On D α -Closed Sets in Supra Topological Spaces

D.Sreeja¹, C. Bhuvaneshwaran²

¹Assistant Professor, Department of Mathematics, Cms College of Science and commerce, coimbatore ²Department of Mathematics, Cms College of Science and commerce, Coimbatore

Abstract: In this paper, a new class of sets called D α -closed sets in supra topological spaces are introduced and studied. Also we introduce supra D α -continuous function, totally supra D α -continuous and supra contra D α -continuous function in supra topology spaces and some of its properties are studied.

I. Introduction and Preliminaries

In 1983 , A.S.Mashhour [5]introduced the supra topological spaces. In 1970 N.Levine [3] introduced and studied a class of generalized open sets in topological space called α -open sets. In 1985 I.L.Reilly [9] introduced α -continuity in topological spaces.

In 2008, R.Devi[2] introduced and studied a class of sets and a class of maps called supra α -open sets and supra α -continuous functions, respectively. Now we introduced the concepts of supra $D\alpha$ -closed sets and totally $D\alpha$ -continuous functions, and contra supra $D\alpha$ -continuous functions and investigated some of its properties.

Definition 1.1. Let (X, τ) be a topological space [7], and $A \subseteq X$. Then (i) A is α -open if $A \subseteq Int(Cl(Int(A)))$ and α -closed if $Cl(Int(Cl(A))) \subseteq A$ (ii) A is generalized closed (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(iii) A is generalized open (briefly g-open) if X-A is g-closed

Definition 1.2. A subset A of a space X is called $D\alpha$ -closed [11], if $Cl^*(Int(Cl^*(A))) \subseteq A$.

Definition 1.3. A subset A of a space X is called an $D\alpha$ -open [11], if $A \subseteq Int^*(Cl(Int^*(A)))$

Definition 1.4. A subfamily τ^* of X is said to a supra topology on X [5], if,

- (i) $X, \emptyset \in \tau^*$
- (ii) if $A_i \in \tau^*$ for all $i \in j$ then $\bigcup A_i \in \tau^*$

 (X, τ^*) is called a supra topological space. The elements of τ^* are called supra open sets in (X, τ^*) and complement of a supra open set is called a supra closed set.

Definition 1.5. Let (X, τ) be topological and τ^* be a supra topology on X [5]. We call τ^* a supra topology associated with τ if $\tau \subset \tau^*$

II. On supra D □-closed sets

Definition 2.1. Let (X, τ) be a supra topological space. A set A is called supra $D\alpha$ -closed set if $Cl_*^{\mu}(Int^{\mu}(Cl_*^{\mu}(A))) \subseteq A$. The complement of a supra $D\alpha$ -closed set is a supra $D\alpha$ -open set.

The intersection of all supra g-closed sets containing A is called the supra g-closure of A and denoted by $Cl_*^{\mu}(A)$, and the supra g-interior of A is the union of all supra g-open sets contained in A and is denoted by $Int_*^{\mu}(A)$

Lemma 2.1. If there exists an supra g-closed set F such that $Cl_*^{\mu}(Int(F)) \subseteq A \subseteq F$, then A is supra $D\alpha$ -closed

Proof. Since F is supra g-closed, $Cl_*^{\mu}(F) = F$. Therefore, $Cl_*^{\mu}(Int(Cl_*^{\mu}(A))) \subseteq Cl_*^{\mu}(Int(Cl_*^{\mu}(F))) = Cl_*^{\mu}(Int(F)) \subseteq A$. Hence A is supra $D\alpha$ -closed. \square

