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Abstract: This paper discusses asymptotic stability for autonomous systems by means of the direct method of 

Liapunov.Lyapunov stability theory of nonlinear systems is addressed .The paper focuses on the conditions 

needed in order to guarantee asymptotic stability by Lyapunov'ssecond method in nonlinear dynamic 

autonomous systems of continuous time and illustrated by examples. 
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I. Introduction 

The most useful and general approach for studying the stability of nonlinear systems is the theory 

introduced in the late 19
th

 century by the Rusian Mathematician Alexander MikhailovichLyapunov [1,2]. 

Lyapunov stability is a fundamental topic in mathematics and engineering, it is a general and useful approach to 

analyze the stability of nonlinear systems. Lyapunov stability concepts include two approaches: Lyapunov 

indirect (first) method and Lyapunov direct(second) method. For Lyapunov indirect method the idea of system 

linearization around a given point is used and one can achieve local stability with small stability regions. On the 

other hand the Lyapunov direct method is the most important tool for design and analysis of nonlinear systems. 

This method can be applieddirectly to a nonlinear system without the need to linearization and achieves global 

stability. The fundamental concept of the Lyapunov direct method is that if the total energy of a system is 

continuously dissipating, then the system will eventually reach an equilibrium point and remain at that point. 

Hence, the Lyapunov direct method consists of two steps. Firstly, a suitable scalar function v(x) is chosen and 

this function is referred as Lyapunov function [3,4]. Secondly, we have to evaluate its firstordertime derivative 

along the trajectory of the system. If the derivative of a Lyapunov function is decreasing along the system 

trajectory as time increase, then the system energy is dissipating and the system will finally settle down[5]. 

In this paper the tools of Lyapunov stability theory will be considered . Lyapunov's second method is 

presented to achieve asymptotically stable of nonlinear systems . some examples  illustrate the procedure for 

studying the asymptotic stability of nonlinear system.The paper is organized as follows. In sec. 2 A brief review 

of Lyapunov stability theory is presented . In sec.3 Lyapunov's methods (direct and indirect) methods is studied 

. Lyapunov stability theory will desscuss to achive the  main subject of the paper .  Examples to illustrate The 

above concept is presented in Sec .4. Concluding remarks are given in Sec. 5 . 

 

II. A Brief Review of  LyapunovStability Theory 
Consider the autonomous systems  

𝑥 = 𝑓 𝑥  (1) 

 

 𝑓: 𝐷 → 𝑅𝑛  , 𝐷 =open connected subset  𝑅𝑛 , 𝑓 locally Lipschitz , the system (1) has an equilibrium point 𝑥 ∈ 𝐷 

i,e., 𝑓 𝑥  = 0 . For convenience , we state all definitions and theorems for case when the equilibrium point is at 

the origin  𝑥 = 0 . 

 

Definition1: The equilibrium point 𝑥 = 0 of (1) is  

1- Stable , if for each 𝜀 > 0, there is 𝛿 = 𝛿(𝜀) > 0 such that 

 

 𝑥(0) < 𝛿 →  𝑥(𝑡) < 𝜀 for all 𝑡 ≥ 0.               (2) 

2- Asymptotically stable, if it is stable and 𝛿 can be chosen such that  

 
 𝑥(0) < 𝛿 → lim𝑡→∞ 𝑥 𝑡 = 0.                       (3)                         

3- Unstable, if not stable. 

 

Definition 2 : Let  𝑉: 𝐷 → 𝑅 be a continuously differentiable function defined in a domain  𝐷 ⊂ 𝑅𝑛  that 

contains the origin , the derivative of 𝑉 along the trajectories of (1) , denoted by 𝑉 (𝑥), is given by  

 



Achieve asymptotic stability using Lyapunov's second method 

DOI: 10.9790/5728-1301017277                                          www.iosrjournals.org                                    73 | Page 

𝑉  𝑥 =
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𝑛

𝑖=1

 

=  
𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2
…  

𝜕𝑉

𝜕𝑥𝑛
 𝑥 =  

𝜕𝑉

𝜕𝑥
𝑓(𝑥).                                                      (4)  

 

If 𝑉 (𝑥) is negative , 𝑉 will decrease along the trajectory of (1) passing through 𝑥. 

