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Abstract: In this paper more general deterministic sex – structured HIV/AIDS model is proposed. The effects of 

Homosexuality (MSM) and Heterosexuality on the dynamics of the HIV/AIDS are studied. The epidemic 

threshold is known as a reproduction number.  In this study it is classified as basic and partial reproduction 

numbers. The basic reproduction number    𝑅0  is constructed considering both the heterosexuality and 

homosexuality. The partial reproduction number is constructed by considering only one of the heterosexuality 

and homosexuality. The basic reproduction number is an algebraic composition of the partial reproduction 

numbers. It is found that both heterosexuality and homosexuality have their own influences on the dynamics of 

the epidemic. The partial reproduction number with larger values influences more the overall dynamics of the 

epidemic. If at least one of the partial reproduction numbers is greater than unity then the disease will exist in 

the population. The disease free and endemic equilibriums are determined and their stabilities are investigated. 

The disease free equilibrium point is locally and globally asymptotically stable when   𝑅0  <  1. The positive 

endemic equilibrium point is locally asymptotically stable when  𝑅0 >  1. The endemic equilibrium can be made 

globally stable for a selected set of values. Numerical simulation of the model is carried out to assess the impact 

of homosexuality and hetrosexuality on the dynamics of HIV/AIDS disease. The result showed that as the rate of 

infection and the probability of disease transmission of homosexuality and heterosexuality increases then the 

male infective class and the female infective class also increase. 

Keywords: HIV/AIDS; Homosexual (MSM); Heterosexual; Disease free equilibrium; local stability; 

reproduction number; partial reproduction number; sex structured model 

 

I. Introduction 
Acquired Immunodeficiency Syndrome or AIDS is a disease caused by the Human Immunodeficiency 

Virus or HIV. It is a sexually transmitted disease and initially started spreading worldwide during early 1980s. 

As of today, there has not been any cure for the disease. As a result, prevention and public awareness are the 

only ways for controlling HIV infection. HIV/AIDS is one of the most destructive diseases humankind has ever 

faced. The deadly disease leads to profound social, economic and public health consequences. It has become a 

full – blown pandemic and been affecting all parts of the world since more than three decades. 

The number of HIV affected people in the world in 2010 was estimated to be 34 million; including 2.7 

million new infections occurred during the same year, i.e., 7400 cases per day.  The number of AIDS deaths 

occurred during that year was about 1.8 million [1], [14]. 

The spread of much infectious disease occurs in a diverse population so that it is desirable to consider 

heterogeneity. We can distinguish human population into different kinds of groups, viz., male and female, 

young and old , high sexual activity and low sexual activity, heterosexual and  homosexual, and other 

subdivisions. These groupings can be used in the formulation of epidemiological modeling in order to improve 

its predictive and explanatory power and its applicability. If any of the epidemiological characteristics is gender 

dependent then groups of male and female is necessary.  

In general, the epidemiological characteristics of sexually transmitted disease are different from male to 

female. The probability of transmission of Gonorrhea from male to female is more than from female to male [2], 

[13]. Females are at risk of HIV infection more than males per contact [3], [11]. Initially, men were more 

exposed to the infection than women as a result of homosexual intercourse. But, the difference in the numbers of 

infected men and women has gradually narrowed as heterosexual transmission has become more common 

during early 1990s [4], [9]. 

The study of HIV/AIDS transmission and dynamics has been of great interest to both applied 

mathematicians and biologists due to its universal threat to humanity. Mathematical models play an important 

role in the study of the transmission dynamics of HIV/AIDS, and in some sense, sex structured models give 

better compatibility with reality. Many models available in the literature represent dynamics of disease by 
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system of nonlinear differential equations without considering the sex structure. However, inclusion of sex 

structure in such models makes them more realistic 

 Here we develop a general model and study the role of homosexuality and heterosexuality on the 

dynamics of the disease by considering sex structured model.  Heterosexual contact is the primary mode of HIV 

transmission and it accounts for the largest number of infections [5], [15]. Lot of research has been done in this 

area. The common practice of the researchers is to divide humans in to heterosexuals and homosexuals groups.  

But, in this model the whole population is considered and grouped in to males and females. The aim of this 

investigation is to verify the influence of intra and inter sexual intercourse of these groups on the dynamics of 

the disease. The dynamics of these models are best studied in terms of their equilibria and stability.  

In this model, individuals are grouped based on the gender. The population is split in to two groups, 

viz., males and females. 

Here we developed a general model by combining the two modes of transmission i.e., Homosexual and 

Heterosexual. Further, we found the disease free and endemic equilibrium points and examined them for 

stability. We also compared the two modes of transmission and determined which of them is more responsible 

for high level of transmission of the disease. Also we identified the influence of partial reproduction numbers on 

the basic reproduction number. The results are presented lucidly and discussed clearly. 

 

II. Homosexual  or MSM Transmission Model 
Here we consider male sex with male, MSM, and see its affect on the dynamics of the disease by 

considering its partial reproduction number. The flow chart of the disease transmission model due to 

homosexual is given as 

Let  sf   ,  If   and  Af  represent the number of susceptible, infective and AIDS cases of female population 

respectively at time t. Similarly,   sm  , Im  and  Am  represent the number of susceptible, infective and AIDS 

cases of male population respectively at time t 

 

 
Figure -1: Flow chart of the MSM Homosexual model 

 

The model for transmission between MSM Homosexuals can be described by the following system of 

differential equations 

𝑑𝑠𝑚 𝑑𝑡  = 𝑎𝑁𝑚 −  𝐶1 𝛽1   𝐼𝑚  𝑆𝑚 𝑁𝑚   − 𝜇 𝑠𝑚  (1) 

