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On Non-Newtonian Real Number Series

Cenap Duyar and Murat Erdogan

Abstract: In this study, non-Newtonian real number series were introduced and their convergence conditions
were investigated.

I. Introduction

Non-Newtonian calculus was created by Michael Grossmann and Robert Katz
between 1967-1970 years. They have firstly 1dentified classical, geometric, harmonic
and quadratic calculus, then bigeometric, biharmonic and biquadratic calculus.
They completed the book that make up the basic framework of the non-Newtoman
calculus in 1972 year [1]. In a study conducted by James R. Megginniss, it was used
the non-Newtonian calculus to create probability theory adapted to human behavior
and to make a selection [2]. Janne Grossmann worked on derivative and integral
in the meta-calculus [3]. In a study made by Michael Grossmann, 1t was examined
the derivative as independent from measure [4]. M. Rybaczuk and M. Stoppel
have used the bigeometric calculus in the fractals and material science [5]. Dorota
Janiszewski has worked on the multiplicative Runge-Kutta methods [6]. Agarmirza
E. Bashirov, Emine Misirh and Ali Ozyapici have done the studies on the geometric
calculus and 1ts applications [7]. In a study made by Al Uzer. 1t was examined the
multiplicative type of complex calculus as an alternative to the classic calculus [8].
Agarmirza E. Bashirov and Mustafa Riza worked on the complex multiphecative
calculus [9]. Cengiz Tirkmen and Feyz1 Bagar have obtained some basic results
about the sequence sets in the geometric calculus [10]. Luc Florak and Hans van
Assen used the non-Newtoman calculus in the biomedical image analysis [11]. In
a study made by Ahmet F. (Jakmak and Feyz1 Bagar, some new results on the
sequence spaces based on the non-Newtonian calculus have been found [12]. Sabiha
Tekin and Feyzi Basar worked on specific complex sequence spaces [13]. Diana
Andrada Filip and Cyrille Piatecki used the non-Newtonian calculus to reaffirm
and analyse the neoclassical growth model(Solow-Swan) in the economics [14]. In a
study made by Cenap Duyar, Birsen Sagir and Oguz Ogur, some bhasic topological
properties on the non-Newtonian real line were obtained [15].

In the hight of these studies made, 1t has emerged the need to examine the non-
Newtonian real number series and their convergence properties. In this study, we
introduce the non-Newtonian real number series and give and prove some conver-

gence tests for them.
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I1. General Informations
21. a-Arithmetic.

Definition 1. A generator is a one-to-one function o, whose domain is i, the set
of all real numbers, and whose range is a subset of R. We denote by R (N), called
Non-Newtonian real line, the range of generator a. Non-Newtonian arithmetic

operations on R (N) are represented as follows([1].[2].[8].[4].[6]):

a — addition z+y=alat(z)+a(y))

a — subtraction r—y=a (a_l (z) —a™? (y))

a — multiplication zxy=a(a ! (z) xa™! (y))

a — diviston a:i;"y =a (a_1 (z) [a™! (y)}

o — order z <y (.r < y) sal(z)<al(y) (a7 (z) <al(y).

In thiz case, 1t 15 said to generate an a—arithmetic of . For example, the
identity function I generate the calassical arithmetic and the exponential function
exp generate geometric arithmetic. Each generator generates a single arithmetie,
contrarily each arithmetic 1s generated by a single generator [1].
Definition 2. A a-positive number is a number z with 0 < z, similarly a a-
negative number is a number z with 0 > 2. a-zero and a-one numbers are denoted
by 0 = a (0) and 1 = a (1) respectively. a-integers is obtained sequentially by adding
1 to 0 and by subtracting 1 from 0. a-integers are as follows:

ma(=2),a(-1),a(0),a(1),a(2),... .

Each integer n according to a-arithmetic is denoted by n = a(n). Ifn s an a-

positive integer, then it is n times sum of 1[1].

Definition 3. a-absolute value of a number x € R(N) is defined by

x Lif >0
lz|, =4 0 .,if z=0
0—=z,if z<0

This value is equivalent to the expression o (|a™ (z)|) [1].
Definition 4. A closed a-interval on B (N) is represented by

[a,8] = {zER(N): aﬁ:céb}
= {3: ER(N):al(a)<al(z)< ot {b)} =a ([a_1 (a),a”! (®)]) .

similarly an open a-interval -(a? bj] can be represented . It 1s said that an a-inferval
has a-lenght b —a [[2],[3]].

