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Abstract The present paper addresses diffusion-reaction equation describing the dynamics of both dissolved 

oxygen and biochemical oxygen demand in case of river pollution. Numerical solutions are obtained and some 

important inferences are drawn through simulation study. The diffusion – reaction equation is characterized by 

the reaction term whenever it depends on concentration of the contaminants and in this case the original single 

diffusion – reaction equation will evolve to be a system of equations. This system of equations develops problem 

in finding analytical solution. In order to tackle this kind of problem one needs to consider numerical 

approximation. Hence, we employed numerical methods here in. For that purpose we first separated diffusion 

term from non-linear reaction term using splitting method. Then we applied numerical techniques such as 

Galerkin finite element method with linear basis function and improved Runge-Kutta method of order six 

respectively. To explicitly show the efficacy of these numerical methods, the interaction of dissolved oxygen and 

biochemical oxygen demand is simulated pertaining to the unsteady flow situations. Furthermore, the impact of 

parameters such as diffusion and reaeration coefficients has been simulated and observed the dynamics of DO 

and BOD.   It is noticed that the higher are diffusion and reaeration coefficients, the faster is the river purity. 
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1. Introduction 
Agricultural, industrial and domestic activities are significant contributors to the contamination of 

water bodies e.g., lakes, rivers, oceans, aquifers and groundwater. This contaminated water affects negatively 

the survival of tiny creatures and also human health. Every year, approximately 25 million people die as a result 

of water pollution in the world [5, 15].  

Mathematical models have been used broadly to predict water quality, and to provide reliable tools for 

its quality management in affected areas. These models are used to simulate the spatial and temporal 

distributions of various variables related to water quality in the physical areas of study. The use of mathematical 

models for the simulations is to enhance the decision supporting tools for water resource management. There are 

many factors of water quality that are required to be observed and used in the models such as dissolved oxygen 

level, water velocity, pollutant addition, and saturated oxygen concentration. The main consideration here is 

aimed to predict the amounts of dissolved oxygen (DO) and biochemical oxygen demand (BOD) along a river 

channel as well as the interaction between these two factors.  

Recently, a number of mathematical models on river pollution have been appeared in literature [1, 5, 8, 

11 – 13, 15, 19 – 20]. Historically, the famous mathematical model predicting water quality in a river is 

proposed by Streeter H. W. and Phelps E. B. [22]. Their model is applied to model the amount of DO in a 

stream provided that the waste water is discharged into the stream. They assumed that deoxygenation was a first 

order chemical reaction. Thus, their model was simpler for having an analytical solution. However, for some 

extended and complicated models the analytical solutions cannot be easily derived. It requires an efficient 

numerical method to find approximate solution instead. Previously, various numerical methods have been 

employed in solving pollution model [1, 5, 19 – 20].   

In this study, we present a mathematical model for DO concentration interaction with BOD during river 

pollution. The present model equations are in the similar form as those presented in [19]. Additionally, we have 

proposed and considered different fast, reliable and accurate numerical methods and investigated the reaeration 

effects on river pollution. The numerical scheme applied here is based on the splitting method, Galerkin finite 

element method with linear basis function and improved Runge-Kutta method of order six. Furthermore, the 

effects of diffusion and reaction are also investigated by including these terms in the model, and it is then solved 

numerically.  
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2. Mathematical Model 
Once the pollution is injected into the river, it is then convected while diffusing through turbulent 

mixing. Simultaneously, it chemically reacts with the DO causing deoxygenation in the river that is counteracted 

by the transport of oxygen from the atmosphere, known as reaeration, across the air-water interface acting as a 

permeable membrane [1, 19 – 20]. This process, in case of a moderately polluted river, can be described 

mathematically as     
𝜕𝑢1

𝜕𝑡
 =  −𝑤

𝜕𝑢1

𝜕𝑥
+  𝐷1

𝜕2𝑢1

𝜕𝑥2  + 𝜆 𝜔 − 𝑢1 – 𝛾𝑢1𝑢2  (1) 

𝜕𝑢2

𝜕𝑡
 = −𝑤

𝜕𝑢2

𝜕𝑥
+ 𝐷2

𝜕2𝑢2

𝜕𝑥2 − 𝛾𝑢1𝑢2.                                                       (2) 

The notations and description of variables and parameters are listed in Table 1.  

For simplicity, let us assume that advection along the river is neglected or ignored, that is𝑤 = 0. This 

assumption reduces the well-known computational difficulties that are associated with advection dominated 

flows. Also it helps to resolve the problem in an economical fashion; the transport, diffusion and interaction of 

DO and BOD for hundreds of kilometers. Upon using this assumption, we obtain the Lagrangian form of 

equations (1) and (2) as  
𝜕𝑢1

𝜕𝑡
=  𝐷1

𝜕2𝑢1

𝜕𝑥2  +   𝜆 𝜔 − 𝑢1 − 𝛾𝑢1𝑢2,    (Oxygen)  (3)    

𝜕𝑢2

𝜕𝑡
=  𝐷2

𝜕2𝑢2

𝜕𝑥2 − 𝛾𝑢1𝑢2.       (BOD) (4)    

 

 

Table 1 Notational Glossary of Variables and Parameters 

 

In order to simplify the equations (3) and (4), we will assign constant values for all the parameters𝛾, 𝜔,
𝜆, 𝐷1  and 𝐷2 and then carry out simulation study.  