 𝑑𝐼𝑚 𝑑𝑡 = 𝐶1 𝛽1   𝐼𝑚  𝑆𝑚 𝑁𝑚  − 𝛼𝐼𝑚 − 𝜇𝐼𝑚   (2) 

𝑑𝐴𝑚 𝑑𝑡 = 𝛼𝐼𝑚 − 𝜃𝐴𝑚 − 𝜇𝐴𝑚                                  (3) 

Here in above, 𝐶1 represents the rate at which infected males infect susceptible males;  𝛽1 represents the 

probability with which the disease transmits per one contact from infectious male to susceptible male.  The 

infected male will go to  𝐴𝑚  compartment after confirmation of full AIDS disease at a rate of  𝛼. The 𝐴𝑚  

compartment will die with AIDS disease at a rate of  𝜃 𝑎𝑛𝑑 𝜇 represents the natural mortality rate for all 

compartments. The total male population  Nm  is the sum of susceptible Sm  , infected  Im   and AIDS patients Am   
that is,  Nm = Sm + Im +  Am . 

 

2.1 Disease free equilibrium point  

The disease free equilibrium of the model, (1) to (3), is obtained by setting    𝑑𝑠𝑚 𝑑𝑡   =  𝑑𝐼𝑚 𝑑𝑡  =
 𝑑𝐴𝑚 𝑑𝑡  = 0. Further at the disease free equilibrium point there are neither infective people nor AIDS 

patients. That is,   𝐼𝑚 =  𝐴𝑚 =   0. Up on substituting these, (1) implies that 𝑎𝑁𝑚 − 𝜇𝑆 = 0  or equivalently  𝑆 =
 𝑎𝑁𝑚 𝜇 . Thus, the disease free equilibrium of the model is given by  𝐸0 =  𝑎𝑁𝑚 𝜇  , 0, 0 .  

 

2.2 Calculating the partial reproduction number  

The reproduction number is defined as the average number of secondary cases produced by a typical infected 

male during his infectious period [6], [12]. Let   Rmm  denotes the partial reproduction number of Homosexual 

model. It is simple to compute that    Rmm =  C1β1  𝛼 + µ   . 
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III. Heterosexual Transmission Model 
The spread of the virus is through sexual contact between opposite sexes. Usually one of the male or female is 

infectious. The compartmental structure and flow directions of male and female in the model are given as 

follows: 

 
Figure -2 Flow chart of the Heterosexual model 

 

In this model we focus exclusively on heterosexual activity. Therefore, we consider the sexual activity 

between the two opposite genders. That is, contact of susceptible male with infectious female and contact of 

susceptible female with infectious male are considered. The heterosexual transmission model can be described 

by the following system of differential equations 
𝑑𝑠𝑚 𝑑𝑡    = 𝑎𝑁𝑚 − 𝐶2𝛽2  𝐼𝑓  𝑆𝑚 𝑁𝑚   − 𝜇𝑠𝑚      (4) 

  𝑑𝐼𝑚 𝑑𝑡  = 𝐶2𝛽2  𝐼𝑓  𝑆𝑚 𝑁𝑚  − 𝛼𝐼𝑚 − 𝜇𝐼𝑚           (5) 
𝑑𝐴𝑚 𝑑𝑡  = 𝛼𝐼𝑚 − 𝜃1𝐴𝑚 − 𝜇𝐴𝑚                                (6) 

𝑑𝑠𝑓 𝑑𝑡   = 𝑏𝑁𝑓 − 𝐶3𝛽3  𝐼𝑚𝑆𝑓 𝑁𝑓   − 𝜇𝑠𝑓               (7) 

𝑑𝐼𝑓 𝑑𝑡   =  𝐶3𝛽3  𝐼𝑚𝑆𝑓 𝑁𝑓  − 𝛾𝐼𝑓 − 𝜇𝐼𝑓               (8) 

𝑑𝐴𝑓 𝑑𝑡   = 𝛾𝐼𝑓 − 𝜃2𝐴𝑓 − 𝜇𝐴𝑓                                (9) 

 

Here in (4) to (9), 𝐶2 represents the rate at which infected females infect susceptible males;    β2 

represents the probability with which the disease transmits per one contact from infectious female to susceptible 

male; C3 represents the rate at which infected males infect susceptible females;  𝛽3 represents the probability 

with which the disease transmits per one contact from infectious male to susceptible female. The infected male 

will go to  𝐴𝑚  compartment after confirmation of full AIDS disease at a rate of  𝛼. The infected female will go 

to  𝐴𝑚  compartment after confirmation of full AIDS disease at a rate of  𝛾.  
Population of the compartments 𝐴𝑚  and  𝐴𝑓  will die with disease at a rate of 𝜃1  and 𝜃2 respectively.   Natural 

mortality rate in all the compartments is represented by 𝜇. The total male population  Nm  is the sum of 

susceptible Sm  , infected  Im   and AIDS patients Am  .That is,  Nm = Sm + Im +  Am .Similarly, Nf = Sf + If +
 Af . 

 

3.1 Calculation of reproduction number for Heterosexually Transmission Model 

The reproduction number for the whole population is the average number of secondary infection caused 

by a single infection in typical infectee introduced in to a susceptible population. Let  R0
′  denotes the partial 

reproduction number of Heterosexual model. R0
′  can be calculated by using simultaneous equation approach, 

that is the typical infectee is some theoretical average of a male and female individual. If  𝑥  represents the 

probability that the typical infectee is a male then  1 − 𝑥  will represent the probability that the typical infectee is 

a female,  𝑅0  is the maximum value and satisfies the following matrix equation [1] 

 
Rmm Rmf

Rfm Rff
  

𝑥
1 − 𝑥

 = R0
′   

𝑥
1 − 𝑥

        (10)                

In (10),  𝑅𝑚𝑚  is the number of secondary infections in male group members generated by male group members, 