Theorem 2.1. Let (X, τ) be a supra topological space. Then

- (i) Every supra α -closed subset of (X, τ) is supra $D\alpha$ -closed.
- (ii) Every supra g-closed subset of (X, τ) is supra $D\alpha$ -closed.
- Proof. (i) Since supra closed set is supra g-closed, $Cl_*^{\mu}(A) \subseteq Cl^{\mu}(A)$. Now suppose A is supra α -closed in X, then $Cl^{\mu}(Int(Cl^{\mu}(A))) \subseteq A$. Therefore, $Cl_*^{\mu}(Int(Cl_*^{\mu}(A))) \subseteq Cl^{\mu}(Int(Cl^{\mu}(A))) \subseteq A$. Hence A is supra $D\alpha$ -closed in X.
- (ii) Suppose A is supra g-closed. Then $Cl_*^{\mu}(A) = A$. Therefore $Int(Cl_*^{\mu}(A)) \subseteq Cl_*^{\mu}(A)$. Then $Cl_*^{\mu}(Int(Cl_*^{\mu}(A))) \subseteq Cl_*^{\mu}(Cl_*^{\mu}(A)) \subseteq Cl_*^{\mu}(A) = A$. Hence A is supra $D\alpha$ -closed.

Theorem 2.2. Finite unoin of supra $D\alpha$ -open sets is always a supra $D\alpha$ -open set and Finite intersection of supra $D\alpha$ -closed sets is always a supra $D\alpha$ -closed set. Finite intersection of supra $D\alpha$ -open sets may fail to be a supra $D\alpha$ -open set and Finite union of supra $D\alpha$ -closed sets may fail to be a supra $D\alpha$ -closed set.

Example 2.1. Let (X, τ) associated be a supra topological space, where $X = \{a, b, c\}$ and

 $\tau = \{\emptyset, \{a\}, \{a,b\}, \{b,c\}, X\}, \tau^* \text{ be associated supra topology with } \tau \text{ and } \tau^* = \{\emptyset, \{b,c\}, \{c\}, \{a\}, X\},$

 $\alpha C(X) = \{\emptyset, \{a\}, \{c\}, \{b, c\}, X\},\$

 $\alpha O(X) = \{\emptyset, \{b,c\}, \{a,b\}, \{a\}, X\}, GC(X) = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c\}, X\},$

 $GO(X) = \{\emptyset, \{a\}, \{b\}, \{b,c\}, \{a,b\}, X\},\$

 $D\alpha O(X) = \{\{b,c\},\{a,c\},\{a,b\},\{a\}\}, D\alpha C(X) = \{\{a\},\{b\},\{c\},\{b,c\}\}\}$ Therefore

 $\{b\} \in D\alpha C(X) \ but \ \{b\} \notin \alpha C(X) \ and \ \{b\} \notin GC(X).$

```
Remark 1. The union of two supra D\alpha-closed sets need not to be supra D\alpha-closed as shown in the example, Let (X, \tau) associated be a supra topological space, where X = \{a, b, c\} and
```

 $\tau = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}, \tau^* \text{ be associated supra topology with } \tau \text{ and } \tau^* = \{\emptyset, \{b, c\}, \{c\}, \{a\}, X\},$

 $\alpha C(X) = \{\emptyset, \{a\}, \{c\}, \{b, c\}, X\},\$

 $\alpha O(X) = \{\emptyset, \{b, c\}, \{a, b\}, \{a\}, X\}, GC(X) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}, GO(X) = \{\emptyset, \{a\}, \{b\}, \{b, c\}, \{a, b\}, X\},$

 $D\alpha O(X) = \{\{b,c\},\{a,c\},\{a,b\},\{a\}\}, D\alpha C(X) = \{\{a\},\{b\},\{c\},\{b,c\}\}\}$ Therefore

- $\{b\} \in D\alpha C(X) \ but \ \{b\} \notin \alpha C(X) \ and \ \{b\} \notin GC(X). \ where \ both \ \{a\} \ and$
- {b} are supra $D\alpha$ -closed stes but {a} \cup {b} = {a,b} is not $D\alpha$ -closed.