 

A function 𝑉(𝑥) is 

 

1- Positive definite if  

a- 𝑉 0 = 0 and    

b- 𝑉(𝑥) > 0 for 𝑥 ≠ 0. 
 

2- Positive semidefinite if  

a- 𝑉 0 = 0 and    

b- 𝑉(𝑥) ≥ 0 for 𝑥 ≠ 0. 
 

3- Negative definite if  

a- −𝑉 𝑥   is positive definite    

 

4- Negative semidefinite if  

a- −𝑉 𝑥   is positive semidefinite 

 

Lyapunov's stability theorem states that the origin is stable if , in a domain 𝐷 that contains the origin, there is a 

continuously differentiable positive definite function 𝑉(𝑥) so that 𝑉 (𝑥) is negative semidefinite, and it is 

asymptotically stable if  𝑉 (𝑥) is negative definite, when the condition for stability is satisfied, the function 

𝑉(𝑥) is called a Lyapunov function [3]. 

 

III. LyapunovDirect Method 
Lyapunov’s direct method is a mathematical extension of the fundamental physical observation that an 

energy dissipative system must eventually settle down to an equilibrium point. It states that if there is an energy-

like function 𝑉for a system, that is strictly decreasing along every trajectory of the system, then the trajectories 

are asymptotically attracted to an equilibrium. The function 𝑉 is then said to be a Lyapunov function for the 

system [9]. 

To prove the equilibrium is asymptotically stable we have to seek a scalar function of the states and 

this function is positive definite in region around the equilibrium point :𝑉(𝑥) > 0 , except 𝑉 𝑥 = 0 . The 

existence of a Lyapunov function is sufficient to prove stability in the region  . If 𝑉 (𝑥) is negative definite , the 

equilibrium is asymptotically stable[9].  

 

Theorem 1[10]:  Let𝑥 = 0 be an equilibrium point for (1) where𝑓: 𝐷 → 𝑅𝑛 is a locally Lipchitz and𝐷 ⊂ 𝑅𝑛a 

domain that contains the origin. Let 𝑉: 𝐷 → 𝑅be a continuously differentiable, positivedefinite function in 𝐷 

such that  

 

𝑉 0 = 0 and 𝑉(𝑥) > 0, ∀𝑥 ∈ 𝐷\{0} ,  

 

Then 𝑥 = 0 is a stable equilibrium point, if  

 

𝑉  𝑥 ≤ 0, ∀𝑥 ∈ 𝐷.                                 (5) 

 

Moreover, if  

𝑉 (𝑥) < 0 , ∀𝑥 ∈ 𝐷\{0} ,                               (6) 

 

Then 𝑥 = 0 is an asymptotically stable equilibrium point. 

 

In both cases above V is called a Lyapunov function. Moreover, if the conditions hold for all𝑥 ∈ 𝑅𝑛and  

 𝑥 → ∞implies that 𝑉(𝑥) → ∞,            (7) 

  

then 𝑥 = 0 is globally stable in (5)  and globallyasymptotically stable in (6). 
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Proof[10]: Suppose 𝜖 > 0, choose 𝑟 ∈   0, 𝜀   such that 𝐵𝑟 =  𝑥 ∈ 𝑅𝑛 ,  𝑥 ≤ 𝑟 ⊂ 𝐷. Let 𝛼 = min 𝑥 =𝑟 𝑉 𝑥 . 

Choose 𝛽 = (0, 𝛼) and define Ω𝛽 =  𝑥 ∈ 𝐵𝑟 , 𝑉 𝑥 ≤ 𝛽 .  It holds that if  0 ∈  Ω𝛽 → 𝑥 𝑡 ∈ Ω𝛽∀𝑡 because  

 

𝑉 (𝑥 𝑡 ) ≤ 0 → 𝑉(𝑥 𝑡 ) ≤ 𝑉(𝑥 0 ) ≤ 𝛽 

 

Further ∃ 𝛿 > 0 such that  𝑥 < 𝛿 → 𝑉 𝑥 < 𝛽. Therefore, we have that  

 

𝛽𝛿 ⊂ Ω𝛽 ⊂ 𝛽𝑟  

 

And furthermore  

𝑥(0) ∈ 𝛽𝛿 → 𝑥(0) ∈ Ω𝛽 → 𝑥(𝑡) ∈ Ω𝛽 → 𝑥(𝑡) ∈ 𝛽𝑟  

Finally, it follows that  

 

 𝑥(0) < 𝛿 →  𝑥(𝑡) < 𝑟 ≤ 𝜀, ∀𝑡 > 0. 
 