 𝑅𝑚𝑓  is the number of secondary infections in male group members generated by female group members,   𝑅𝑓𝑚  is 

the number of secondary infections in female group members generated by male group members and  𝑅𝑓𝑓  is the 

number of secondary infections in female group members generated by female group members. 
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Since the present model considers only Heterosexual transmission, there is no possibility for direct transmission 

from male to male or from female to female. Hence,   Rmm = Rff = 0. Further,  𝑅𝑚𝑓  and 𝑅𝑓𝑚  may differ 

because of variation in sexual behavior, transmission probability and duration of infection between male and 

females. That is the numbers  Rmf    and Rfm   need not be equal. The matrix equation (10) becomes 

 
0 Rmf

Rfm 0
  

𝑥
1 − 𝑥

 = R0
′   

𝑥
1 − 𝑥

    (11) 

The matrix equation (11) can be solved for  R0 by eliminating the unknown term   𝑥 from the two implicit 

equations 𝑅𝑚𝑓  1 − 𝑥 = R0
′ 𝑥    and    𝑅𝑓𝑚  𝑥 = R0

′   1 − 𝑥  . After simple algebraic computation and 

rearrangement the equation for  R0  of two – gender hetero-sexual mixing model of HIV/AIDS is obtained as 

follows: 

R0
′ =  𝑅𝑓𝑚  𝑅𝑚𝑓                               (12) 

The basic reproduction number is equal to the geometric mean of secondary infections of each group. Recall 

that here we have only two groups i.e., males and females.  

  

IV. Homosexuals and Heterosexual Transmission Model or General Model 
Here we include heterosexual and homosexual activities and develop general mathematical model. To 

achieve this purpose the sexual activities of (i) susceptible male with infected female (ii) susceptible female with 

infected male (iii) susceptible male with infected male are considered. 

However, the sexual activity between females (FSF), lesbian sex, is not included since its contribution to HIV 

transmission is neglected. The females may be of any type viz., susceptible, infected or AIDS patients. 

Transmission of the disease from a female to female through lesbian sex is very low [3], [8].  

 

4.1 Flow of people and Description of parameters 

Let  Sf ,  If  and Af   respectively denote the sizes of female – susceptible, female – Infective, female – 

AIDS cases. Since the total female population  Nf   is divided into susceptible, infective, AIDS   compartments, 

we must have    sf +   If +   Af = Nf. Similarly, the total male population  Nm   is divided into male – susceptible  

𝑆𝑚   , male – Infective  Im  , male – AIDS   Am   compartments and thus    sm +   Im +  Am = Nm .  

In the present study the susceptible compartment is split into male susceptible Sm  and female susceptible  𝑆𝑓   

compartments. People will join these two compartments with rates of aNm  and bNf respectively. The people of 

male – susceptible  𝑆𝑚   class are likely to become infected through sexual contact with the people of   Im   and  If   
classes. Thus, people from  𝑆𝑚   will flow to  Im  with a rate of  𝜆1 . Similarly, people of female – susceptible class 

 𝑆𝑓   are likely to become infected through sexual contact with only the people of  𝐼𝑚  class. Thus, people from 

 Sf   will flow to   𝐼𝑓   with a rate of   𝜆2 . After confirmation of full AIDS disease people from   𝐼𝑚    and 

  𝐼𝑓    compartments will flow to   𝐴𝑚   and   𝐴𝑓   compartments respectively with the rates of   𝛼   and   𝛾. People of 

each compartment are assumed to die with natural reasons and leave at a rate of  𝜇. People of  𝐴𝑚   and 

𝐴𝑓    compartments are assumed to die with AIDS disease at the rates of  θ1  and θ2 respectively.  

The parameter  β1 is the probability of disease transmission from infectious male to susceptible male per one 

contact. The parameter  β2  is the probability of disease transmission from infectious female to susceptible male 

per one contact.  

The parameter  β3 is the probability of disease transmission from infectious male to susceptible female 

per one contact. Infectious male infects susceptible male with a rate of  𝐶1. Infectious female infects susceptible 

male with a rate of  𝐶2. Infectious male infects susceptible female with a rate of  𝐶3.Male-to-female HIV 

transmission during vaginal intercourse is significantly more likely than female-to-male transmission [16], [17].  

The general model with the inclusion of transmission among homosexuals and heterosexuals is described in the 

form of a flow chart as follows: 

 

 
Figure-3 Flow chart of the Heterosexual and Homosexual model 
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The model looks more complicated since it considers both transmission of the disease among heterosexuals and 

homosexuals. The assumption is made based on the fact that the infective of one sex group spreads the infection 

to the susceptible of the same or other sex group.  

 

4.2 Model Assumptions 

The present general model is developed based on the following assumptions: 

1. There is no direct transmission of the disease from female to female. Since the risk of transmission through 

female-to-female sex is very low. 

2. The HIV can only transmitted by the sexual intercourse with infective peoples. 

3. The sexually Active  human population is divided in to six compartments. 

4. The full blown AIDS class is sexually inactive. 

5. Recruitment rates of susceptible males and females are proportional to their respective population sizes 

i.e.,  aNm   and  bNf. 

6. The population sizes of both genders are equal  Nm = Nf . 

7. Age structure is ignored. 

8. The mortality rates are the same for both sexes. 

9. Population sizes of both the infected genders are the same   Im = If . 

10. All the AIDS patients will die either naturally or due to the disease.  

11. Transmission through hetero-sex and homo-sex (MSM) is alone considered. Other means of transmission 

are considered negligible and thus excluded. 