Let {u,} be an infinite sequence of the numbers in R (N). If each open a-interval
containing an element u includes all elements outside of a finite number of the
elements of the sequence {u,, }, then it 1s said that the sequence {u,} is a-converge
to u and the element u is called as a-limit of the sequence {u, }. This convergence
becomes the classie convergence 1t @ = I Classic and geometric convergence are
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equivalent in the sense that a positive number sequence {p,, } converges as geometric

to a positive number p iff {p,,} converges as classic to p [1]. Throughout this study,
the symbol N denotes all positive integers.

2.2 *-Calculus. Let a and 3 be arbitrarily chosen generators which image the
set R to A and B respectively. *-Calculus is defined as an ordered pair of the
arithmetics (a-arithmetic, S-arithmetic) and the following notation 1s used:

a-arithmetie B-arithmetic
Universe A(=R(N)) B(=R(N))
Summation + +
Subtraction — —
Multiplication x x
Division /’ /"
Ordering < <

a-arithmetie 1s used on inputs and J-arithmetic 1s used on outputs. In particular,
the changes in inputs and outputs 18 measured by a-arithmetic and F-arithmetic,
respectively. The operators in *-calculus is applied to functions which inputs and
outputs belong to A and B, respectively.

-

Definition 5. The *-limit in a point a € A of a function f is one and only one
number b in the set B, 3-converged by an outputs {f (a,)} for all infinite sequence
{a,}, a-converged to a and its terms is different than a. In this case

*— hmf(x)=2>

T—a
is written [1].
Definition 6. A function f is *-continuous in a point a of A iff this point a is an

input for f and + — lim f (z) = f (a) [1].

The Results and Discussion
Definition 7. An infinite sum

oo oo
a1 +azy+ ...+ an+ ... = 4 E Ay = N E A
n=1 n=1

o

s called the non*Newtonian real number series or a-series. If , Z @y 15 @ NON-
n=1

Newtonian real number series, then a sequence {S,,} with the general term S,, =

e o a ]
o Z ay, s called as the non-Newtonian partial sums sequence of the series , z Q.

n=1 n=1

==l

If the sequence {Sy,} is a-convergent, then it is said that the series , Z a, 15 a-
- n=1

convergent. If @ hm 5,, =5, then it is written , Z an, = 5. If the imit ™ him S,

mM—00 TM—00
n=1
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o0

is not or equal to — 00 or + 00, then it is said that the series 4 Z a, ts a-divergent.

n—1
o0

Given a series 4 Z a, and a postlive integer 1 with 1 > 2, evidently it is written

n=1

[+ =) o w}

Thus, the series QZ ay 18 convergent iff the series “Za” s convergent, i.e
n=1 n=i

removing the finite number of terms of the start does not change series’ character.

Example 1. The equality . E ﬁa = 2 holds:
2 =
n=1

If {S,,} 1s partial sums sequence of given series, then

_
SR

2

Sy = 1+%a:a(i+a‘1 (%a))ﬂ*(”%):“(g)
o~ (3) 3

= | ——— —Ta:z_fa
&_1(2) 9 2[2 'I",Ia
o1 1 1 7 S
S; = ]—l—Ta—FT&:SE-FT&:Tﬂ:Z_Wﬂ
2 4 4 4 A

1

—
-(m—1)_
2 m

S, =

In this case, for all m e M

) o e ) )
c o[ r) ) e () o)

’STTE - 2

[
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Givem now any = > 0. We have
1
gm—1

and thus

[5m 2| =a (le_j ) <a(al(e) ==

for all m > mg, wherever mp = Hlﬂgz ﬂ%{c} + ]H + 1> log, a%fs} + 1
oo -

Example 2. (Non — Newtonian harmonic series). Shows that . Z ;Tcx:
n=1

Let (Si) be the partial sums sequence of given series. Then, for &k € M

.1
Sg = 1+ -
2
.1 .1 .1
.84 = 1+—{1+ —a+ —o
2 3 4
1 . . 1 o1
Ss = 1l+-a+|at+-a|+|at+-a+-at+ -a
2 3 4 5 6 T 3
o1 (1 1 (1 -1 .1 .1
>l+-a+|-at+-a|+|a+-a+ —a+ —a
2 4 4 8 3 ] 8
' 1 .1 . 3
= l4+—-a+-at+-a=1+ -«
2 2 2 2
Sy 214 Ea
2

According to this, a sequence {S5x} of {S;} is unbounded and thus the sequence
{Si} 1s divergent and hence given series 1s divergent.