 

3. Numerical Approximation 
We now describe some numerical approximation techniques those will be applied on equations (3) and 

(4) together with appropriate initial and boundary conditions. Here it is appropriate to introduce, separately, the 

details of each of the three principal features of the methods, viz., splitting, finite element, and improved Runge-

Kutta of order six schemes.  

  

3.1 Splitting Method 

In many applications mixing of various terms in the equations for the discretization and solver methods 

make it difficult to solve them together. Hence, we use the splitting method to decouple a complex equation into 

various simpler equations and to solve them with adapted discretization and solver methods. The adapted 

methods for a simpler equation give improved results for simpler parts. The operator splitting is an attractive 

technique for solving coupled systems of partial differential equations of the type (3) and (4). Since complex 

system of equations are split into simpler parts those are easier to solve. Here we now separate the non-linear 

reaction term from diffusion term so that       
𝜕𝑢1

𝜕𝑡
=  𝐷1

𝜕2𝑢1

𝜕𝑥2          (5)                        

𝜕𝑢2

𝜕𝑡
=  𝐷2

𝜕2𝑢2

𝜕𝑥2       (6)         

𝜕𝑢1

𝜕𝑡
= 𝜆 𝜔 − 𝑢1 − 𝛾𝑢1𝑢2    (7)             

𝜕𝑢2

𝜕𝑡
=  −𝛾𝑢1𝑢2.                                                               (8)  

 Diffusion and reaction terms are not commuted here since the reaction term is non-linear. Thus, a 

splitting error of first order𝑜(𝜏) is expected to occur. 

 

VariablesandParameters Description 

𝑥 Distance along the river 

𝑡 Time 

𝑢1 DO concentration 

𝑢2 BOD concentration 

𝑤 River velocity 

𝐷1 DO diffusion coefficient 

𝐷2 BOD diffusion coefficient 

𝜆 Reaeration rate 

𝜔 Concentration of oxygen in the air immediately 

above the river 

𝛾 Reaction rate of DO and BOD 
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3.2 The Finite Element Method 

In this section, we present the finite element to solve numerically the system of partial differential 

equations (5) and (6) together with the Dirichlet boundary conditions 𝑢1 0, 𝑡 =  𝑢1 𝐿, 𝑡 = 1 and 𝑢2 0, 𝑡 =
 𝑢2 𝐿, 𝑡 = 0 for𝑡 > 0 and dividing the computational domain  0 ≤ 𝑥 ≤ 𝐿. 

 

 The weak formulation for the problem (5) and (6) read as follows: For every time interval 𝐼𝑛 =
  𝑡𝑛−1

 ,  𝑡𝑛  find𝑢 𝑥, 𝑡 , 𝑡 ∈ 𝐼𝑛  such that 

  𝑣(𝑥)  
𝜕𝑢1

𝜕𝑡
− 𝐷1

𝜕2𝑢1

𝜕𝑥2  𝑑𝑥𝑑𝑡
𝐿

0

𝑡𝑛
𝑡𝑛−1

 = 0         (9) 

  𝑣(𝑥)  
𝜕𝑢2

𝜕𝑡
− 𝐷2

𝜕2𝑢2

𝜕𝑥2  𝑑𝑥𝑑𝑡
𝐿

0

𝑡𝑛
𝑡𝑛−1

 = 0    (10) 

where𝑣(𝑥) is arbitrary test function. On applying integration by part with the conditions on the second order 

derivative in (9) and (10) and after simplification it reduces to the form  

    
𝜕𝑢1

𝜕𝑡
𝑣 +  𝐷1

𝜕𝑢1

𝜕𝑥

𝜕𝑣

𝜕𝑥
 𝑑𝑥

𝐿

0
 𝑑𝑡

𝑡𝑛
𝑡𝑛−1

 = 0, ∀𝑣: 𝑣 0, 𝑡 =  𝑣 𝐿, 𝑡 = 0.  (11)   

    
𝜕𝑢2

𝜕𝑡
𝑣 +  𝐷2

𝜕𝑢2

𝜕𝑥

𝜕𝑣

𝜕𝑥
 𝑑𝑥

𝐿

0
 𝑑𝑡

𝑡𝑛
𝑡𝑛−1

 = 0, ∀𝑣: 𝑣 0, 𝑡 =  𝑣 𝐿, 𝑡 = 0.  (12)                             

 A piecewise linear Galerkin approximation: For each time interval 𝐼𝑛 =   𝑡𝑛−1
 ,  𝑡𝑛   with step size𝑘 =

𝑡𝑛−𝑡𝑛−1, let  

𝑢 𝑥, 𝑡 = 𝑢𝑛−1 𝑥 𝜑𝑛−1 𝑡  + 𝑢𝑛 𝑥 𝜑𝑛 𝑡  (13) 

Here in (13), we used the notations  𝜑𝑛 𝑡 =  
𝑡−𝑡𝑛

𝑘
 , 𝜑𝑛−1 𝑡 =  

𝑡𝑛−1−𝑡

𝑘
  and  

𝑢𝑛 𝑥 =  𝑢𝑛,1𝜑1 𝑥  + 𝑢𝑛,2𝜑2 𝑥 + . . . + 𝑢𝑛,𝑚𝜑𝑚  𝑥 .    (14) 

In (13), 𝑢 is piecewise linear function with respect to both space and time variables.  

