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Abstract: In the first part of the paper I willpresentabriefreview on the Hardy-Weinberg equilibrium 

and it's formulation in projective algebraicgeometry. In the second and last part I 

willdiscussexamples and generalizations on the topic. 
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I. Introduction 
The study of population genetics, evolution and its evolutionary trees are classical subjects in biology. 

A mathematical approach consists in the maximum likelihood estimation, a technique largely used in statistic. 

This approach leads to the problem of maximizing particular functions of certain parameters. A theoretical study 

and an upper bound for the maximum likelihood degree is discussed in [3]. Different techniques in order to 

solve likelihood equations are described in [6]. Applications of these methods have been used when the 

statistical model is an algebraic variety, this is the case of Fermat hypersurfaces treated in [1]. In the other side 

we have applications of these ideas to biological models. In this direction we refer to a work of [4] where 

phylogenetic models in two different topologies have been studied by the authors. The purpose of this paper is a 

“soft” introduction to these ideas with a discussion on the Hardy-Weinberg case. 

 

II. The Hardy-Weinberg law 
The Hardy-Weinberg law states that allele and genotype frequencies in a population remain constant 

during the generation change. This happens under the following assumptions: the size of the population must be 

very large, we have absence of migration and mutations, the mating is random and the natural selection doesn't 

affect the alleles under consideration. Mathematically if p represents the number or pure dominants characters 

AA, q the number of heterozygotes Aa and r the number of pure recessives aa, the following proportion holds 

p:2q:r (see [5]). Another way, if p and q represent the allele frequencies of the character A anda with p+q=1, 

taking the square we find that:  

 

𝑝2 + 2𝑝𝑞 + 𝑞2 = 1,      (2.1) 

 

where 𝑝2, 2𝑝𝑞 and 𝑞2represent the genotype frequencies associated to AA,Aa and aa. The equation 

(2.1) describes the constancy of the genotypic composition of the population and is called the Hardy-Weinberg 

principle or the Hardy-Weinberg equilibrium (HWE). We consider [11] and [12] as scholarly references on this 

subject. Different generalizations of (2.1) are possible. The first concerns the number of alleles at a locus. For 

example in the case of three alleles A1, A2 and A3, with frequencies respectively given by p,q and r, the genotype 

frequencies are given by the following expansion (p+q+r)
2
=p

2
+q

2
+r

2
+2pq+2qr+2pr. In general, for any 

number n of alleles with frequencies pi, we have that: 

 

 𝑝1+. . . +𝑝𝑛 
2 =  𝑝𝑖

2𝑛
𝑖=1 + 𝑝𝑖

𝑛
𝑖≠𝑗 𝑝𝑗 .    (2.2) 

 

In another direction the generalization is given considering the binomial (𝑝 + 𝑞)𝑚 , with m=3,4,5,…. 

This is the case of polyploid.  For example considering tetraploids (m=4) the procedure involves the expansion 

of (𝑝 + 𝑞)4. We observe how in this particular example the frequency of heterozygotes (given by the mixed 

terms in the expansion) is 2pq(2-pq) that is considerably greater then 2pq, the frequency for a diploid organism. 

More information on this topic can be found in [11]. 

 

III. Projective and algebraic geometry 
In this section we shall examine how translate previous considerations in the modern language of 

projective and algebraic geometry. The setting is the same of [8] in its first lecture. We shall show how the 

Hardy-Weinberg law can be formulated in a fixed system of homogeneous coordinates l,m,nin 𝑃2. First we shall 

consider the open triangle ∆2 𝑙, 𝑚, 𝑛 ={𝑅+
3 : l+m+n=1}, where 𝑅+are the positive reals. Second we shall 

observe that setting l=p
2
,m=2pq,n=q

2
 to be genotype frequencies, we have the relation: 
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𝑚2 = 4𝑛𝑙,      (3.1) 

 

that is the equation of a parabola in the triangle of vertex (1,0,0),(0,1,0),(0,0,1). We call the zero locus 

of (3.1) denoted also by V(m
2
-4ln), the Hardy-Weinberg curve (details are in [10]). In the theory of [8] (and [9]) 

is of particular interest a function called “likelihood function” that depends by some positive integer parameters. 

This function is positive on ∆2and zero on the boundary of∆2. We shall denote this function by l and with 

u0,u1,… the corresponding parameters. In the case of the Hardy-Weinberg curve this function has the following 

form: 

 

𝑙𝑢0 ,𝑢1 ,𝑢2
= 𝑙𝑢0  𝑚𝑢1  𝑛𝑢2 = 2𝑢1  𝑝2𝑢0+𝑢1  𝑞𝑢1+2𝑢2 . 