This means that the equilibrium point is stable at the point 0x . 

In order to show asymptotic stability, we need to show that 𝑥(𝑡) → 0 as 𝑡 → ∞. In this case, it turns out that it is 

sufficient to show that 𝑉(𝑥 𝑡 ) → 0 as 𝑡 → ∞. Since 𝑉 is monotonically decreasing and bounded from below by 

0, then  

 

𝑉 𝑥 → 𝑐 ≥ 0,as 𝑡 → ∞ 

 

Finally, it can be further shown by contradiction that the limit 𝑐 is actually equal to 0. 

 

To prove globally stable  and globally asymptotically stable  

 

Proof[10]: Given the point 𝑥 ∈ 𝑅𝑛 , let 𝑐 = 𝑉(𝑥). Condition (7) implies that for any > 0 , there is 𝑟 > 0 such 

that 𝑉(𝑥) > 𝑐 whenever  𝑥 > 𝑟 . Thus  Ω𝛽 ⊂ 𝛽𝑟 , which implies that Ω𝛽  bounded.  

 

IV. Application And Illustrative Examples 
Example 1 [10]:Consider the following system: 
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Since, 0)( xV  and 0)( xV , provided that 
22

2

2

1 )( xx  , it follows that the origin is an asymptotically 

stable equilibrium point . 

 

Example 2 [9]:Consider the simple pendulum (pendulum with friction), (Figure 3.1), k is a coefficient of 

friction, l denotes the length of the rod and m denotes the mass of the bob. Let   denote the angle subtended 

by the rod and the vertical axis through the pivot point. The gravitational force equal to mg , where g is the 

acceleration due to gravity. Using Newton's second law of motion and take the state variables as 1x and

2x . Therefore the state equations are 
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where 0x  is an equilibrium point , to study the stability of the equilibrium at the origin we propose a 

Lyapunov function candidate )(xV . In this case we use total energy )(xE  which is a positive function as the 

sum of its potential and kinetic energies and 0)0( E , we get  

PKE                 (Kinetic plus potential energy ) 

        = mghwlm 2)(
2

1
 

Where  

2xw   

)cos1()cos1( 1xllh    

Finally,  

E= )cos1(
2
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2

2

2 xmglxml   

We know define )(xV E (positive definite) as
 

)cos1(
2

1
)( 1

2

2

2 xmglxmlxV  , 

and the energy is  
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Thus the derivative of )(xV is  

Tx
m

k
x

l

g
xxmlxmglxV ]sin,][,sin[)( 2122

2

1  2

2

2 xkl  

As we saw )(xV is negative semi-definite (not negative definite) because at 0)( xV  we find 02 x  

regardless of the value of 1x  (thus 0)( xV  along the 1x  axis), this means that the origin is stable by 

(theorem 1), not asymptotic stability.  

Here Lyapunov function candidate fails to indentify an asymptotically stable equilibrium point by having )(xV

negative semi definite. 

In order to prove an asymptotical stability we need to define LaSalle’s Invariance Principle. 

 

LaSalle’s Invariance Principle , developed in 1960 by J.P. LaSalle, the principle Basically verify that if there 

is a Lyapunov function within the neighborhood of the origin , has a negative semi-definite time derivative 

along the trajectories of the system which established that no trajectory can stay identically at point where 

0)( xV  except at the origin , then the origin is asymptotically stable .In order to understand that we present a 

definition and theorems related to LaSalle’s Invariance Principle[7] .  

Definition 3 [5]: A set M  is said to be an invariant set with respect to the system (1) if Mx )0( 

Mtx )(  Rt  . 

 

Theorem 3 [10]:(LaSalle's theorem): Let RDV :  be a continuously differentiable function and assume 

that  

i) DM   is a compact set, invariant with respect to the solutions of (1). 

ii) 0V  in M  

iii)  0,::  VandMxxE  ; that is, E  is the set of all points of M such that 0V  

iv) :N  is the largest invariant set in E . 