Lemma 2.2. Let $A \subseteq X$, then

- (i) $X Cl_*^{\mu}(X A) = Int_*^{\mu}(A)$.
- (ii) $X Int_*^{\mu}(X A) = Cl_*^{\mu}$.

Proof. Obvious.

Theorem 2.3. A subset A of a space X is supra $D\alpha$ -open if and only if if $A \subseteq Int^{\mu}_{*}(Cl(Int^{\mu}_{*}(A)))$.

Proof. Let A be supra $D\alpha$ -open set. Then X-A is supra $D\alpha$ -closed and $Cl_*^{\mu}(Int(Cl_*^{\mu}(X-A))) \subseteq X-A$. By lemma 1.2 $A \subseteq Int_*^{\mu}(Cl(Int_*^{\mu}(A)))$. Conversely, suppose $A \subseteq Int_*^{\mu}(Cl(Int_*^{\mu}(A)))$. Then $X-Int_*^{\mu}(Cl(Int_*^{\mu}(A))) \subseteq X-A$. Hence $Int_*^{\mu}(Cl(Int(X-A))) \subseteq X-A$. This shows that X-A is supra $D\alpha$ -closed. Thus A is supra $D\alpha$ -open.

Theorem 2.4. Let (X, τ) be a supra topological space. Then

- (i) Every supra α -open subset of (X, τ) is supra $D\alpha$ -open.
- (ii) Every supra α -open subset of (X, τ) is supra $D\alpha$ -open.
- *Proof.* (i) Since open set is supra g-open, $Int_*^{\mu}(A) \subseteq Int(A)$. Now suppose A is supra α -open in X. Then $A \subseteq Int/mu_*(Cl(Int_*^{\mu}(A)))$. Therefore $A \subseteq Int_*^{\mu}(Cl(Int_*^{\mu}(A))) \subseteq A \subseteq Int(Cl(Int(A)))$. Hence A is supra $D\alpha$ -open in X.
- (ii) Suppose A is supra g-open. Then $Int_*^{\mu}(A) = A$. Therefore $Cl(Int(A)) \subseteq Int_*^{\mu}(A)$. Then $Int_*^{\mu}(Cl(Int_*^{\mu}(A))) \subseteq Int_*^{\mu}(Int_*^{\mu}(A)) \subseteq Int_*^{\mu}(A) = A$. Hence A is supra $D\alpha$ -open.

Theorem 2.5. Arbitrary union of supra $D\alpha$ -open set is supra $D\alpha$ -open.

Proof. Let $\{F_i : i \in \Lambda\}$ be a collection of supra $D\alpha$ -open sets in X.

Then $F_i \subseteq Int_*^{\mu}(Cl(Int_*^{\mu}(F_i)))$ for each i.

Since $\cup F_i \subseteq F_i$ for each i, $Int_*^{\mu}(\cup F_i) \subseteq Int_*^{\mu}(F_i)$ for each i.

Hence $Int_*^{\mu}(\cup F_i) \subseteq \cup Int_*^{\mu}(F_i), i \in \Lambda$.

Therefore $Int_*^{\mu}(Cl(Int_*^{\mu}\cup(F_i)))\subseteq Int_*^{\mu}(Cl(\cup Int_*^{\mu}(F_i)))\subseteq Int_*^{\mu}(\cup Cl(Int_*^{\mu}(F_i)))\subseteq \cup Int_*^{\mu}(Cl(Int_*^{\mu}(F_i)))\subseteq \cup F_i$. Hence $\cup F_i$ is supra $D\alpha$ -open.