 

We observe that 𝑙𝑢0 ,𝑢1 ,𝑢2
is a function depending only by the variable p (because q=1-p) and the MLE 

problem consists in the estimation of p maximizing the function 𝑙𝑢0 ,𝑢1 ,𝑢2
.Lagrange Multipliers can be used in 

order to solve the problem and in this case the solution is given by the point: 

 

𝑝 =
2𝑢0 + 𝑢1

2𝑢0 + 2𝑢1 + 2𝑢2

. 

 

IV. Examples, generalizations and conclusion 
As exercise we shall apply the same procedure in order to solve the MLE problem for the case of three 

alleles and in the second time for the case of tetraploids. For the first we shall start writing the “likelihood 

function” associated to the HWE given by (p+q+r)
2
, where p,q and r are the usual frequencies. In this case we 

have that: 

 

𝑙𝑢0 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑢4 ,𝑢5
= 2𝑢3+𝑢4+𝑢5  𝑝2𝑢0+𝑢3+𝑢5  𝑞2𝑢1+𝑢3+𝑢4  (1 − 𝑝 − 𝑞)2𝑢2+𝑢4+𝑢5 . 

 

We shall proceed maximizing the function of two variables p,q. This is an ordinary problem of calculus that 

gives as answer the point: 

 

𝑝 =  
2𝑢0+𝑢3+𝑢5

2𝑢1+2𝑢2+2𝑢4+𝑢3+𝑢5
,

𝑢4−𝑢5+2𝑢1−2𝑢0

2𝑢1+2𝑢2+2𝑢4+𝑢3+𝑢5
,

2𝑢2+𝑢5+𝑢4

2𝑢1+2𝑢2+2𝑢4+𝑢3+𝑢5
 . 

 

For the tetraploid case, before to proceed, we shall observe that callingl0=p
4
,l1=q

4
,l2=4pq

3
,l3=4p

3
q,l4=6p

2
q

2
the 

genotype frequencies, the Hardy-Weinberg equilibrium can be represented by the following relation: 

𝑙4
4 =

1

81
𝑙0𝑙1𝑙2𝑙3 . 

 

The associated “likelihood function” is 

𝑙𝑢0 ,𝑢1 ,𝑢2 ,𝑢3 ,𝑢4
= 𝑙0

𝑢0  𝑙1
𝑢1 𝑙2

𝑢2𝑙3
𝑢3 𝑙4

𝑢4 . 

 

We shall make the expedient of consider the logarithm of the previous function instead the original finding as 

maximizing point: 

 

 
𝑢0

 𝑢 
,

𝑢1

 𝑢 
,

𝑢2

 𝑢 
,

𝑢3

 𝑢 
,

𝑢4

|𝑢|
 , 

 

where  𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 .We recommended the use of a scientific software, as Maple or 

MATLAB, especially when the number of parameters is considerably high.  Now I want to spend these last 

words comparing analogies between the HWE and the algebraic geometry. It is clear that a possible extension of 

the Hardy-Weinberg law can take the following form: 

 

 𝑝1+. . . +𝑝𝑛 
𝑚 = 𝑐,     (4.1) 

 

wherec is some constant and pi from i=0,…,n are the allele frequencies such that the sum is fixed. Now 

expanding (4.1) we find the polynomial form: 

 
𝑚!

𝑖0! … 𝑖𝑛 !
𝑖0+⋯+𝑖𝑛 =𝑚

𝑝0
𝑖0 …𝑝𝑛

𝑖𝑛 = 𝑐. 
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From the algebraic geometry point of view this is the image of the Veronese mapνm:P
n
 → 𝑃

 
𝑛+𝑚
𝑚

 −1
 

given by (p0,…,pn)⟼(p0
m
,p0

m-1
p1,…,pn

m
) (see [2]). The classical Hardy-Weinberg law corresponds to the case of 

ν1:P
1
 → 𝑃2 that (p,q ) ⟼(p

2
,pq,q

2
) and c=1. Using the identification between homogeneous polynomials that 

are power of linear forms and the image of the Veronese map, we can think these generalized laws as Veronese 

projective varieties. From the side of algebraic geometry there are a rich collection of results concerning the 

Veronese and Segre varieties, for example it is possible to compute the Hilbert polynomial and other invariants. 

It is not all peace and light because the constraint ∆𝑛= {(p0,…,pn) ∈ 𝑅+
𝑛+1:p0… +pn=1} doesn't permit the 

complete translation of the problem using the previousidentification. 

Anyway the methods of numerical algebraic geometry seem to give good prospects in this direction 

and in [7] the ML degree has been calculated for matrices with rank constraints. In particular the case of rank 

one gives the ML degree equal to one, so 𝑝  is a rational function of a set of parameters u0,u1,…. 
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