fraction ey + K(d,/c,). Then ¢y + K(d,/c,) is called an even

contraction or even part of ay + K (b, /a,) if and only if
gn = fon forall n > 1.

Proposition 2.9 [13] i) The even canonical contraction of ay+ K (b, /a,)

is given by

o5 —=s — — =
Cp €3 Cp n==3
+oo
an: biaz —babsay —ban_oban_1a2, 402,
0 s 1
ayaz + by (azas + bz)as + azby (azn_2020—1 + ban_1)asn + azn_2ban |,
ii) The odd canonical contraction of ag + K (b,/a,) 1s given by
+o0
. dl d2 dn
Co;—,— — =
C1 Ca2 Cp n=3
+00
apa; + by . —515203/(11 —b2n_1banton1a2n_3
aj “baas + ay(bs + azas) bapasniy + asn—1(boeni1 + a2na2n41) | s

We end this section by introducing some topological notions of continued
fractions with matrix arguments. We provide M,,, with the topology induced

by the following classical norm:

\ |Azx|
vA € M,,, ||A]| = Supxam? = SUp|z—1|Az|.
The continued fraction [A.[,, A, is said to be convergent in M, if the
k] k=1

sequence (F,),, = (P,/Q.), = (Q;'FP,), converges in M,, in the sense that
there exists a matrix F' £ M, such that
lim, ... ||Fn — F| = 0.

I11. Main Result
Our aim in this section is to give the continued fraction expansions of the relative operator entropy
and of the Tsallis relative operator entropy for two invertible and positive definite matrices A and B.

3.1 Continued fractions expansion of a relative operator entropy.
For simplicity, we start with the real case and we begin by recalling La- guerre's continued fraction of In x;
where x is a strictly positive real number in the following lemma.
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Lemma 3.1.1 Let = be a real number such that x > 0. A continued fraction

erpansion of Inx is given by :

2 1% 2 1127 To©
Inr — (:r-l—l (sr+l —2? r+i —n? (Fi (3.1)
1 3 ’ 5 o 2n+1 | ]

n=3

Proof of lemma 3.1.1 Let z be a real number such |z] < 1, We know

that (see [13]) a continued fraction expansion of In(1 + 2) is

Z Qnz e
In(1+ 2) = [U;I, 1 :|n=2
where for k> 1 .
A2k = 55777
2(2k — 1
( k )

Qok+1 = 5757, 7 1
. 2(2k + 1)
The even canonical contraction of a previous continued fraction expansion of

In(1 + 2) bellow is given by

2 12,2 2.2 +oo
1mr+ﬂ=[m - n- } (3.2)

24+ 2°324+2) 2n+1)(2+2) ],

Let z be a real number such that |2| < 1, according to the relationship
(3.2), we have

142 2z —1222 2,27+
In il = |0; —, e : (3.3)
1—2 1" 3 '2n+1],,
Let x be a real number such that # > 0, in order to conclude the proof it
14z

which is equivalent to z = ==.

suffices to put z = +1

The next lemma is a matrix version of the previous lemma 3.1.1.

Lemma 3.1.2 Let A € M, be a positive definite matriz. Then a continued
fraction expansion of In(A) is

— _Jn2 T
2(45) — (1) 22 (&) —* (45
I

+1
I 7~ 3 51 T (2n+1)

In(A) = |0;

n=3
Now we establish a main theorem which gives a continued fraction expan-

).

sions of the relative operator entropy S(A
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Theorem 3.1.3 Let A and B be two invertible and positive definite matri-
ces in M,,. A continued fraction expansion of the relative operator entropy
S(A|B) is given by

_AN2 4 _An2 2, 47t

S[ _HB) 24 (.B-I—A} _‘4 (gTi) A' ! _22‘4 (g—-ki) ‘4 ! —n 4 (B-I—A) ‘4 !
I 3l ’ 51 T Gn+ DI )
(3.4) -

Proof of lemma 3.1.2 Let A € M,, be a positive definite matrix. Then
there exists an invertible matrix X such that A = XDX !, where D =
diag(Ai, Mgy ..., Ayp) and A, > 0.

As the function z — In(2) is analytic in the open halfplane

{z € C, Re(z) > 0}, then

In(A) = X (InD) X~ = X diag(In(\;),In(\y), ..., In()\,,)) X,

Let us define the sequences {P,} and {Q,} by :

P.—=1, B —=0,P —24(D)
Q—l :O:QGZI-:QI =1

and for n > 2,
P, = (204 1)Pyy —n?(6(D))* Poa,

Qn = (2n+1)Qn1 — n*(¢(D))*Qn2,
where ¢(D) = 2L

We see that P, and @,, are diagonal matrices. By setting p, = diag(pl,p2, ....p")
and g, = diag(q..q2, ....q™), we obtain for each i where 1 <i < m,

{ ply=1, ph=0, pi =26(\)
ql—lzoi QEJ:]--; (ﬁ:l

and for n > 2,
P:; =(2n+1)p, ;—n (é(At))EP;_21
= (2n+ 1)g;_; — n*(d(N)) a5 —2-
By lemma 3.1.1, the convergent (p! /q.) converges to In\;. It follows that
P, /), converges to the matrix In(1)), so that
26(D) —1%(6(D))* —n?(¢(D))*]™
I - 31 " (2n+ 1)1

D= o
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By proposition 2.4, we get

v IR 2¢(D) —1%((D))* —n* (D)7
In A= X(nD)X = X[O, Va 37 G+ DI ]R_QX
0. 26(D)X 7T —13(H(D))* X1 —n(H(D))* A
o [ X-t 37 T2+ 1T L -

Let us define the sequence (X, )n>_1 by

XN 41 =Xy=1,
X=X, forn = 1.