12. The natural mortality rates are assumed to be the same for all the compartments.  

 

4.3 Governing equations of the General Model  

The system of ordinary differential equations that describe the dynamics of AIDS population due to homo-sex 

and hetero-sex is constructed and is given as follows:  

 

𝑑𝑠𝑚 𝑑𝑡 = 𝑎𝑁𝑚 − 𝜆1𝑆𝑚 − 𝜇𝑠𝑚                   (13)    

𝑑𝑠𝑓 𝑑𝑡 = 𝑏𝑁𝑓 − 𝜆2𝑆𝑓  − 𝜇𝑠𝑓                       (14)    

𝑑𝐼𝑚 𝑑𝑡 = 𝜆1𝑆𝑚 − 𝛼𝐼𝑚 − 𝜇𝐼𝑚                     (15)           

 𝑑𝐼𝑓 𝑑𝑡 = 𝜆2𝑆𝑓 − 𝛾𝐼𝑓 − 𝜇𝐼𝑓                          (16)          

𝑑𝐴𝑚 𝑑𝑡 = 𝛼𝐼𝑚 − 𝜃1𝐴𝑚 − 𝜇𝐴𝑚                   (17)              

𝑑𝐴𝑓 𝑑𝑡 = 𝛾𝐼𝑓 − 𝜃2𝐴𝑓 − 𝜇𝐴𝑓                        (18)              

     

In the system (13) to (18) we used notations: 𝜆1 =   C1β1Im Nm  +  C2β2If Nf      and   𝜆2 =  C3β3Im Nm  . 

 

4.4  Positivity of solutions 
The general model equations (13) to (18) are to be epidemiologically meaningful and well posed; we need to 

prove that all the state variables are non-negative.  

Theorem 1: If Sm 0 > 0 , Sf 0 > 0, Im 0 ≥  0 ,   If 0 ≥  0  ,  𝐴𝑚 (0)  ≥  0, 𝐴𝑓(0)  ≥  0 then the solutions 

{ Sm t  , Sf t , Im t  ,  If t  , Am t , Af t } of the system of equations (13) to (18) are  non negative for 𝑎𝑙𝑙  𝑡 >
 0 

Proof: To show the positivity of the solution of the dynamical system comprising the equations (13) to (18), we 

have to consider and verify each differential equation and show that their solution is positive. 

First let us consider the differential equation (13) of the dynamical system 

dsm dt = aNm − λ1Sm − μsm                                                                     (19) 

Also, (19) can be written as  dSm dt  +  q(t)  + µ 𝑆𝑚  = 𝑎Nm (t) where   𝑞 𝑡 =
   C1β1Im + C2β2If 𝑁𝑚  𝑡   . This is a first order linear ordinary differential equation and can be solved to 

obtain a particular solution as: 

Sm 𝑡 = Sm 0 e−Q t +Q 0 −μt +  𝑎𝑁𝑚 (𝑡)e Q s −Q t  +μ(s−t)𝑑𝑠
𝑡

0
                (20) 

Since, Sm 0 > 0,  and the exponential function always positive.It is clear from (20) that Sm 𝑡  is positive. 

Secondly let us consider the differential equation (14) and that can be rewritten as 

  dSf dt  +   C3β3Im 𝑁𝑓 𝑡   + µ 𝑆𝑓  = 𝑏Nf(t)                                          (21) 

Which is equivalent to 

  dSf dt  +  𝑞 𝑡  + µ 𝑆𝑓  = 𝑏Nf(t)                                                 (22) 

Here in (22),    𝑞 𝑡 =    C3β3Im 𝑁𝑓 𝑡   . This is a first order linear ordinary differential equation and can be 

solved to obtain a particular solution as: 

         Sf 𝑡 = Sf 0 e−Q t +Q 0 −μt +  𝑏𝑁𝑓(𝑡)e Q s −Q t  +μ(s−t)𝑑𝑠
𝑡

0
                (23) 
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It is clear from the solution that Sf 𝑡  is positive since  Sf 0 > 0,  and the exponential function is always 

positive. Thirdly, let us consider the differential equation (15) and that can be expressed as 𝑑𝐼𝑚 𝑑𝑡 +
 𝛼 + 𝜇 𝐼𝑚 = 𝜆1𝑆𝑚 . This is a first order linear ordinary differential equation and can be solved to obtain a 

particular solution as  Im 𝑡 = Im 0 e−(α+μ)t +  𝜆1Sm (𝑡)e(α+μ)t𝑑𝑠
𝑡

0
. From this solution we see that 𝐼𝑚  𝑡  is 

also nonnegative. 

Fourthly, let us consider the differential equation (16) and that can be expressed as   dIf dt +  γ + μ If = λ2Sf . 

This is a first order linear ordinary differential equation and can be solved to obtain a particular solution 

asIf 𝑡 = If 0 e−(𝛾+μ)t +  𝜆2Sf(𝑡)e(𝛾+μ)t𝑑𝑠
𝑡

0
. From this solution we see that 𝐼𝑓 𝑡  is also nonnegative. Fifthly, 

let us consider the differential equation (17) and that can be expressed as 𝑑𝐴𝑚 𝑑𝑡 +  𝜃1 + 𝜇 𝐴𝑚 = 𝛼𝐼𝑚 . This is 

a first order linear ordinary differential equation and can be solved to obtain a particular solution asAm 𝑡 =

Am 0 e−(𝜃1+μ)t +  𝛼Im (𝑡)e(𝜃1+μ)t𝑑𝑠
𝑡

0
. From this solution we see that 𝐴𝑚  𝑡  is also nonnegative. Finally, let us 

consider the differential equation (18) and that can be expressed as 𝑑𝐴𝑓 𝑑𝑡 +  𝜃2 + 𝜇 𝐴𝑓 = 𝛼𝐼𝑓 . This is a first 

order linear ordinary differential equation and can be solved to obtain a particular solution asAf 𝑡 =

Af 0 e−(𝜃2+μ)t +  𝛾If(𝑡)e(𝜃2+μ)t𝑑𝑠
𝑡

0
. From this solution we see that 𝐴𝑓 𝑡  is also nonnegative. 