Remark 2. The intersection of two supra $D\alpha$ -open sets need not be supra $D\alpha$ -open as seen example, Let (X,τ) associated be a supra topological space, where $X = \{a,b,c\}$ and

 $\tau = \{\emptyset, \{a\}, \{a,b\}, \{b,c\}, X\}, \tau^* \text{ be associated supra topology with } \tau \text{ and } \tau^* = \{\emptyset, \{b,c\}, \{c\}, \{a\}, X\},$

 $\alpha C(X) = \{\emptyset, \{a\}, \{c\}, \{b, c\}, X\},\$

 $\alpha O(X) = \{\emptyset, \{b,c\}, \{a,b\}, \{a\}, X\}, GC(X) = \{\emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c\}, X\},$

 $GO(X) = \{\emptyset, \{a\}, \{b\}, \{b, c\}, \{a, b\}, X\},\$

 $D\alpha O(X) = \{\{b,c\},\{a,c\},\{a,b\},\{a\}\}, D\alpha C(X) = \{\{a\},\{b\},\{c\},\{b,c\}\}\}$ Therefore

 $\{b\} \in D\alpha C(X) \text{ but } \{b\} \notin \alpha C(X) \text{ and } \{b\} \notin GC(X). \text{ where both } \{b,c\} \text{ and } \{a,c\} \text{ are supra } D\alpha\text{-open sets but } \{b,c\} \cap \{a,c\} = \{c\} \text{ is not supra } D\alpha\text{-open.}$

III. Totally supra D □-continuous functions

In this section, the notion of totally $D\alpha$ -continuous function is introduced. If A is both supra $D\alpha$ -open and supra $D\alpha$ -closed, then it is said to be supra $D\alpha$ -clopen.

Definition 3.1. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ we define a function

 $f:(X,\tau)\to (Y,\sigma)$ is called a supra $D\alpha$ -continuous function if the inverse image of each open set Y is supra $D\alpha$ -open in X.

Definition 3.2. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ we define a function

 $f:(X,\tau)\to (Y,\sigma)$ is called a totally supra $D\alpha$ -continuous function if the inverse image of each open set Y is supra $D\alpha$ -clopen in X.

Theorem 3.1. Every totally supra $D\alpha$ -continuous function is supra $D\alpha$ -continuous

Proof. Suppose that $f:(X,\tau)\to (Y,\sigma)$ is totally supra $D\alpha$ -continuous function and A is any open set in Y, since f is totally supra $d\alpha$ -continuous function, $f^{-1}(A)$ is supra $D\alpha$ -open in X. Therefore f is supra $D\alpha$ -continuous.

The converse of the above theorem need not be a true as seen from the following example.

Example 3.1. $X = \{a, b, c\}$ associated with the topology $\tau = \{\emptyset, \{a, b\}, X\}, Y = \{a, b, c\}$ associated with the topology $\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\}, \tau^*$ be associated supra topology with τ and $\tau^* = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}X\}$.

Let $f:(X,\tau) \to (Y,\sigma)$ be a function defined follows f(a) = a, f(b) = b, f(c) = c, the inverse image of the open set $\{a,b\}$ is $\{a,b\}$ which is supra $D\alpha$ -open but it is not supra $D\alpha$ -clopen in X, then f is supra $D\alpha$ -continuous but it is not totally supra $D\alpha$ -continuous

- **Theorem 3.2.** Let (X, τ) and (Y, σ) be two toplogical spaces and τ^* be associated supra topology with τ , the following statements are equivalent. (i) f is totally supra $D\alpha$ -continuous.
- (ii) For each $x \in X$ and each open set V in Y with $f(x) \in V$, there is a supra $D\alpha$ -clopen set U in X such that $x \in V$ and $f(U) \subset V$
- Proof. (i) \to (ii) Suppose that $f:(X,\tau)\to (Y,\sigma)$ is totally supra $D\alpha$ continuous function and V be any open set in Y containing f(x) so that $x\in f^{-1}(V)$, since f is totally supra $D\alpha$ -continuous function, $f^{-1}(V)$ is supra $D\alpha$ -clopen in X. Let $U=f^{-1}(V)$ is supra $D\alpha$ -clopen set in X and $x\in U$. Also $f(U)=f(f^{-1}(V))\subset V$ this implies $f(U)\subset V$.
- $(ii) \to (i)$ Let V be open in Y and $x \in f^{-1}(V)$ be any arbitrary point. This implies $f(x) \in V$, therefore by (ii) there is a supra $D\alpha$ -clopen set U in X containing x such that $f(U) \subset V$. This implies $U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is supra $D\alpha$ -clopen of X. Hence it is supra $D\alpha$ -clopen set in X. Therefore f is totally supra $D\alpha$ -continuous function.

