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Abstract: Unsteady natural convection laminar flows in a square cavity formed by insulated bottom and top 

walls, uniformly heated left wall and cooled right wall has been investigated. The governing equations are 

transformed into a non-dimensional form and the resulting partial differential equations are solved numerically 

applying upwind finite difference method together with Successive Over-Relaxation (SOR) scheme. The effect of 

the heat generation and the Rayleigh number on streamlines and isotherms as well as on the local rate of heat 

transfer in terms of the local Nusselt number and the average Nusselt number from the heated wall of the cavity 

are presented.  
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Nomenclature 

Cp Specific heat at constant pressure
 

g Acceleration due to gravity
 

H Height of the cavity 

Nu Local Nusselt number 

Nuav Average Nusselt number 

P Fluid pressure 

Pr Prandtl number 

Q0 Heat generation constant 

Ra Rayleigh number 

t Time 

T Fluid temperature in the cavity 

TC Temperature of the right wall 

TH Temperature of the left wall 

U,V Dimensionless velocity components along x and  y directions 

x, y Dimensional Cartesian coordinates  

X, Y Dimensionless Cartesian coordinates 

 

Greek symbols 

 Stream function 

 Dimensionless vorticity  

 Dimensionless time 

 Fluid density 

 Fluid viscosity  

 Kinematic viscosity 

 Heat generation parameter  

 Dimensionless temperature function  

 Coefficient of thermal expansion 

 Thermal diffusivity 

 

I. Introduction 

Natural convection in enclosures has attracted considerable interest of investigators as the transport 

process in a fluid where the motion drives by the interactions of a difference in density with a gravitational field 

is very common in several engineering and environmental problems. Application of such analysis is essential for 

building design, that is, ventilation, solar energy systems, electronic equipment cooling, meteorology, geophys-

ics, nuclear reactor systems, fire control and chemical.  Therefore natural convection represents in several fields, 

where the heat to be dissipated is low enough and an attractive system in thermal control because of its low cost, 

reliability and simplicity in use. 
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 Ostrach [1] provided a comprehensive review article and extensive bibliography on natural convection 

in cavities up to 1988.  de Vahl Davis [2] investigated the natural convection of air in a square cavity. The au-

thor assumed the top and bottom walls are adiabatic and left wall is uniformly heated, right wall is cooled. Va-

lencia and Frederick [3] investigated the heat transfer in square cavities with partially active vertical walls. Se-

lamet et al. [4] studied the laminar buoyancy driven flows in an enclosure. Natural convection heat transfer in 

rectangular cavities heated from below had been investigated by Hasnaoui et al. [5]. Sundstrom and Kimura [6] 

observed the phenomena on laminar free convection in inclined rectangular enclosure. November and Nansteel 

[7], Ganzarolli and Milanez [8], investigated the natural convection in rectangular enclosures heated form below 

and cooling from the sides. Natural convection in cavities  heating from below and cooling from the side walls 

as well as heating from one side and cooling from ceiling has been studied by  Aydin et al. [9-10],  Sharif and 

Mohammad [11]. Sezai and Mohammad [12] studied the natural convection from a discrete heat source on the 

bottom of horizontal enclosure. Following de Vahl Davis [2], Dixit and Babu [13] have recently investigated 

natural convection of air in square cavity by using the lattice Boltzmann method.  

A large number of physical phenomena involves with natural convection driven by heat generation. 

The study of heat generation in moving fluids is important in view of several physical problems such as those 

dealing with chemical reactions and those concerned with dissociating fluids. Possible heat generation effects 

may alter the temperature distribution and, therefore, the particle deposition rate. This may occur in such appli-

cations related to nuclear reactor cores, fire and combustion modelling, electronic chips and semiconductor wa-

fers. In fact, the literature is replete with examples dealing with the heat transfer in laminar flow of viscous flu-

ids. Barozzi and Corticelli [14] investigated the natural convection in cavities with internal heat source. Natural 

convection in vertical cavities with internal heat generation porous medium has been studied by Du and Bilgen 

[15]. Baytas [16] investigated the buoyancy-driven flow in an enclosure containing time periodic internal heat 

sources. 