Theorem 1. Let &z;oﬂ a, and sz_o:l b, be two non-Newtonian series with
admian = Aand o> . 1by, = B. Let A € R(N), be also given. In this
case, the following statements are true:

a) The series Zﬂmzj (an + bn) 13 convergent and Zz_o:l (an + bn) — A+ B
b) The series Z:o:] (A X an) 15 convergent and Z:o:] (A X an) = Ax A

Proof. a) Let o 7 an = Am, o ST by = By and Sy =a Y7 (an er,t)_

Then A,, + B,,. Hence
 lim Spm=" lim (Am —i—Bm) =% lim Am 4+ lim Bm=A+ B,

=)

thus the series . Zz_o:l (an + bn) 1s convergent and o » .. _; (an + bn) = A+ B.

b) The proof 1s similar to the previous alternative.
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Theorem 2. (Cauchy criterion). The series o 3 .., an is convergent iff when
any number £ <0 is given, there exists at least a number mo € M such that
m—+p
m+p 'm‘ ~a Z Sp <=
n=m-+1

for all m = my and all p €

Proof. Let the series 4 » ..., an be convergent. Then, the sequence of partial sums
{Sm} of this series is also convergent. In this case, {S,,} 15 a Caucy sequence.

According to this, when any number & > 0 is given, there exists at least a number

mg € M such that
m-+p

ZZS{’,t

n=m-1

‘S'r'r'o-i—p m

Conversely, when any number = > 0 is given, let there be a number mg € N such
that

for all m > mo and all p € M. Then, the inequality ‘Sm.HD Sm’ < ¢ holds or
all m > mp and all p € N. This shows that {S,,} 1= a non-Newtonian Cauchy
sequence. Since R (N)_ is a non-Newtonian complete space, {S,,} converges to an
element of this space. Thus, the series , 2?21 a, 15 convergent. O

Theorem 3. If the series , Z _4 Gn 18 convergent, then ® Iim a, = 0.
T—00

Proof. 1t 1t 1s taken p = 1 in the Cauchy criterion, then | there exists at least a
number mg € M such that

m-+p mr+1
o § An| = |a E An| = |an+1|& = |8n+1 — 0f <«
n=m-+1 o n=m+1 o @

for all m > mg, whenever any number = > 0 is given. This completes the proof. [

o s convergent, o, Iim M+l =0.
'.l".l.—} 2 e

Example 3. Since the series o> . | ——5—
=13 -
Remark 1. The opposite of the last theorem cannot be true. For example, although

1g is diwvergent.

la 2.0 as n — o¢, we know that the series o Zn 13

Theorem 4. (Comparison test). Suppose |by|, < ay for alln € N. If the series
o Zn_1 a, is convergent. then the series . Zn 1 bn 15 also convergent.

Proof. Since the series , » ... . a, 1s convergent, it provides the Cauchy criterion.

Thus, when any = > 0 is given, there is one mg € N such that

m—+p m—+p
o E E Qp << &
n=m-+1 o n=m-+1

for all m > my and p € M. Then, according to non-Newtonian triangle inequality
and hypothesis,
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m—+p m—+p m—+p
o E bﬂ. —c E |bn|a < & E Ay <0 E
n=m-+1 a n=m-+1 n=m-+1

for all m > mp and p € M. In this case, the seres , Z:’ﬂ b, 1s convergent by
Cauchy crniteria. L

Definition 8. If the series o Y ..., |an| is convergent, then the series o D ooy i5

said to be absolutely convergent(a-absolutely convergent). However, if the series
a2 ome 1@y is convergent but the series o » ... |an| is divergent, then the series
a2 oo an 15 said to be conditional convergent(a- conditional convergent).

Theorem 5. If the sertes oy .., |ay| is convergent, then the sertes o > - | an s
also convergent.

Proof Since the series , E:D=1 |ay| 13 convergent, 1t provides the Cauchy criterion.