Theorem 3.3. If $f:(X,\tau)\to (Y,\sigma)$ is totally supra $D\alpha$ -continuous function and $g:(y,\sigma)\to (Z,\nu)$ continuous function, then gof is totally supra $D\alpha$ -continuous function.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ is totally supra $D\alpha$ -continuous function and $g:(Y,\sigma)\to (Z,\nu)$ continuous. Let V be open in Z, since g is continuous $f^{-1}(g)$ is open in Y. Now since f is totally supra $D\alpha$ -continuous function, then $f^{-1}(g^{-1}(V))=(g\circ f)^{-1}(V)$ is supra $D\alpha$ -clopen in X. Hence $g\circ f:(X,\tau)\to (Z,\nu)$ is totally supra $D\alpha$ -continuous function.

Definition 3.3. A supra topological space X is said to be

- (i) Supra $D\alpha T_1$ if for each pair of distinct points x and y of X, there exists supra $D\alpha$ -open sets U and V, respectively such that $x \in U$ and $y \notin U$ and $y \in V, x \notin V$
- (ii) Supra $D\alpha T_2$ if for each pair of distinct points x and y of X, there exist disjoint supra $D\alpha$ -open sets U and V in X such that $y \in U$ and $x \in V$ id disjoint.

Theorem 3.4. Let (X,τ) and (Y,σ) be two topological spaces and τ^* be associated supra topology with τ . Let $f:(X,\tau)\to (Y,\sigma)$ be a totally supra $D\alpha$ -continuous injection if Y is T_1 then (X,τ) is supra $D\alpha-T_1$.

Proof. Let x and y be any two distinct point in X. Since f is injective we have f(x) and $f(y) \in Y$ such that $f(x) \neq f(y)$. Since Y is T_1 there exist open sets U and V in Y such that $f(x) \in U$, $f(y) \notin U$, $f(y) \in V$, $f(x) \notin V$, therefore $f^{-1}(U)$ and $f^{-1}(V)$ are supra $D\alpha$ -clopen subsets of X because f is totally supra $D\alpha$ -continuous, thus (X, τ) is supra $D\alpha - T_1$

Theorem 3.5. Let (X,τ) and (Y,σ) be two topological spaces and τ^* be associated supra topology with τ . Let $f:(X,\tau)\to (Y,\sigma)$ be a totally supra $D\alpha$ -continuous injection if Y is T_0 then (X,τ^*) is supra $\alpha-T_2$

Proof. Let $x, y \in X$ with $x \neq y$, since f is injection $f(x) \neq f(y)$ since Y is T_0 , there exist an open subset V of Y containing f(x) but not f(y), or

containing f(y) but not f(x). Thus we have, $x \in f^{-1}(V)$ and $y \notin f^{-1}(V)$. Since f is totally supra $D\alpha$ -continuous and V is an open subset of Y, $f^{-1}(V)$ and $X - f^{-1}(V)$ are disjoint supra $D\alpha$ -clopen subsets of X containing x and y. Thus X is supra $D\alpha - T_2$

Theorem 3.6. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ , let $f: (X, \tau) \to (Y, \sigma)$ be a totally supra $D\alpha$ -continuous injection if Y is T_2 then (X, τ) is supra $D\alpha - T_2$

Proof. Let $x, y \in X$ with $x \neq y$. Since f is injection $f(x) \neq f(y)$. By hypothesis there exist U and V open sets in Y such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \emptyset$. This implies $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, since f is totally supra $D\alpha$ -continuous $f^{-1}(U)$ and $f^{-1}(V)$ are supra $D\alpha$ -clopen subsets of X such that $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, $D\alpha$ -clopen sets, therefore X is supra $D\alpha - T_2$.