All of the above authors ignored the effect of temperature dependent heat generation due to molecular 

interaction within the cavities, winch is more important in point of practical applications. Vajravelu and Hadji-

nolaou [17] studied the heat transfer characteristics in a laminar boundary layer flow of a viscous fluid over a 

linearly stretching continuous surface with temperature dependent internal heat generation. Recently, Molla et 

al. [18-20] have investigated the natural convection flow with temperature dependent heat generation along a 

uniformly heated vertical wavy surface, horizontal circular cylinder and sphere.  

In the present study, we are interested to investigate the unsteady natural convection laminar flow in a 

square cavity formed by bottom and top walls are insulated, left wall is uniformly heated and the right wall is 

cooled .The basic equations of motion are transformed into a non-dimensional form, which are solved numeri-

cally by using a upwind finite-difference scheme together with Successive Over Relaxation (SOR) scheme. The 

effect of the heat generation and the Rayleigh number on streamlines and isotherms, as well as on local the rate 

of heat transfer and the average rate of heat transfer from the heated wall of the cavity are presented by graphi-

cally. In the whole investigation the Prandtl number Pr has been chosen 1.0 without the comparison with the 

benchmark solutions given by de Vahl Davis [2]. 

 

II. Formulation Of Problem 
Consider a square cavity of height H filled with viscous incompressible fluid as shown in Fig. 1. The 

top and bottom walls are adiabatic where as the right wall is maintained at constant cold temperature and the left 

wall is isothermally heated. We also bring into account the effect of temperature-dependent heat generation as 

[14] in the flow region. The volumetric rate of heat generation q [W/m
3
], is assumed to be 
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where Q0 is a heat generation constant which may be either positive or negative. This source term represents the 

heat generation when Q0  0 and the heat absorption when Q0  0.  
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Fig.1:  Physical model and coordinate system. 
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We further assume unsteady two-dimensional laminar free convective flow of viscous incompressible 

fluid having constant properties.  The effect of buoyancy is included through the well-known Boussinesq ap-

proximation.  Under the above assumption, the equations for mass continuity, momentum and energy take the 

following form:  
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where (u, v) are the velocity components along the (x, y)axes, g is the acceleration due to gravity,  is the fluid 

density,   is the thermal diffusivity,  is the coefficient of thermal expansion,   is the kinematic viscosity of 

the fluid, Cp is the specific heat at constant pressure. 

To make the above equations dimensionless, we introduce the following non-dimensional variables 
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where  (=/) is the reference kinematic viscosity and  is the non-dimensional temperature. 

Substitution of the dimensionless variables (6) into equations (2)-(5) lead to the following equations: 
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is the vorticity function and   is the stream function defined by : 
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In the above equations Ra is the Rayleigh number, Pr is the Prandtl number and  is the heat generation 

parameter defined respectively by the following relations. 
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The dimensionless initial and boundary conditions are: 
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Once we know the numerical values of the temperature function we may obtain the rate of heat transfer 

in terms of the local Nusselt number, Nu from the heated portion of the bottom wall using the following relation: 
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The average Nusselt number, Nuav  is given by 
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III. Numerical Procedure 
The governing equations along with the boundary conditions are solved numerically, employing finite 

difference method. The energy equation is solved using explicit upwind finite difference technique and the 

stream function equation is solved by SOR (successive over relaxation) scheme. To speed up the convergence, 

the over relaxation parameter for the stream function solutions, is not fixed for all mesh sizes. A semi-dynamic 

model has been used for calculating over relaxation parameter for every orientation of grid size(see Roache 

[21]). For example, the values of the over relaxation parameter for 4141 and 515 grid sizes are not same. The 

buoyancy and diffusive terms are discretised by using central differencing while the use of upwind differencing 

is preferred for convective terms for numerical stability. By using the initial and boundary conditions, the dis-

cretised transient equations are then solved explicitly by marching in time until an asymptotic steady state solu-

tion is reached. Convergence of iterations for stream function solution is obtained at each time step. The follow-

ing criterion is employed to check for steady state solution 
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  Where  stands for ,  and  ; n refers to time and i and j refer to space coordinates. The time step   used 

in computations is varied between 0.00005 and 0.00001 depending on the Rayleigh numbers.  