Then
X, B, X} 2X1¢(D)X—1Xj11 _ 2¢(A)
X Al}i’(,— XoX X! I
XoBo X' Xo(—12(@(D)*)X HX5'  —12(é(A))°
XoAx X1 X2 (3N Xt - 37 :

For n = 3, we have

XnBﬂXn_—IQ _ —(1’!. — 1)2{0("—1))2
X, A, X1, Gn—11

By applying the result of proposition 2.6 to the sequence (X, )n>_1, we finish

the proof of lemma 3.1.2

Proof of theorem 3.1.3 Let A and B be two invertible and positive

definite matrices in M,,,. In order to apply lemma 3.1.2, we have

o . ATVZBATVZ T AT2(B — A)A—1/?
A A2 A2y — = . .
?( )= AEBA Tz 1 A 2B — A)A /2
B—A ,
— ‘,_111"2 ‘),_1—1.,-'2-
B+ A

/ 2
(B(AVZPBAY?))2 — AV % - j) A2,

Then, according to lemma 3.1.2, we obtain

2‘41-;2 (%) .4_1.;2 _‘41312 (%)2}1_1;"2 o 41;2 (B A) 4_—1;2
0; ' 3] ' 2n+ 1)1 _2.

In(A~Y2BAY?) =

Due to proposition 2.4, we deduce that

S(A|B) = A'*In(A712BAT?) A2 =

I - It - 2 . -1/
AV () A () A a2 () A
AR 31 ’ on+ )] ;

n=

In order to achieve the proof of theorem 3.1.3, let us take
Xa=Xo=1,

X, =AY2 ¥n>1.
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Thanks to proposition 2.6, we see that

o B 2 A- / B— 2 4 +o0
S(A|B) = agﬂfﬁ% —A(53) A —nPA(F7) AT
, ? I ? ?)I 1 {2?1 n 1)}_ B

3.1.4 Examples of applications

This sections is devoted to illustrate our above theoretical result (3.4) with

sSo1me exa.n]ples .

Example 1.

80/99

a—(

Consider the matrix A such that

—8/99
—8/99 80/99 )'

A is a diagonal matrices and we have A = PDP-! where

p_ ( 80/99 —8/99
— \ —8/99 80/99

The exact valeur of S(A|I) = —AIn(A4) is

S(A|I) = (

0.168149372 0.06345334
0.06345334 0.168149372

) D= ( Ség 8?9

—(4/9)1n(8/9) — (4/11) In(8/11)
(4/9)In(8,/9) — (4/11) In(8/11)

).

).

(4/9)In(8/9) — (4/11) In(8/11) )
—(4/9) In(8/9) — (4/11) In(8/11)

(3.5)

Applying the theorem 3.1.3, the first convergents of S(A|B) are given by:

e

8/99 19/99

o ( 5344/31977 2000/31977 )___(
L = —

):

2000/31977 5344/31977

4331 /25740
409 /6435

F= (
r—(
o= (

409 /6435
4331 /25740

Fy = (

0.168142779
0.063446859

0.168150016
0.063453981

0.1658149330
0.063453298

19/99 8/99 _( 0.191919191
- 0.08080805 0.191919191

0.08080808

)

0.167120117 0.062544954
0.062544954 0.167120117 )~

0.163259518 0.063558663
0.063553663 0.168259518

).

0.063446859
0.168142779

0.063453931
0.168150016

0.063453298
0.168149330
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We observe that very good approximations of S({A|B) are obtained from the
first iterations. And this example explains the fast convergence of the con-

tinued fraction expansion of S(A|Jl) given in (3.4).
Example 2. Now, let us Censider the matrices A and B such that

5 —4 0 24 —12 -3
A= —4 5 0 and B = —12 15 0 .
0 0o 1 —3 0 4

We will compute a relative operator entropy S(A|B). It is not hard to see
that

%1113 —4In3 _711113
S(A|B) = —4In(3) 5In3 0
( _Tl In3 0 % In3 )
(3.6)
T.14097978 —4.394449156 —0.5493061445
= —4.394449156 5.493061445 0
—0.5493061445 0 1.281714338

Applying the theorem 3.1.3 the first convergents of S(A|B) are given by:

6.869029276 —4.3636364 —0.47119461
Fy = —4.3636364 5.490196078 0
—0.47149461 0 1.248073960
7.074306086  —4.392156863 —0.5230366692
Fy — —4.392156863 5.4930196078 0 ,
—0.5280366692 0 1.274051439
7.124146853  —4.394281415 —0.5437650283
F, = —4.394281415  5.492851768 0 ,
—0.5437650283 0 1.279825363
7136715652  —4.304436967 —0.54788308144
Fy — —4.394436967  5.493046209 0 ,
—0.5478898144 0 1.281239180
7.139901896 —4.394448272 —0.5489471762
Fs = —4.394448272 5.493060341 0 ,
—0.5489471762 0 1.281684124
7.140708024 —4.394449091 —0.5492155533
Fr = —4.394449091 5.493061364 0 .
—0.5492155533 0 1.281684124
7.140911453 —4.394449150 —0.5492833386
Fy = —4.394449150 5.493061438 0 i
—0.5492833386 0 1.281706734
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7.140962679 —4.394449154 —0.5493004121

Fy = —4.394449154 5.493061443 0 ;
—0.5493004121 0 1.281712426
7.140975559 —4.394449155 —0.5493047051
Fip = —4.394449155 5.493061443 0

—0.5493047051 0 1.281713857

We see that F'g is approximately the exact valeur of S(A|B). This example
justify the importance of our approach.

Theorem 3.2.2 Let A and B be two invertible and positive definite matri-
ces in M,,. Then a continued fraction expansion of Tsallis relative operator
entropy is defined by

TA(.4|B)=[0; } , (37)
Al
where
A B A— B\?
R Al/2 ) _ 2 _ 1)4V/2 A1
B, = 2)\A A+B,Bg AN —1)A (A+B) A1

¥y

Ay = —MAY2 _ \2p1/2

1

A - B
7‘4—
A+ B ’

’,

B, =AM\ —(n—1)2)AY2 (i;

i

2
g) A=Y2 for all n > 3,

A, = —

(2n — 1)1 for all n > 2.

.

In order to prove theorem 3.2.2, we recall the following lemma.

Lemma 3.2.3 [17]. Let A and B be two invertible and positive matriz in
M. A a real number such that 0 < X < 1. The continued fraction erpansion
of (A~Y2BA-VY2)A s given by

] 4o

(‘4—1,/28‘4—1,/'2))\ — |:_lr B;'a

oA
‘:ln n=1

where we set

,A—B
Bj =2 AY2_——— A~1/2
1 A+ B 1
Al = —T — /\AW%A—U?
AT (3.8)
e [A—DB\? .
B! = (A — (n—1)2)AY? (4 —5 AYZ o >2,

L Al =—2n—-1)1, n=>=2.
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Prooft of theorem 3.2.2 With the same notations as in lemma 3.2.3,
we have

(A-V2RA-UZ)A — [I' B B; )*B;.-]_F%

* 4; 2 4-{ E] 4’- -
A1 Az A lp=—
By adding (—1T1), dividing by lambda from the both sides and using the propo-

sition 2.7, we get

(‘47];28‘4—];"2)}\ _ I _ [D- B;_ ABE B;c:| e {3.9)

A XAy AL A,

Multiplying A'/2 from both sides of (3.9), we have

1y Y, Soo
A1/2 (A-12BA-Z)N — IAl,*z — Al/2 [D: By ADBY B?s] - A1/2

By NAL AL AL,

By propositions 2.6 and 2.7, we get the result of theorem 3.2.2.

3.3 The solution of a matrix algebraic equation and its continued
fraction expansion.

Let A and B be two positive definite matrices in AM,,. As it is known, the

explicit form of the geometric mean of A and B is given by
92(A, B) = f1,2(A, B) = AY?(AY2BAT/2)/2 A2,

Definition 3.3.1 Let m = 2 be an integer, the geometric mean of m positive
definte matrices A,, Az, .., A, is recursively defined by the relationship:

gm(";ll: ‘4-25 ‘_1'1']'1) = flfm(":ll:gm—l{‘42: ‘4-3: i ‘4-?71))

where
flfm(‘4-: B) — :,_11;’2(‘4—1;’2814—1/2}1{?11‘41{2_

We consider the following matrix equation: Find a positive matrix X such
that
X(AX)* = B. (3.10)

It is well known that equation (3.10) has a unique solution given by

X = g‘l{B, ",_1—15 ‘4—]1‘4—1) — ‘4—];"2(‘41;’28‘41f2)1]4‘4—];"2.

With the appearance of the term A2 and (A'Y?BA'Y2)Y/4 it is hard to cal-
culate g,(B. A, A1, A=) directly.

The following theorem approximates the solution of (3.10) in term of contin-
ued fraction.
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Theorem 3.3.3 Let A and B be two positive definite matrices in M,,,

the solution of equation (8) has the following continued fraction erpansion:

where

i B, 1T
_ |41 En
;&_[A 4]
11— AB 15 (I — AB\*
{319I+_4BBQ 16 (I+AB) 4
1] — AB
A=—A-r At
1 o (T —ABY\®
=(— —(n— ——— ) . for n>3,
B, (16 (n 1))(1—#4&18) . for n >3,

A, =—02n—-1)I, forall n=2.

Proof. From lemma 3.2.3 and classical transformation, we easily find this

result.
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