Definition 3.4. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ we define a function $f: (X, \tau) \to (Y, \sigma)$ is called a strongly supra $D\alpha$ -continuous function if the inverse of every subset of Y is supra $D\alpha$ -clopen subset of X

Theorem 3.7. Every strongly supra $D\alpha$ -continuous function is totally supra $D\alpha$ -continuous

Proof. Suppose that $f:(X,\tau)\to (Y,\sigma)$ is strongly supra $D\alpha$ -continuous function and A is any open set in Y. By definition $f^{-1}(A)$ is supra $D\alpha$ -clopen in X. Therefore f is totally supra $D\alpha$ -continuous.

The converse of the above theorem need not be true as seen from the following example

Example 3.2. $X = \{a, b, c\}$ associated with the topology $\tau = \{\emptyset, \{a\}, X\}, Y = \{a, b, c\}$ associated with the topology $\sigma = \{\emptyset, \{a, b\}, Y\}, \tau^*$ be associated supra topology with τ and $\tau^* = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function, then f is totally supra $D\alpha$ -continuous but not strongly supra $D\alpha$ -continuous

Theorem 3.8. Every totally supra $D\alpha$ -continuous function into a finite T_1 spaces is strongly supra $D\alpha$ -continuous

Proof. Suppose $f:(X,\tau)\to (Y,\sigma)$ is totally supra $D\alpha$ -continuous function (Y,σ) be a finite T_1 space and $B\subset Y$. Since Y is finite T_1 , then Y must be a discrete space, therefore B is an open set in Y, since f is totally supra $D\alpha$ -continuous $f^{-1}(B)$ is supra $D\alpha$ -clopen in X. Therefore f is strongly supra $D\alpha$ -continuous.

IV. Contra supra D □-continuous functions

In this section , we introduce the concept of contra supra $D\alpha$ -continuous function and investigate some of the basic properties for this class of function.

Definition 4.1. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ we define a function $f: (X, \tau) \to (Y, \sigma)$ is called a contra supra continuous function if the inverse image of each open set Y is τ^* supra closed set of X

Definition 4.2. Let (X, τ) and (Y, σ) be two topological spaces and τ^* be associated supra topology with τ we define a function $f: (X, \tau) \to (Y, \sigma)$ is called a contra supra $D\alpha$ -continuous function if the inverse image of each open set Y is supra $D\alpha$ -closed set of X

Theorem 4.1. Every contra continuous function is contra supra $D\alpha$ -continuous.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be contra continuous function and A be closed in Y. Then $f^{-1}(A)$ is closed set in X. But τ^* is associated with τ , that is $\tau\subset\tau^*$. This implies $f^{-1}(A)$ is supra closed in X. Since every supra closed is supra $D\alpha$ -closed, $f^{-1}(A)$ is supra $D\alpha$ -closed in X. Hence f is a contra supra $D\alpha$ -continuous. \square

Theorem 4.2. Every contra supra continuous function is contra supra $D\alpha$ continuous.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be a contra supra continuous function and A is any open set in Y. Since f is contra supra continuous, then $f^{-1}(A)$ is supra closed set in X, since every supra closed is supra $D\alpha$ -closed, $f^{-1}(A)$ is supra $D\alpha$ -closed in X. Hence f is a contra supra $D\alpha$ -continuous

The converse of the above theorems need not be true as seen from the following example.