 The aspect ratio considered is unity and the value of X = Y = 1/(N-1), N is the number of grid points 

in the Y direction. A grid independence study is conducted using four different uniform grid sizes 3131, 4141, 

5151 and 6161 and it is observed that a further refinement of grid of 5151 and 6161 does not have a signif-

icant change on the results of the maximum stream function and the average Nusselt number. For computational 

economy, a 5151 mesh has been used throughout for this simulations described below. 

 

Table 1: Comparisons of present numerical results with the benchmark solutions (listed in bracket) [2] for the 

case Pr = 0.71,  = 0.0 and 51 51 meshes 
Ra max Umax Vmax Nuav 

103 1.1655 3.616 (3.649) 3.665 (3.697) 1.1298  (1.118) 

104 5.1283 16.230 (16.178) 19.468 (19.617) 2.265 (2.243) 

105 10.141 (9.612) 34.92 ( 34.73) 68.43 (68.59) 4.653 (4.519) 

 

IV. Results and Discussion 
Numerical results are presented in order to determine the effects of internal heat generation and the 

Rayleigh number in presence of heat generation flow in a square cavity. Values of the heat generation parame-

ter, between 0.0 and 20.0 and the Rayleigh number Ra (= 10
3
, 10

4
, 10

5
, 10

6
) are considered here. 

 

4.1 Benchmarking 

The corresponding problem without the effect of heat generation has been investigated by de Vahl 

Davis [2] for different values of the Rayleigh number for Pr = 0.71.  With 5151 mesh for the case of Pr = 0.71 

and  = 0.0, the comparison of the maximum values of, U, V  and average Nusselt number, Nuav are presented 

in the following Table 1, which shows a good agreement of the present solutions with those of de Val Devis [2]. 
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Fig. 2: Streamlines and isotherms for Ra = 10

4
 

 

4.2 Effect of varying the heat generation parameter on the flow field and heat transfer 

We consider first the effect of internal heat generation on the flow field. The resulting flows and tem-

perature distributions are depicted in Fig. 2. In Fig. 2 (top) we present the streamlines for increasing values of 

the heat generation parameter,  (= 0.0, 10.0, 15.0, 20.0) while Ra = 10
4
. In these figures, without heat genera-

tion, there is only one cell, called primary cell has been seen. With the effect of heat generation, a secondary cell 

has been developed in the top-left corner of the cavity. The increasing rate of heat generation leads to increase 

the flow rate in the secondary cell as well as increase in its size until it occupies almost half of the total cavity. 

This effect of internal heat generation on the flow field is reasonable since internal heat generation assists buoy-

ancy forces by accelerating the fluid flow. On the other hand, the fluid temperature increases significantly due to 

effect of heat generation which is shown in isotherms in Fig. 2 (bottom). It is clearly seen that, owing to increase 

the heat generation, the fluid temperature exceeds the surface temperature that negates the heat transfer from the 

heated surface which is also illustrated in Fig. 4 (a).  

Fig 3 shows the effect of Rayleigh number on the flow and temperature field where the internal heat 

generation is fixed at  = 10.0. For the lower Raleigh number two convective cells dominate the flow, however, 

with increase of Rayleigh number the primary cell becomes larger and occupies whole domain when Ra = 10
6
. 

