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Existence of Solutions for a Three-Order P-Laplacian BVP on
Time Scales
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Abstract: This paper is concerned with the existence of solutionto p-Laplacian dynamic equation

(;ép (u“ (r)))v +Af(f,u(f),u_\ (r)) =0, re[0.T] ,

subject to boundary conditions

u(0)=B(£).u* (1) = 0.9, (4" (0)) = 09, (u™" ()

p—l
where ?‘j‘” (u) |u‘ with Depending on the relevant theory and properties on time scales, we get the
solution expression. e establish a proper Banuch space and the cone for this equation and define the
corresponding operator. By Leray-Schauder nonlinear alternative theorvem, we establish the sufficient condition
Jfor the existence of at leust one solution.
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p>1

I.  Introduction
Recently, some authors have obtained many results on the existence of positive solutions to boundary
value problems on time scales, for details, see [1-6] and the references therein. However, there is very few
reported work considered the existence of solutions to boundary value problems with nonlinear terms involving
with the derivative explicitly.
In[7], Wei Han studied the following m-point p-Laplacian eigenvalue problems

(?ﬁp(uﬂ(f)))v+/1f(r,u(r),u3(r)):0, te(0.T).. A=0,
o (0)—fu”(0)=0, u(T)zZa!u(é‘f), u*" (0)=0.

The author showed the existence and uniqueness of a nontrivial solution by way of the leray-schauder nonlinear
alternative.

In[8], You-Hui Su concerned the following p-Laplacian dynamic equation

[(q,,(u (1)) +h(0)f (tu(e)u® (1) =0. ref0.T],.
Iu(o ["'Zm, (H,)] . wt(T)=0

The author obtained that the boundary value problem has at Least triple or arbitrary positive solutions by using a
generalization of Leggett-williams fixed point theorem. Similarly, authors of [9] considered the boundary value
problem

(¢, (1 (2))) + n(r) 1 (2.1 (2) > (1)) = O, [0, 7], .
--u(())—b’o[mz_‘au (._I)J 0,

., {=0

u'W(O) =4 (T) =

Motivated by the above mentioned works, in this paper, we study the boundary value problem
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(¢p (u“(t)))v +/1f(t:u(t);uA(t)): 0.re [O,T]T .
u(0)=B(2).u* (T) =0,

¢, (4" (0))= o9, (4™ (£)). @
where | isatime scale,
0.TeT. [0.T].=[0.T]AT. ¢ ()= u. p>1. (4,) =4,. oo e

- . - P g

By Leray-Schauder nonlinear alternative theorem we establish sufficient condition for the existence of at least one
solution.

; A
We note that by a solution u of the problem (1) we meanthat #: T —> R _which is a delta differential. ¥ and

(6, («*" () L

are both continuous on . and ¥ satisfies (1).
The interrelated definitions on time scales can be found in [10]. Throughout this paper it is assumed that

(H)) 0<B, o<1, £€(0.T),:
(H,) f:[0.T],xRxR >R

e : R : [0.7] -
is @ continuous and does not vanish identically on any closed subinterval of L °~ 1T | where R denotes the
nonnegative real numbers.

o] = max u(2)

Let X =Cy [0’ T]T be the Banach space with norm €[0T and order relation XSy if
x(r)<y(r), te[0.T]

J = e + e | = o

ax |u )|+ max ‘u ‘ (Y,
normm

te[0.T],

e[ {]T]

Let Y:C}u [O’T]T wi L{HI) is a

Banach space.
For convenient, we denote

o &
D:_Azg.[n f(r,u,u‘“)Vr,

Lemmal.1 ([10])

1
¢(S+z‘)g F(%(S)Jr%(f))a p=z2, s51>0,

8,(s)+0,(r), 1<p<2, s5,1>0.
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Il.  Main Results
Lemma2.1.The solution expression of the boundary value problem (1) is

=—_“;(r—3)¢q(ijsf(r,u,u*)VrJrD)Vs +rr¢q(/1rf(r,u,uj)Vr+D)Vs

+%[—_“j(§— (/1_“ f T U )Vr+D)Vs+.,j (/l_f f T U U )Vr+D)Vs]

Proof, By(1), we have
u(r) Z—r(f—S)ﬁﬂg (ﬂfsf(r,u,uﬂ)Vr—A)vS +Bi+C

-(2)

(3)

A(1* g( ruu Vr—A)VerB
and . (4)

u™" (1) = g(j /?.f T U )Vr A)- (5)