Example 4.1. Let $X = \{a, b, c\}$ associated with the topology $\tau = \{\emptyset, \{a, b\}, X\}, Y = \{a, b, c\}$ associated with the topology $\sigma = \{\emptyset, \{a\}, \{a, c\}, Y\}, \tau^* \text{ associated supra topology with } \tau \text{ and } \tau^* = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}, \text{ let } f : (X, \tau) \rightarrow (Y, \sigma) \text{ be a function defined follows } f(a) = a, f(b) = b, f(c) = c, \text{ since inverse image of } \{a, c\} \text{ is supra } D\alpha\text{-closed in } X, \text{ then } f \text{ is contra supra } D\alpha\text{-continuous function but the inverse image of } \{a, c\} \text{ is not a supra closed set so } f \text{ is not contra supra continuous}$

Theorem 4.3. Let (X,τ) and (Y,σ) be two topological spaces. Let f be a function from X into Y. Into Y. Let τ^* be associated supra topology with τ , the following statements are equivalent.

- (i) f is contra supra $D\alpha$ -continuous.
- (ii) The inverse image of closed set in Y is supra $D\alpha$ -open set in X.

Proof. (i) \rightarrow (ii) Let A be a closed set in Y, then Y-A is open in Y, since f is contra supra $D\alpha$ -continuous, then $f^{-1}(X-A)=X-f^{-1}(A)$ is supra $D\alpha$ -closed in X. It follows that $f^{-1}(A)$ is supra $D\alpha$ -open set of X. (ii) \rightarrow (i) Let V is open in Y. Then Y-V is closed in Y. By hypothesis $f^{-1}(Y-V)=X-f^{-1}(V)$ is supra $D\alpha$ -open in X, which implies $f^{-1}(V)$ is supra $D\alpha$ -closed. Therefore f is a contra supra $D\alpha$ -continuous \square Theorem 4.4. If $f:(X,\tau)\rightarrow (Y,\sigma)$ is contra supra $D\alpha$ -continuous function and $g:(Y,\sigma)\rightarrow (Z,\nu)$ be continuous, then gof is contra supra $D\alpha$ -continuous function.

Proof. Let V be open in Z, since g is continuous $g^{-1}(V)$ is open in Y. Now since f is contra supra $D\alpha$ -continuous function then $f^{-1}(g^{-1}(V)) = (g\circ f)^{-1}(V)$ is supra $D\alpha$ -closed in X. Hence $g\circ f = (X,\tau) \to (Z,\nu)$ is contra supra $D\alpha$ -continuous function. Then gof is contra supra $D\alpha$ -continuous function.

References

- [1]. Andrijevic D. Some properties of the topology of α sets.Mat Vesnik 1984;36:1-10.
- [2]. Devi, S.Sampathkumar and M.caldas, On supra α open sets and -continuous, General Math, 16(2008),77-84
- [3]. N.Levine, it Generalized closed sets in topological Rend. Circ. Math. Palerro, (2)9(1970),89
- [4]. Maki H. Devi R, Balachandran K. Generalized α closed sets in topological Rend. Crire. Math. Palerro,(2)9(1970),89.
- [5]. A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supra topological spaces, indian j.pure and appl. Math. no. 4.14(1983),502-510.
- [6]. J.M.Mustafa, Totally supra b-continuous and slightly supra b- continuous functions, Stud. Univ. Babes- Bqlyai, Math. 57(2012), No.1,135-144.
- [7]. Njastad O, On some classes of nearly open sets. Pacific J Math 1965; 15:961-70.
- [8]. Nori T., Semi-continuity and weak-continuity. Czech. Math.J.31(106)(1981),314-321.
- [9]. I.L.Reily. On α in topological in spaces. Acta Mathematics, Hungarica, 45,(1985).
- [10]. I.L.Reily On α continuity in topological spaces. Acta Mathematics, Hungarica, 45,(1985).
- [11]. O.R.Sayed, A.M.Khalil Some applications of D α closed sets in topological spaces ,Egyptian journal of basic and applied science 3(2016)26-43,
- [12]. S.Sekar and P.Jayakumar, On supra I-open sets and supra I-continuous functions, Accepted in the international journal of sciences and Engineering, (3),5(2012).