Thus, when any = > 0 is given, there is one mg € N such that

m—+p m—+p
= Z |a""3|a = o Z |a'ﬂ|r:x '"%:E
n=m-+1 o n=m-+1

for all m > mp and p € M. Then, according to non-Newtonian triangle inequality
and hypothesis,

m+p m+p m+p
a Z an| = a z |an|a = |a z |a""3|a < &
n=m-+1 a n=m+1 n=m-+1 a
for all m > mg and p € N. This completes the proof. O

Theorem 6. (Cauchy condensation test). Let {a,} be an a-monotone decreasing
sequence with positive terms. Then, the series o Y - an is convergent iff the series

W
oC L .
adne12 X agk is convergent.

Proof. Suppose that the series , Zzo:] an 15 convergent. Using that the sequence
{a,} is a-monotone decreasing, we have

-(k—1), -

2 Xap = a(2.a7! (ag)) = age + ags + ... +as
S Qok—1_44 + Qok—1_9 + + Qo
2k
= & § Qm
m=2%¥—141
and thus

k ”n

n (k=1)_ . 5 n 2 2
QEQ xazkgag - E amzagam.

k=1 k=1 m=2—1_11 m=2
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n

- - o - -
Since the series o » .., an 15 convergent, the sequence {a h am} 15 conver-

gent and so bounded. Then, the sequence {4,} with the general term A, =

(k=1), - : :
o pq2 X age 13 also bounded. At the same time, the sequence {A.}

15 a-monotonically increasing, since the sequence {a,} has the positive terms.
Hence the sequence {A,} 15 convergent and the partial sums sequence {S,} with
Kk ko .
n o - . . o o
_Sn = a2 p_12 Xag: s convergent. This means that the series o >, ;2 X ay
15 convergent.

Conversely, suppose that the series 5 oo, Qka X @y 1s convergent. By the
inequality
2.‘:
o Z oy = (gk—1_q —|— Qok—1_ 9 —I— —I— Ggk—1_4 ok—1_q —|— Qgk
m=2%-141

E agr—1 +a2k—1 + .. —Fagn——l

(k—=1), -
= 2 X agk—1,
we have the mequality
" &
2 n 2 n (k—1),
o E Om = « E o E Om | = «o E 2 K@y
m=2 k=1 m=2k—111 k=1

. S(k—1) . .
By the hypothesziz, the sequence {a S 2 P ﬂ-zk} 1= convergent and thus

bounded. Hence, the sequence {Bn} with B, = a Z?}z:ﬂ am 18 also bounded. At
the same time, since the sequence {a,} has the positive terms, the sequence {B,}
. - 0o .
15 convergent and consequently the series o Y " | ap 1s convergent. Ul
Example 4. (non-Newtonian geometri series). We investigate the convergence
condition of the series o ¥ peq @ X rE=Va with v £ 0:

Let {S,} be the partial sums sequence of the series , Zzo:] a x r'*=1a_ Clearly,
this series is convergent for a = 0. We take @ # 0. We have S, = n x a, if
r = 1. Suppose now that the sequence {S,} is bounded. Then, there is one
M = 0 with |Snl,, < M for all n € N. In this case, |c=_1 {Sn)‘ = |i“1',.0:_1 (a” <
a~! (M) and hence the real number sequence {|c};_1 {Sn)‘} 1z bounded. This creates
a contradiction, since a ] (a) # 0 for a # 0. According to this, the sequence {5, }

for r = 1 is unbounded and thus divergent. We have
T
Sn = &Za xrtVa —giaxrdtaxried daxr®la
k=1
= o |:Cl:_1 [:ﬂ.) + CI;_] [:ﬂ-} -Cl:_1 [:T) + O:_1 (a) -Cl:_-1 (T)E 4+ o+ C.'I:_] [:Ct-} .Cl:_j (Tjn_]]

— -1 n P
1—a™"(r) —aic] e

= ala'(a). =
N { () 1—a 1(r) 1_»r

for all n € N and using this
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) ) . 1—rhe a - a - .
“Iim S, = ¢ Iim (ax—.a): —a————a x % limr™e
B g 1—r l1—r 1—r waee
If |r|, < 1, then ¥ % 0 as n — 00 and thus the series o4 Y poqa X r#~Da
is convergent, and also o Y poqa X r¥"Va = 2 q_ If |r|_ > 1, then the series

1—r

(k=1). is divergent, since the sequence {r"=} is divergent.

aXe1@ X7

Corollary 1. (p-test) The series o> .. ,,;oa is convergent for p > 1 and s
dwergent forp < 1.