A=——— ﬂ.f(ruu )Vr
Then l-o since

8, (™ (0)):A:a(—jjﬂf(r,u,aﬂ)wm)

On the other hand, using

u(T)= —J’;géq(,lj'ﬂsf(r,u,uﬂ)vr—A)VS +B=0
we can get

B:.[Urgﬁg (&J.Usf(r,u,ua)VrJrD)Vs
Furthermore, by

u(0)=C= )6[ _“ 9, (ij f(rau )Vr+D)Vs+__f (ij f(rau )Vr+D)Vs+C]

‘We see that

lﬁﬁ[ I (,1'[ f T, )VT-I—D)VS-}-FI ¢, (ﬂ.ff Tuu )VI‘-I—D)VS}

Substituting A, B and C into(3), we may see that (2) holds.
Next we will show

. (6)

)20, u*(t)=0, u*(1)<0.
u(r)20, w*(1)20. (1) o

AT £, ) A
Prom(S)%u (.{)20, EE[O’T}T,a:ﬂd u® (T):Oth ( ) is decreasing.

Thus H(I)EH(O)B}’(@, and ua(f)zowehave H(I)ZO’ HJ(I)EO'.

0: YoY

‘We define the operator as follows:

(Qu)(r) =—_f;(r—s).;éq(/l_f;f(r,u,uﬁ)Vr+D)VS+II;¢Q(/l_f;f(r,u,uﬁ)Vr+D)Vs
I

e N G R M A R S N |
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Lemma22 ©£° Y=Y i complete continuous.

d HEYC:{

Proof.Let C >0 an }.Bylem:rnal.l,for I<p<2, s512>0

[Qu| = max |Qu(r)|=0u(T) = J'Or T, ( AL S(ruu*)Vr+ D)Vs

> we have

+ l—ﬂ " 0 Tg, ((/1_[0 f(r.uu®)V r)+¢>q(1)))\7.s +.f_|.or¢q ((/1_‘.0 S(r.uu® )Vr)+¢q(D))Vsm < +00.

Similarly, we may obtain when ”Qu“ e when P <4

There fore, QYc is bounded uniformly.

On the other have, for b=k s

(Qu)(5,)~(Qu)(1)|

‘ I AJ. f rouu )Vr+D)Vs+11J (/)q(/ljf T, u )+D)Vs

+J‘0~ (¢, —.s)¢q(ij() f( rouu® )V r +D)V.s —’3!{. @, (AJ'OS f( rouu’ ) + D)Vs

<(7,-1) 2.[07(/’(1 ('1.“0 f(r.u.u" )Vr + D)Vs

+(t,-1,)|8, (&Iﬂsf(r,u, ua‘)V T +D)‘ —>0(1, > 1)
Arzela-Ascolitheorem and continuity of f show that Q: Ye >R is a completely continuous operator.

1
Theorem 2.1. Suppose (Hl )(Hz)hold. There exists nonnegative functions p(f),q(!),?‘(!)EL
satisfy
‘f(r,u,v)‘ < p(r) ‘u‘p_l +q (r)‘u‘p_l +r(r), (r,u,v) € [O,T]T xR xR (8)
Where p (f) ’ g(f) do not vanish identically.
Then there exists a constant number A >0 , for VA€ (03 A ) , the problem (1) has
* 1

at least one solution u eCy ([OJT]T ’R) :
Proof. First, from p (fo ) #0 or g(fg ) * , we have

T
Io w(s)Vs>0 |

M,
m= M. ., Q= {u [ C;, [O,T]T : Hqu < m}

Let 9
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Assume Y€ o, Qu=jm. p> 13‘Lhen
yam = = 0ul, = oul +|(0u

Since

|0v]}= max |(0u) (1) = |0u(T)

EEU}"]

Iﬂr 5@, (Afﬂsf(r,u,u*)v r+D)Vs

*%[‘E(s—s);ﬁg(ﬁfjf(nuaf)m)“+é’f§ 6 (A raua)r] s

<J' 5@, (/?.J- ( ‘u‘ ‘ua‘p_l +r(7 )Vr +D)V5

+1f6 “ (/1.[ ( ‘u‘p )‘ua“p_l +r(r))Vr+D)Vs

I ?, ( I ( ‘u‘ (7) ‘ué“ a +r(r))Vr+D)Vs}

SL sgéq(/lHqup_l L (p(7)+q(7) Vr+/1.[ V’r+D)V

+%[J‘U§(§—s)¢q(ﬂ“u“1‘p_l.[ (p(zr)+q(r)) V’H—ﬂ..[ Vr+D)