 

Boundedness of the solution region 

The total population size  N t  given by N t =  Sm t + Sf t + Im (t)  + If(t)  +  Am (t) +𝐴𝑓 𝑡  implies using 

the equations (13) to (18) that  dN dt  =  dSm dt  +  dSf dt  +  dIm dt  +  dIf dt  +  dAm dt  +
 dAf dt  = 𝑎𝑁𝑚 + 𝑏𝑁𝑓 −  𝜇𝑁 − 𝜃1Am − 𝜃2Af           (24) 

 From (24) we obtain  dN dt ≤  𝑎𝑁𝑚 + 𝑏𝑁𝑓 −  𝜇𝑁 . The latter differential inequality has a solution of the 

form   𝑁(𝑡) ≤   𝑎𝑁𝑚 + 𝑏𝑁𝑓 𝜇  − 𝑁0𝑒
−𝜇𝑡   or equivalently it implies 

that  0 <  N t ≤  𝑎𝑁𝑚 + 𝑏𝑁𝑓 𝜇    𝑎𝑠  𝑡 → ∞. Therefore the solutions of system are bounded. 

 

4.5 Disease free equilibrium point 

The disease free equilibrium of the model (1) is obtained by setting  𝑑𝑠𝑚 𝑑𝑡     =  dsf dt  =  dIm dt  =
 dIf dt  =  dAm dt  =   dAf dt  = 0 and solving. Note that at the disease free equilibrium point there are 

neither infective people nor aids patients i.e.,    Im =  If =  Am  = Af =  0 . Thus the disease free equilibrium 

DFE of the general model is given by  E0 = (aNm μ  , bNf μ  ,0 ,0 ,0 ,0 ). We now investigate the local stability 

of the disease free equilibrium point   𝐸0 

 

4.6 Computation of Reproduction number 

Reproduction number for the general model (13) to (18) can be computed using two different approaches viz., 

(i) simultaneous equation approach and (ii) next generation matrix method. 

4.6.1 Computation of Reproduction number using next generation matrix method 

The reproduction number   can also be computed using the next generation matrix method. It is defined as   𝑅0 =
𝜌 𝐹𝑉−1 . Here  𝜌  𝐹𝑉−1   represents the spectral radius of the matrix   𝐹𝑉−1. Also the matrix is given by   

𝐹𝑉−1 =        𝜕 𝜕𝑥𝑗  𝐹𝑖(𝑥0)   𝜕 𝜕𝑥𝑗  𝑉𝑖(𝑥0) 
−1

. Here   𝐹𝑖   is the rate of appearance of new infections in the 

compartment   𝑖 ;  𝑉𝑖   is the resultant number of individuals leaving from the compartment  𝑖  i.e., number of 

transfers minus recruits; and  𝐸0 is the disease free equilibrium point. Consequently, 

 
𝐹𝐼1

𝐹𝐼2
   =  

𝑓1

𝑓2
 =     

  c1β1Im + c2β2If Nm  𝑠𝑚
  c3β3Im Nf  sf

                                               (25) 

By linearization approach, the associated matrix  𝐹  at the disease free equilibrium point  𝐸0   is given by 

𝐹 =   

∂f1
∂Im

∂f1
∂If

∂f2
∂Im

∂f2
∂If

 𝑎𝑡   𝐸0 =  
c1β1 c2β2

c3β3 0
   and    

𝑣𝐼1

𝑣𝐼2
   =  

𝑣1

𝑣2
 =  

μIm +αIm

μIf +γIf  
  

Again by linearization, we get 

𝑉 =  

𝜕𝑣1
𝜕𝐼𝑚

𝜕𝑣1
𝜕𝑓

𝜕𝑣2
𝜕𝐼𝑚

𝜕𝑣2
𝜕𝐼𝑓

 

𝐸0

=  
𝜇 + 𝛼 0

0 𝜇 + 𝛾
     and  V−1 =   

1

𝜇 +𝛼
0

0 1

𝜇 +𝛾

 . Thus,  𝐹𝑉−1 =  

𝑐1𝛽1

𝜇+𝛼

𝑐2𝛽2

𝜇+𝛾

𝑐3𝛽3

𝜇+𝛼
0

  

 

The Eigen values for FV−1 are found by solving the characteristic equation   𝐹𝑉−1 − 𝜆𝐼 = 0 which is 

equivalent to   𝜆2 − 𝑎𝜆 − 𝑏𝑐 = 0. Here  𝑎 =  c1β1  μ + α    ,  𝑏 =  𝑐3𝛽3  𝜇 + 𝛼     and  𝑐 =  𝑐2𝛽2  𝜇 + 𝛾   . 

Thus, the two eigenvalues are 𝜆1 =   𝑎 +  𝑎2 + 4𝑏𝑐 2       and  𝜆2 =   𝑎 −  𝑎2 + 4𝑏𝑐 2   . But,    𝑅0 =

ρ FV−1 = Max    λ1 , λ2     and hence we obtain   
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𝑅0 =  1 2    𝑐1𝛽1
𝜇 +𝛼

  +    𝑐1𝛽1
𝜇 +𝛼

 
2

+  4   
𝑐3𝛽3

𝜇+𝛼
    

𝑐2𝛽2

𝜇+𝛾
        (26) 

 

4.6.2 Computation of Reproduction number using Simultaneous equation approach 

Following simultaneous equation approach we here calculate the reproduction number  𝑅0. Maximum value 

of  𝑅0 satisfies the following matrix equation: 

    
Rmm Rmf

Rfm Rff
   

𝑥
1 − 𝑥

 = R0   
𝑥

1 − 𝑥
                                                           (27) 