Proof. Since Ma—>—|—oo;£0f0rp<[}and 3ma:_l;é[]i"or;la_(] the series

Zfﬂ ﬁ},n a 18 divergent for p < 1. Let p > 0 be now accepted. Then, we have the
zeometric series

> Mo - 1 = -(I—P]n
o Z 2 X (QT)F'“& =a Z 2 .
n=1 n=1

This series 1s divergent for 0 < p < 1 and the series Z:‘;l ﬁ%a 13 divergent, accord-

I T - R
ing to Cauchy condensation test. The series o » .. ;2 X Wa 18 convergent

for p > 1 and and the series o » .. pna 13 convergent, according to Cauchy

condensation test. O

Theorem 7. (Cauchy’s root test). Let a series oy .., a, be given and be L =

*lim sup |an|a [P} Then the series ooy Qp 1
() absolutely convergent, if L < 1
(22) divergent, if L > 1
(z22) not said to be convergent or divergent, if L = 1.

Proof. (i) There is at least ¢ > 0 such that L +& < 1, if L < 1. By the definition
* lim sup, there 1s one ny € N such that

“sup |an|g/n)° =Ll <&
n=k
and hence

L—ec<%sup |a,1|(al/n)° <L+e
n>k
for all k£ > ng. In particular, we have

1
|an|£1 ")

il = (L+u) )

o< Lte

and thus
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. na X

for all n = ng. Since the geometric series , Zf:nnﬂ (L—i—t') with0 < L4z < 1

13 convergent, the series , Zf=nn+1 |an|,, 15 convergent by the comparison test.
(i1) Let L > 1. By the definition a-upper limit, there exists a subsequence,

converging to L, of the sequence {|an|£:"jn“'“}_ This means that |a,|, > 1 for

infinite selection of n. Then © Iim a,, = 0 cannot hold. Thus, the series 4 Zii [

. i —+ D0
13 divergent.
(m) L = 1 for two series QZT_1 1;0; and QZ:D_I —1-a. But this two series
- - n
diverges and converges, respectively. Ol

Theorem 8. (Cauchy’s rate test). Let a series o Y .. an be given. Let a, # 0
forallneNand L = © lim |[22tlq Then

n—oo =

(23

(1) the series , Zf;, a, is absolutely convergent, if L < 1
(i1) the series o > .., an 1s divergent, if L > 1

(111) This test does not give, L = 1.

Proof. (i) If L < 1, then we can choose one £ > 0 such that 0 < L+ < 1. By the
hypothesis, there 1s one ng € N such that

a . )
ol =7 < &
an = "

and thus

a 4 = X -
ilnl el
an 11

for all n > ng. If we say S =<+ L, then we can write
lanti], < lan], X S

lant2], < lant1], X S < lan|, x §2=

for all n = ng. Thus, we have

lanloly = lanl, < lane+1lq x ST 70" Va.

. 1 . - - - o0 -
If we use S << 1, then the non-Newtonian geometric series o >, — ., |@ng+1], X
S(n—no—1), is convergent. Then, by the comparison test, the series S i @n is
convergent.

(1) f L = 1, then we can choose one = = 0 such that L—s > 1. By the hypothesis,
there 1s one ng € M such that

[ 1 - -
mlal S L e
Gn o o
and thus
(¥4 1 - . .
"ol S L1
iy o

for all n > ng. If we say S = L — =, then we can write then we can write
|an—|—l|ﬂ > Ian|q x5

|aﬂ'+2|n > Iaﬂ+1 ch x S > |a”|a x §2=
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for all n > ng. Thus, we have

lan|. = |angs1]. x ST Ve

If we use S = 1, then the non-Newtonian geometric series aZfznn—H |@pg-1], X

Gln—no—1). ig divergent. Then. by the comparison test. the series az,le Qn 18
divergent.
(111) The proof 1s as in Cauchy’s root test. O

Theorem 9. (Leibnitz’s Test). Ifa1 = as = ... > ap = ... 2 0 and = lim a,, = 0,
T— 20

.oyl
then the non-Newtonian a-alterne series o > .. (l] — 1) 15 convergent.

oy (n—1),
Proof. Let the partial sums sequence of the series _ Zf:l (U — 1) be (S,.).