This behaviour is almost opposite of the effect of heat generation from lower to higher for a fixed Raleigh num-

ber (see in Fig 2). As we discuss earlier that the internal heat generation accelerates the flow and eventually it 



Natural Convection Flow In A Square Cavity With Temperature Dependent Heat Generation 

DOI: 10.9790/5728-1303021017                                         www.iosrjournals.org                                     15 | Page 

has an influence on buoyancy, however, for a fixed  when Raleigh number increases, the buoyancy effect ac-

celerates and dominates the flow, although there is a weak internal heat generation influence on the flow filed. 

The same phenomenon has been seen in the temperature contours in Fig 3(bottom). Initially, when the Raleigh 

number is small the internal fluid temperature is higher but it decreases with increase of Ra. For Ra = 10
6
 the 

flow is stratified which is similar to a side heated cavity flow with no internal heat generation. 

 

4.3 Effect of heat generation and the Rayleigh number on the flow field and heat transfer 

Fig. 4 (a) shows how the presence of heat generation inside the fluid influences the overall predictions 

of heat transfer. Initially when  = 0, the heat transfer on the hot surface is positive, however, as the amount of 

heat generation increases, the total heat transfer decreases and becomes negative. This is due to the fact that the 

heat generation mechanism creates a layer of hot fluid near the hot surface and at some level when   is larger, 

the resultant temperature of fluid exceeds the surface temperature. The rate of heat transfer also decreases with 

the height of the cavity. When there is no heat generation effect, the rate is uniform, however, when  = 20.0 the 

temperature decreasing largely near the top of the surface line. Fig 4(b) shows the effect of heat transfer from 

the hot surface on Rayleigh number when the heat generation parameter is fixed at  = 10.0. For smaller 

Rayleigh numbers, the heat transfer rate is negative (Ra = 10
3
, 10

4
). That means this surface is loosing the heat 

whereas, for higher Rayleigh number e.g. Ra = 10
6
, heat transfer rate is positive, although it is decreasing with 

height of the surface again. For higher values of Ra, there is a strong effect of buoyancy force in the flow field 

which causes to circulate the internally generated heat throughout the cavity. Hence the hot layer, which has 

formed near the hot surface, disappears and the heat from the hot surface defuses in the cavity. In Fig. 5, we 

have depicted the average rate of heat transfer from the heated wall in terms of the average Nusselt number, 

Nuav   for different values  of the heat generation parameter    against the Rayleigh number Ra ( log-scale has 

been used for Ra ). It is seen that for large values of   the average Nusselt number Nuav decreases and for large 

values of Ra, the average rate of heat transfer increases, which is expected  according to Fig. 4.   
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Fig. 4: Rate of heat transfer from the hot wall (a) varying  with Ra = 10

4
 and (b) varying Ra with  = 10. 
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Fig. 5: Average Nusselt number from the heated wall for varying   against Ra. 



Natural Convection Flow In A Square Cavity With Temperature Dependent Heat Generation 

DOI: 10.9790/5728-1303021017                                         www.iosrjournals.org                                     17 | Page 

V. Conclusions 

In the present paper a problem on natural convection laminar flow in a side heated square cavity with 

internal heat generation has been investigated numerically by employing an upwind finite difference method to-

gether with a Successive Over-Relaxation (SOR) technique. The results have been presented for the chosen fluid 

of Prandtl number Pr = 1.0, heat generation parameter  (= 0.0, 10.0, 15.0, 20.0) and the Rayleigh number Ra (= 

10
3
, 10

4
, 10

5
, 10

6
). From the present investigation the following conclusion may be drawn: 

 Increase in the values of heat generation parameter leads to develop a secondary cell on the left upper cor-

ner of the cavity and increases the flow rate in the secondary cell as well as increase its size until it occupies 

almost half of the cavity. 

 The temperature of the fluid in the cavity also increases due to increase the internal heat generation and 

hence the local and average rate of heat transfer from the left wall decrease. 

 For increasing values of the Rayleigh number, the flow rate increases in both clock wise and anti-clockwise 

direction. 

 The local and average rate of heat transfer from the heated wall increase owing to increase the Rayleigh 

number. 
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