Here 𝑅𝑚𝑓 , 𝑅𝑓𝑚   and 𝑅𝑚𝑚  are referred to as partial reproductive numbers. Since the possibility for direct 

transmission of the disease from female to female is very low, hence 𝑅𝑓𝑓 = 0. Thus the matrix equation (24) 

takes the form as 

 
𝑅𝑚𝑚 𝑅𝑚𝑓

𝑅𝑓𝑚 o
   

𝑥
1 − 𝑥

 = R0   
x

1 − x
                                                              (28) 

The two implicit algebraic equations of (20) can be solved for  R0   by eliminating the unknown variable 𝑥 as 

  𝑅𝑚𝑚  𝑥 + 𝑅𝑚𝑓   1 − 𝑥 = R0   𝑥 

                               𝑅𝑓𝑚  𝑥 =    R0   (1 −  𝑥)                   (29) 

After simple algebraic computation and rearrangement of (21)  Ro  is obtained as 

R0 =   1 2   Rmm +  Rmm
2 + 4Rfm Rmf                                                    (30) 

         On comparing equations (23) and (27), it can be observed that Rmm =  𝑐1𝛽1  𝜇 + 𝛼   , Rmf =
  𝑐2𝛽2  𝜇 + 𝛾     and    Rfm =   𝑐3𝛽3  𝜇 + 𝛼    . If 𝑅𝑀𝑀 = 0 then the reproduction number of (27) will reduce to 

that of the production number of hetero sexual mixing model (12). The expression (27) suggests that 

heterosexuality and homosexuality contributes for growth of the epidemic. Further, as long as at least one of the 

partial reproductive numbers    Rmf  ,   Rfm   and    Rmm     is greater than unity, the disease remains in the 

population.  

Let the numbers of secondary infected male    Rm    and female   Rf     are defined by  Rm = Rmf + Rmm      and 

    Rf = Rfm  respectively. The assumption Rmf  ≥ Rfm  leads to the fact that the number of secondary infected 

males Rm  is more than that of secondary infected females Rf  . It can be concluded that more males are infected 

with HIV than females.  Hence the contribution of males influences the dynamics of HIV more than females. 

 

4.7   Stability Analysis of the general Model 

In this section, the equilibrium points for the general model are identified and their stability analysis is made. 

The system exhibits two types of equilibrium point viz., disease free equilibrium points and endemic 

equilibrium points.  

 

4.7.1 Disease Free Equilibrium Point 

Theorem – 2: The disease free equilibrium point   𝐸0  of the system of ordinary differential equations (13)-(18) 

is locally asymptotically stable if   𝑅0 < 1 and unstable if   𝑅0 > 1. 

Proof: The AIDS patients are sexually inactive and hence they do not propagate the disease either to susceptible 

or to infected people. That is, sm  and Im  do not depend on Am  similarly sf    and   If    do not depend on 

  Af  [7][10]. Therefore, without loss of generality this system of equation can be written as subsystem of four 

equations       13 −  16   . 
Using the scaling parameters 𝑠𝑚

′ = 𝑠𝑚 𝑁𝑚    𝑠𝑓
′ = 𝑠𝑓 𝑁𝑓      𝐼𝑚

′ = 𝐼𝑚 𝑁𝑚   𝐼𝑓
′ = 𝐼𝑓 𝑁𝑓  the subsystem of 

differential equations     13 −  16    will take the form 

𝑑𝑠𝑚
′ 𝑑𝑡 = 𝑎 − (𝐶1𝛽1𝐼𝑚

′ + 𝐶2𝛽2𝐼𝑓
′ )𝑠𝑚

′ − 𝜇𝑠𝑚
′      (31) 

𝑑𝑠𝑓
′ 𝑑𝑡  = 𝑏 − 𝐶3𝛽3𝐼𝑚

′ 𝑠𝑓
′  − 𝜇𝑠𝑓

′       (32) 

𝑑𝐼𝑚
′ 𝑑𝑡 = (𝐶1𝛽1𝐼𝑚

′ + 𝐶2𝛽2𝐼𝑓
′ )𝑠𝑚

′ − (𝛼 + 𝜇) 𝐼𝑚
′                                             (33) 

𝑑𝐼𝑓
′ 𝑑𝑡 = 𝐶3𝛽3𝐼𝑚

′ 𝑠𝑓
′ − (𝛾 + 𝜇)𝐼𝑓

′       (34) 

    The Jacobian matrix associated with the subsystem of equations   28 −  31     at the disease free 

equilibrium point    𝐸0 is 

𝐽  𝐸0 =

 
 
 
 
−μ 0 −C1β1 −C2β2

0 −μ −C3β3 0

0 0 C1β1 −  α + µ C2β2

0 0 C3β3 − γ + µ  
 
 
 
                                                  (35) 

 

It is enough to show that, if   𝑅0 < 1    holds then two inequalities   Tr J  E0 <  0  and  det    𝐽 𝐸0    >  0 do 

also hold. However, setting of   𝑅0 < 1 and after few manipulations it results two relations 

as     𝑐1𝛽1  𝜇 + 𝛼     < 1 and    c3β3  μ + α    c2β2  μ + γ    < 1.  Of the couple, the former relation 
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implies Tr  J  E0  <  0. Also setting of 𝑅0 < 1 leads to the inequality condition that  α + µ  𝛾 + µ −
 𝛾 + µ 𝐶1𝛽1 − C2β2C3β3 > 0 and is equivalent to put it as  Det  J  E0   >  0. From these two observations 

namely Tr  J  E0  <  0   and   Det  J  E0   >  0 it can be concluded that the disease free equilibrium point is 

stable as long as   𝑅0 < 1 , otherwise unstable. 

Further, it is a stable node since the discriminate  𝐷 =  Tr J  E0  
2 − 4𝐷𝑒𝑡  J  E0   is a positive quantity. 