Then, we have

Sy = a4 (n; ag) b Fas,_ 1+ (f:- — agﬂ)
= (m — az) + ...+ (azn—1 — azn)

E (ﬂ-] — ﬂ-;‘_}) + + (G'Zn—l — a‘Zn) + (G'E?L—I — a’?-n)

== S?n-!—?
and thus Ss j Sy 3 E Sa,. 3 ... Since ap — Gnot 3 0 forall n € M by the
hypothesis,
Son = a7 - (flz — Iﬂ‘»ar) — (ﬂ-ﬂ, - G&) - = (ﬂzu—z — a’Zn—l) - Qan E )

and thus, the sequence (53.) 13 a-bounded above and also a-convergent. Let us

accept that anli_.mNSzﬂ = 5. Using the equalities S5,_1 = Sa,, +as, and “nIer;Cazﬂ =

0. we have

* hm Sone1 == Hm Sou-1+ *hmas, =8§.

n—oc n—oc n—oc
Consequently, we have ©“ Iim 5,, = S from the equalities ® lim S, = S and
7n—>00 71— 00
® lim S5,,_1 = S. This completes the proof. O

n—2o0

Theorem 10. (Abel’s partial a-sums formula). Let {¢,} and (v, ) be two non-
Newtonian real number sequences. Let be also T, = oY 17 for alln € N and

To = 0. Then. the mequality

n n—1
“E sﬁ‘kxﬂr'k:'sf’nXTn—‘aE (“Pk-+—1“'\r9k)><Tk
k=1 k=1

holds for all n € N.
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Proof. We have
o Z*’F’k XTe = @1XT+P2X Yot +0n XV

= 1 xT1+ @, % (Tz ¥T1) + ..+, X (Tn ;Tn—i)
n—1

= QZ(LP;G—?H]) X Tk + ¢ X In
k=1

?'I.._l

= ii':"raXTn_ QZ(";"&—H_'@&)XT&
k=1

and this completes the proof. O

Theorem 11. (Abel’s test). Let {a,} and (b,) be two non-Newtonian real number
sequences. If the conditions (i) the series o Y., bn is convergent and (i) the
SEGUETNCE {an} 15 cqe-monotone and c-bounded, holds, then the series 220:1 a, % b,
15 convergent.

Proof. Since the sequence {a,} 1s a-bounded, there is one K = 0 such that la,|,,

K for all n € M. By Cauchy’s criterion, when any number & > 0is given, there 13
at least np € M such that
ntp

)

k=n+1

<’-l

a4

z bn+k

3 x I
for all n > ng and p € M. We also have

ntp

E e x ch — o= E A+ ke x bu—i—k

b=n+1
for all n, p € M. If we take ¢, = a,.; and 7, = b, In Abel’s partial sums formula
and say T, = o D _p_; bnek, then we have

n+p P p—1

o E Qg X bk — @ E ot fe bn—l—k - a’?L+]ﬂ x Tp - E (an—l—k—i—l - a'ﬂ-l—.k) x Tk

k=n+1 =1
If {a,.} s an a-monotone increasing, then

p—1

p—1
=Y E ‘a'n-i—.k-i—'l - E1'1'1.+.i<:| == =% E [a'ﬂ.-l—k+1 - a‘n-l—k)
o
k=1

k=1
= Qp+? —Qp+] T Gp+3 — OGp+2 + ... T Otp — Optp—1

— an—l—p —0n4+1 =

lan—l—_',u - a’?'l.""l

=1

Similarily, If {an} 12 an a-monotone Increasing, then

p—1 »—1
o E |a'n—|—k—|—1 - a'n—kk‘ — = E (a'n—|—k - a’n—kk—'—]) = &1 _a"n.—|—p — ‘a"nﬂ—p — 41
o =
k=1 k=1
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Thus, If {a,} is an a-monotone sequence, then

p—1
o E ‘an+k+1 - a'ﬂ—l-k‘ - |a'n-|—:p — Oyt ‘
(= [=3
k=1
Hence
n—+p p—1
o E Qp > bk: E |a‘ﬂ—|—'p|3 = |T:p|o= + o E |a'n—|—.i:—|—l — O = |T.i:|
k=—n—+1 . =1 =
5 »—1
= mﬂ > (|ﬂbw,+3u-|ct T 321 |aﬂ+k+1 — an—i—klﬁ)
— — &k X A t-p |aﬂ.—|—p — Q1 | )
3 = W = o
E : - - - E - S
= —ox {2 X |@pap|, + |an+1|ﬁ) = — X (3 = Ii) ==
3 = W 3 = W
and thus the series . > ., _; ax % by, is convergent by Cauchy criterion. N