+§Inf¢q (AHHHI*"‘I Iﬂs(p(r)Jrg( ) Vr+ﬂ.f Vr+D)V5}

= IUT s¢, (1)@, (HﬂHlp_l go(s)Jrly(s))Vs +£“j(§—5)¢q (4)¢, (H“”1p_1 99(5)+W(5))V5
w2, 0, (200, (™ o(5) v (5)) Vs |

Next, we consider two cases

-1 p-1 RV . -
(D If p= 2 ,then by using inequality oryts (x +y ) x’ yeR

%(Huﬂf’%ﬂ(ww(s))=¢q[¢p[uuul(¢( ))51]+¢ [( (s))ﬂ]

we have

_ loul<4,(2)1l [I s(o(s) )wm '6 [ (@(snwvm’fiff(@(sn;lvs}
M C s - E op)

and

(0u)’]= >*\=\(Qu>ﬁ(0\

= UT q(ﬂ.'[ﬂsf(r,u,ua‘)VrJrD)Vs

<J‘ 4, (A.J‘( )l g (o)t + )Vr+D)v

DOI: 10.9790/5728-1301049399 www.iosrjournals.org 97 | Page



Existence of solutions for a three-order p-Laplacian BVP on time scales
T -1
<L, (4 (I o)y (s
<1, ) o (o) ()7 |
r — T 1
=4, (D, [ (o(s))F Vs, (2) [ (v (5))795.

Then
T n é 1 —1) pr R
HQqu igéq(}f,) ”qu [L s(gv(s))p—lV3+ lfgﬁ _L (£—5) (ga(s))p—1Vs+ ﬁl(igﬁ ).[o (SD(S))JHVSJ
T ! 1 -1) .1 L
+9, (&)(L s(w(s))- IV.H— J )21V +%¢;)L (ty(s))ﬂ—leJ
=4, (A) ], M, + ¢, (A1) M,
(IT) For l<p<2

|Ow| < J.o s, ( A)[(bq (“u”l"’ ¢>(s))+ o, (w(s ))}Vs
L5 A E=s)0, (Wl 0(6))+ 4, (v(s) |05

A [l o 0)) +a, (w5 s <] s¢w[||~||(¢o<s)P*+(w<s))?’"

+——”—¢qu) I"(é’-s)[llulll(w(s))?-i (o)) |

4,22 1l (0())7 + (v 5) s
And o

liou)’|=(ou)* (0)

SL’«MM[%[@[ Il (9(s))7 ]]¢ [, (s)) ]le

= ¢q(/1)||“||. Lf(q)(s))ﬁv.v + ¢, (_/1)_[0 (v (s))r Vs .

There fore,
lQull, < &, () |lull, 2, + &, (2) M,
A={~tth ©)
Choose 2y, . when for 0 <A = A . we can get
ol o e, M,

m ~ 2M, m 2]\4 m

Which is contract with 4> 1 Thus € nhasa fixpoint u' €€ since f(t" 0, O)does not vanish identically,
ct(Jo;T]. ;R
(1) has a non-trivial Solution in ¢ ([ ]T ; )

Theorem2.2. Assume that ( H‘ )( Hl ) hold and

0=L = lim max (t"\) < o0
L " T 10y

L |
holds, then there exists a constant 4~ = O guch that the problem(1) has at least one solution u €Cy ([O T]T : R)
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when

A€ (0,47

uEABH : Ve =0, satisfies L+1_€>0=by(10): thereis 4 = Osyuch that
|f(r,zz,v)|£(L+1—E)(|zz|p_1+|v|P_l], lu|+|v|z=H. 0=¢t<T.

Let

® ~ telo. T bl |/ (2]

. then for all (I,u,m—‘)e [O,T]T xR xR :

fltuv)=(L+1—g uf P ) ek
( ) =( )

holds, In the view of the Theorem2, 1, (1)has at least or solution

u' ey ([0.7],.R)

Corollary 2.1 Assume that (#,)(H) hold and the inequality

S(tou,v) .

0=L= lim max ————= o
Jeaf | == ze[0, 7], |“|P
; f(t,uv
0=L = lim max ,____12 < o0
b= eefo.7), |y

holds, then there exist a constant “+ = O such the problem(1) has at least one solution

when

[1.
12).
[3].
[4].
[5]
[6].
7.
(8l
[9].
[10].

u' =C,([0.7],.R)

A€ (0,4"]
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