 

4.7.2 Endemic Equilibrium Point 

Just similar to the DFE, here also consider the subsystem of four equations      13 −  16   . At the endemic 

equilibrium point    𝐸∗ =  Sm
∗  , Sf

∗ , Im
∗ , If

∗   the disease persists or exists. The local stability of endemic 

equilibrium point is stated and proved in the form of  

Local Stability of Endemic Equilibrium Point 

Theorem – 3 The positive endemic equilibrium point 𝐸∗ of the system of equations   13 −  16  is locally 

asymptotically stable, if  𝑅0 > 1.   

Proof:  Using the scaled subsystem of differential equations      28 −  31    ,Which is equivalent to:  
𝑑𝑠𝑚

′

𝑑𝑡
= 𝑎 − (k1Im

′ + k2If
′)sm

′ − μsm
′  

𝑑𝑠𝑓
′

𝑑𝑡
= 𝑏 − k3Im

′ sf
′  − μsf

′  

𝑑𝐼𝑚
′

𝑑𝑡
= (k1Im

′ + k2If
′)sm

′ − (α + μ) Im
′  

𝑑𝐼𝑓
′

𝑑𝑡
= k3Im

′ sf
′ − (γ + μ)If

′  

Here we let    𝑘1 = 𝐶1𝛽1, 𝑘2 = 𝐶2𝛽2   and   𝑘3 = 𝐶3𝛽3. We set right hand side of each equation in the subsystem 

to zero and express each dependent variable in terms of parameters at the equilibrium point. Thus, we obtain 

 Sm
∗ =   α + μ  k1 + k2   ,                            Im

∗ =      a  α + µ   −   μ(α + μ)  k1 + k2      

  Sf
∗ = 

b α+µ (k1+k2)

µ α+µ  k1+k2 +ak3 k1+k2 −k3μ α+µ  α+µ 
             If

∗ =
1

γ+µ
 

bµ α+µ  k1+k2 +ba k3 k1+k2 +bµk3 α+µ 

µ α+µ  k1+k2 +ak3 k1+k2 −k3μ α+µ 
  

Since   𝑅0 > 1 the parameters   Im
∗ , Sf

∗ and If
∗ are all non negative terms. 

The Jacobian matrix of the subsystem at the endemic equilibrium point takes the form as 

𝐽 𝐸∗ =

 
 
 
 
−(k1Im

∗ + k2If
∗ + 𝜇) 0 −k1Sm

∗ −k2Sm
∗

0 −(k3Im
∗ + 𝜇) −k3Sf

∗ 0

k1Im
∗ + k2If

∗ 0  k1Sm
∗ −  α + µ  k2Sm

∗

0 k3Im
∗ k3Sf

∗ − γ + µ  
 
 
 

 

 

We have to show that, if  𝑅0 > 1 then Tr  J(E∗)  <  0 and   Det  J(E∗ )  >  0.  It can be verified that  k1Sm
∗ −

 𝛼 + µ  is equal to  k1  α + µ  k1 + k2   −  𝛼 + µ   and is a negative quantity. Therefore,    𝑇𝑟  𝐽(𝐸∗)   has 

also a negative value. Next let us show Det  J(E∗ )  >  0 as follows: Consider, let p = k1Im
∗ + k2If

∗   and   𝑞 =
 𝑘3𝐼𝑚

∗ . For the Jacobian matrix 

𝐽 𝐸∗ =

 
 
 
 
−(𝑝 + 𝜇) 0 −k1Sm

∗ −k2Sm
∗

0 −(𝑞 + 𝜇) −k3Sf
∗ 0

𝑝 0  k1Sm
∗ −  𝛼 + µ  k2Sm

∗

0 𝑞 k3Sf
∗ − 𝛾 + µ  

 
 
 

 

The determinant can be computed as 

Det 𝐽 𝐸∗  =     𝑝 + 𝜇    𝑞 + 𝜇     𝛼 + µ − 𝑘1𝑆𝑚    𝛾 + µ  − k2k3Sm𝑆𝑓 +  𝑝 + 𝜇 k3Sfk2k3Sm Im +

𝑃𝑘1𝑆𝑚   𝑞 + 𝜇 ][ 𝛾 + 𝜇  +pk2Sm    𝑞 + 𝜇  𝑘3𝑆𝑓 − 𝑘3𝑆𝑓𝑞 . 

Up on considering   𝑞 + 𝜇  k3Sf − k3Sfq  as a positive quantity or equivalently saying that   k3Im + 𝜇  −

k3Im > 0 it can be observed that   𝐷𝑒𝑡 𝐽(𝐸∗ ) > 0 , if    𝛾 + µ   𝛼 + µ − 𝑘1𝑆𝑚  −  𝑘2𝑘3𝑆𝑚𝑆𝑓  > 0 . Hence, 

it can be concluded that  𝐷𝑒𝑡 𝐽(𝐸∗ ) > 0, if   𝑅0 > 1. 

Theorem – 4: The disease free equilibrium point   𝐸0  of the system of ordinary differential equations (1) is 

globally stable if  𝑅0 < 1 . 
Proof: The proof is based on using a comparison theorem. The equation of the infected components can be 

written in terms of  

  

𝑑𝐼1

𝑑𝑡
𝑑𝐼2

𝑑𝑡

 =  𝐹 − 𝑉  
𝐼1
𝐼2
 −    

 𝐶1𝛽1𝐼𝑚 + 𝐶2𝛽2𝐼𝑓 −  
𝐶1𝛽1𝐼𝑚

𝑁𝑚
+

𝐶2𝛽2𝐼𝑓

𝑁𝑓
 𝑠𝑀

𝐶3𝛽3𝐼𝑚 −  
𝐶3𝛽3𝐼𝑚

𝑁𝑚
 𝑠𝑓

      (36) 

It   follows that 
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𝑑𝐼1

𝑑𝑡
𝑑𝐼2

𝑑𝑡

  ≤   𝐹 − 𝑉  
𝐼1
𝐼2
                      (37) 

All the eigenvalues of the matrix      𝐹 − 𝑉   have negative real parts. It follows that the system of linear 

differential inequalities (27) is stable whenever    𝑅0  <  1. Also we will have  I1 → 0  and  𝐼2 → 0 as  t → ∞. 