Then every solution starting in M  approaches N  as t  . 
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Proof [10]:Consider a solution )(tx  in (1) starting in M . Since MxV  0)(  , )(xV  is a decreasing 

function of t . Also, since (.)V  is a continuous function, it is bounded from below in the compact set M . It 

follows that ))(( txV  has a limit as t  . Let   be the limit set of this trajectory. It follows that M

since M  is (an invariant) closed set. For any p   a sequence nt  with nt  and ptx n )(  . By 

continuity of )(xV , we have that  

)( pV
n

lim atxV n ))((     ( a  constant) 

Hence, axV )(  on   . Also, consider    is an invariant set, and moreover 0)( xV  on   (since )(xV  

is constant on   ). It follows that  

MEN   

Since )(tx  is bounded  this implies that )(tx  approaches   ( its positive limit set ) as t  .Hence )(tx  

approaches N  as t  .  

Corollary [9]: Let 𝑥 = 0 ∈ 𝐷 be an equilibrium point of the system (1). Let 𝑉: 𝐷 → 𝑅 be a continuously 

differentiable positive definite function on the domain 𝐷, such that 𝑉 ≤ 0, ∀𝑥 ∈ 𝐷. Let 𝑆 = {𝑥 ∈ 𝐷\𝑉  𝑥 = 0} 

and suppose that no solution can stay identically in 𝑆, other than the trivial solution 𝑥 𝑡 = 0. Then ,the origin is 

asymptotically stable. 

Theorem 4 [10]: The equilibrium point 0x  of the autonomous system (1) is asymptotically stable if there 

exists a function )(xV  satisfying  

i)  )(xV  positive definite Dx  , where we  assume that D0  

ii) )(xV  is negative semi definite in a bounded region DR   . 

iii) )(xV does not vanish identically along any trajectory  in R  , other than the null solution 0x  . 

 

Proof [10]:By (Theorem 1), we know that for each 0   there exist 0  

0x  )(tx  

That is, any solution starting inside the closed ball B  will remain within the closed ball B . Hence any 

solution ),,( 00 txtx  of (1) that starts in B  is bounded and tends to its limit set N that is contained in B . 

Also )(xV  continuous on the compact set B  and thus is bounded from below in B . It is also non increasing 

by assumption and thus tends to a non-negative limit L  as t  . Notice also that )(xV  is continuous and 

thus, LxV )( x  in the limit set N . If N  is an invariant set with respect to (1), which means that any 

solution that starts in N  will remain there for all future time. But along that solution, 0)( xV  since )(xV  is 

constant )( L  in N . Thus, by assumption, N   is the origin of the state space and we conclude that any 

solution starting in BR  converges to 0x  as t  .  

Example 4 [10]: In Example 2, when the origin of the nonlinear pendulum was stable by using Lyapunov direct 

method however , asymptotic stability could not be obtained .  

Return to the system  
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And the candidate Lyapunov function is: 

2

21
2

1
)cos1()( xxaxV   ,                                    (11) 

 
2

2

2)( xklxV   .                                               (12) 

which is negative semi definite since 0)( xV  for )0,( 1xx  , if we apply (theorem 4, conditions (i),(ii)) we 

satisfy in the origin  
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
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1

x

x
R  . 

 

With   1x  , and axa  2  , for any 
Ra  . If we check condition (iii) which V  can vanish 

identically along the trajectories trapped in R , other than the null solution. Using (12) we get  

0V  2

2

20 xkl 02 x t  02 x . 

And using (11) we obtain:  

21sin0 x
m

k
x

l

g
    since 02 x  0sin 1 x . 

Restricting 1x  to ),(1 x  condition (iii) is satisfied if and only if 01 x  . So  0)( xV  does not 

vanish identically along any trajectory other than 0x  , therefore 0x  is asymptotically stable by (Theorem 

4). 

 

V. Conclusion 

When we use Lyapunov direct method, we can get from the system if it is stable or asymptotic or 

unstable, but in some cases, like our example, this method fails to achieve the stability and this does not mean 

that the system is not stable, just only means that such stability property cannot be established by using this 

method. In this  case we applied Lasalle's invariance principle to obtain the asymptotic stability . when we saw 

the origin is stable, not asymptotic stable. 
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