Theorem 12. (Dirichlet’s test). Let {a,} and (b,) be two non-Newtonian real
number sequences. If the conditions (i) The partial sums sequence of the series

oD e b, s bounded and (ii) the sequence {a,} is a-monotone and = limocan = 0.
s

holds. then the sertes Z:°=1 a, xb,, is convergent.
Proof. Let the a—partial sum of the series Z:ii b, bet, 1. e t, =_ Z:’ZI by By
the alternative (i), there is one M > 0 such that |t.| < M for all n € M. By the

-

alternative (ii) again, given any = = 0, there is one ng € M such that la.|, < 2
>4
for all n > ng. Then, taken ¢, = Gpep, Tp = bpep and T, = > 7_; b,y for all
p = M in Abel’s a-sums formula, we write
n+p P p—1
o E @y X bk = o« E Otk < bﬂ-+k = Qptp X T:.'J T @ E (ﬂ'ﬂ—l-k-l—l - a‘n-!—k) X Tk
fe=n-+1 k=1 k=1

Since the sequence {a, } is monotone, we have

n-+p p—1
o O an%bu| Zlanapla % [ TplaF o D |Gnthtt = Gnar| % 1Tula
le=nr1 41 . =1 o
=1
= lau-.b-pla >" tn-*-p p— tn -+ o E Ian-*-k-‘-] = an-‘-k' X |tn+k e tnl
o~ =1 o o

P |

2 |a‘n"~pln > (Itnwpln i Itnln) + o 5_4 Qo1 — an—vkl x ('tu-o-lo -+ [tnlo)
- o
fo=1

< |@napla X (2 = }\4) + ...Pil |an~>l:—b-'| = an—b—k,ﬁ < (.2 x fw)
Je=1

)

p=1
= ('2 x 4‘/1) x ('a“*Plo + a E |an+k4-] — Qpusk
=1

= (2 < J\/I) b2 (]a“.,_,,ln 4 |a,,.,.P — a,,.,.,'ﬂ)

< (2% M) x (lantpla + lantsla +lantals)
g

= (D v 3 > ~ -
“ (2’\.\4) h (6:—:M+6x4\{+67'5M)

for alln > ng and p € ™. Then, by the Cauchy criterion, the series _ Z:'=1 A, X by, I8
convergent.

-
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Theorem 13. Let the series QZTZI a. be convergent. Let us agree that al =

k¢

|an |.-_,.,_i_“

—a anda;:""“'nT_%afor alln € M.

(1) If &P peq Gn is conditionally convergent, then both o » .-, al and o 3 .- a,
are divergent. If _ Z:‘; a, 15 divergent. then both _ ZZ; al and , Zzozj a_ are
divergent.

(1) If o> neq @n is absolutely convergent, then both .5 ,—,af and .5 o an
are convergent, furthermore the following equation holds:

(e =] (e =] (e =]
— + -
BTN SR S

k=1

Proof. al = a, and a_ = 0ifa, = 0, a’ =0 and a. = 0—a, ifa, < 0. Also
an, = a —a;, and |a.|, = af +a foralln € N

(1) Let the series Z:il a,, be conditionally convergent. So. the series Z:J:I Ly,
is convergent and the series o Y ,. |ax|, is divergent. Let us assume that one of
the series , S ., af and .Y ,—, @, is convergent. Since a, = a} — a, for all
n < M, both of the series Ezozl al and Zzo:l a are convergent. Similarly,

since a, = a,. — a,, for all n € M. if both of the series . > ,-,a. and o 3 .., a.
are convergent, then _ chzj a,, 18 also convergent. This creates a contradiction and
completes the proof.

(11) Let the series Z:GZI |a,. |, be c.onditionally convergent. Then the series

oD peq @, is convergent and both of the series

. Za: =a Z (—_a x (|an | —i—an)) and aZa; =. Z (—_a pee (|an .. ;an))
k=1 k=1 2 k=1 k=1 2

are convergent. Furthermore, since a,, = al — a_ for all n € M. the following
equality:
o0 o0 [= ]
ﬂzaﬂ: ctza;:_ aza;_
k=1 k=1 =1
[
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