Therefore by comparison theorem, it follows that (𝐼1 , 𝐼2)  → (0,0) and the remaining equations of model (1) 

give us solutions as   𝐸0 =  aNm μ  , bNf μ , 0, 0   .  Thus,   Sm , Sf ,   Im ,   If  →   𝐸0 and also as    t → ∞  the 

condition  𝑅0 < 1  implies that the disease free equilibrium point  𝐸0   is globally and asymptotically stable [7]. 

 

4.8  Numerical Simulation  

To illustrate the dynamical behavior of the model system (1) is solved using ODE 45. The estimated parametric 

values are chosen to be: a = 0 .02, b = 0.0001, α = 0.03, λ1 = 0.03,   λ2 = 0.03,   μ = 0.003, γ = 0.03,
θ1 = 0.9,   θ2 = 0.9,   β

1
= 0.9,   β

2
= 0.9,   β

3
= 0.99,   C1 = 0.9,   C2 = 0.9   and    C3 = 0.99   together with 

four different initial values given below: 

 

(i) Sm 0 = 9000, Im 0 = 11000, Am 0 = 1500, Sf 0 = 9100,  If 0 = 11000, Af(0) = 800. 
 

(ii) Sm 0 = 8009, Im 0 = 7800, Am 0 = 800, Sf 0 = 8009,  If 0 = 7800, Af(0) = 870. 

 
(iii) Sm 0 = 8000, Im 0 = 10000, Am 0 = 1000, Sf 0 = 9000,  If 0 = 1000, Af(0) = 600. 

 

(iv) Sm 0 = 9200, Im 0 = 10000, Am 0 = 500, Sf 0 = 9200,  If 0 = 10000, Af(0) = 300. 

 

 
Figure 4: Variation of infected male population against total population 

 

Figures 4  displays the plot of infected male  populations against the total population. For that purpose 

the set of intial values given in four cases (i) to (iv) are used. This figures demonstrate that, for the given set of  

initial values, the solution curves tend to the Endemic equilibrium point   𝐸∗. Hence, the numerical simmulation 

indicates that sysem (1) is globally asymptoticaly stable about  𝐸∗ . 
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Figure 5: Variation of infected female population against total population 

Figures 5  displays the plot of infected female  populations against the total population. For that purpose the set 

of intial values given in four cases (i) to (iv) are used. This figure demonstrate that, for the given set of  initial 

values, the solution curves tend to the Endemic equilibrium point   𝐸∗. Hence, the numerical simmulation 

indicates that sysem (1) is globally asymptoticaly stable about  𝐸∗ 

 
Figure 6: Variation of population of all compartments over time for the given parametric values 

 

Figure-6 Shows the distribution of proportion of population with time with different classes. It is seen that for 

those estimated values the proportion of both male and female susceptible population decrease continuously 

resulting in the increase of the proportion of both infective male and infective female initially but in this case the 

infective male class increases faster than the infective female class this is due to the contribution of both 

homosexuality and heterosexuality but then both classes decreases as all infectives subsequently develop to full 

blown AIDS and die due to natural death and AIDS.  
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Figure 7: The impact of Homosexuality on Male infective class. 

 

Figure-7 Shows the impact of homosexuality on male infective population. It is seen that for different values of 

the coefficient parameters of homosexuality   𝐶1 , 𝛽1. AS the rate of infection and the probability of disease 

transmission of homosexuality increases the male infective population also increases.  

 
Figure 8: The impact of Heterosexuality over Male infective class 

Figure-8 Shows the impact of Heterosexuality on male infective population. It is seen that for different values 

of the parameters    𝐶2  ,   𝛽2. As the rate of infection and the probability of disease transmission of 

heterosexuality increases the male infective population also increases.  

 

 
Figure 9: The impact of Heterosexuality on female infective class. 
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Figure-9 Shows the impact of heterosexuality on female infective population. It is seen that for different values 

of the parameters   (𝐶3 , 𝛽3). As the rate of infection and the probability of disease transmission of 

heterosexuality increases the female infective population also increases.  

 

V.    Conclusions 
In this paper, we proposed a general model by including hetero-sex and homo-sex. Also, verified its 

effect on the dynamics of HIV/AIDS. A system of non – linear differential equations was formulated to 

represent the model.  

The stability analysis shows that (i) the disease free equilibrium point  𝐸0 is globally asymptotically 

stable if   𝑅0  <  1 and (ii) the positive endemic equilibrium point  𝐸∗is locally asymptotically stable if   𝑅0 >  1. 

It is pointed out that both hetero-sex and homo-sex influence the growth of HIV/AIDS epidemic. Further, it is 

shown that the partial reproductive numbers  Rmm  , Rmf    and   Rfm   influence the overall dynamics of the 

epidemic. It is observed that as long as at least one of the partial reproduction numbers is greater than unity the 

disease will exist in the population. 

Results from Numerical Simulation shows that, as the rate of infection and the probability of disease 

transmission of homosexuality and heterosexuality increases then both the male infective class and the female 

infective class also increase. 

 It is also shown that the male infective class at the beginning increases faster. This fact is evident and expected, 

due to the contribution of both heterosexuality and homosexuality  

Furthermore the endemic equilibrium is stable for the given set of numerical values and the population sizes of 

all the compartments decrease to the equilibrium point over time. 
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