 By the Galerkin approach, we choose the test function to be the same as the basis function. Hence the 

unknowns are the coefficients 𝑢𝑛,𝑘  satisfying discrete weak formulation as 

    
𝜕𝑢1

𝜕𝑡
𝜑𝑗  +  𝐷1

𝜕𝑢1

𝜕𝑥

𝜕𝜑𝑗

𝜕𝑥
 𝑑𝑥

𝐿

0
 𝑑𝑡

𝑡𝑛
𝑡𝑛−1

 = 0  (15)   

    
𝜕𝑢2

𝜕𝑡
𝜑𝑗  +  𝐷2

𝜕𝑢2

𝜕𝑥

𝜕𝜑𝑗

𝜕𝑥
 𝑑𝑥

𝐿

0
 𝑑𝑡

𝑡𝑛
𝑡𝑛−1

 = 0  (16)    

Here 𝑗 refers to the number of nodes in an element and 𝑗 = 1, 2, . . . , 𝑚. 

Further, on substituting the step size𝑘 = 𝑡𝑛 − 𝑡𝑛−1 and the space variables 𝑢𝑛 = 𝑢(𝑥𝑛) and 𝑢𝑛−1 =
𝑢(𝑥𝑛−1) the equation (13) takes the form as 

𝑢  𝑥, 𝑡 = 𝑢𝑛−1 𝑥 𝜑𝑛−1
′ 𝑡 + 𝑢𝑛 𝑥 𝜑𝑛

′ 𝑡  =  
𝑢𝑛−𝑢𝑛−1

𝑘
 (17) 

Also differentiation of (13) with respect to 𝑥 gives  

𝑢′ 𝑥, 𝑡 =  𝑢′
𝑛−1(𝑥)𝜑𝑛−1(𝑡)  +  𝑢𝑛

′(𝑥)𝜑𝑛(𝑡) (18) 

Up on inserting (17) and (18) and using the values of definite integrals  𝑑𝑡
𝑡𝑛
𝑡𝑛−1

=   𝑘 and  𝜑𝑛𝑑𝑡
𝑡𝑛
𝑡𝑛−1

 =

   𝜑𝑛−1𝑑𝑡
𝑡𝑛
𝑡𝑛−1

 =  
𝑘

2
  the equations (15) and (16) take the form as  

 𝑢1𝑛𝜑𝑗𝑑𝑥
𝐿

0
−  𝑢1(𝑛−1)𝜑𝑗𝑑𝑥

𝐿

0
+  𝐷1

𝑘

2
 𝑢′

1(𝑛−1)𝜑
′
𝑗
𝑑𝑥

𝐿

0
+  𝐷1

𝑘

2
 𝑢′

1𝑛𝜑
′
𝑗
𝑑𝑥

𝐿

0
= 0 (19) 

 𝑢2𝑛𝜑𝑗𝑑𝑥
𝐿

0
−  𝑢2 𝑛−1 𝜑𝑗𝑑𝑥

𝐿

0
+  𝐷2

𝑘

2
 𝑢′

2 𝑛−1 𝜑
′
𝑗
𝑑𝑥

𝐿

0
+ 𝐷2

𝑘

2
 𝑢′

2𝑛𝜑
′
𝑗
𝑑𝑥

𝐿

0
=  0(20)                                                                                           

These equations can be written in the compact form as Crank-Nicolson system (CNS)  

𝑢1𝑛 =  𝑀 + 
𝑘

2
 𝐷1𝐴𝑑  

−1

 𝑀 −
𝑘

2
 𝐷1𝐴𝑑  𝑢1(𝑛−1)   (21) 

𝑢2𝑛 =  𝑀 +  
𝑘

2
 𝐷2𝐴𝑑  

−1

 𝑀 −
𝑘

2
 𝐷2𝐴𝑑  𝑢2(𝑛−1)  (22) 

To compute the stiffness matrices of diffusion term𝐴𝑑  and the mass matrix𝑀, let us differentiate (14) to 

obtain𝑢′
𝑛 𝑥 =   𝑢𝑛,1𝜑

′
1
 𝑥  + 𝑢𝑛,2𝜑

′
2
 𝑥  +  . . . + 𝑢𝑛,𝑚𝜑

′
𝑚
 𝑥 .Thus, we have   

𝐴𝑑𝑢𝑛  =    𝑢′
𝑛𝜑

′
𝑗
𝑑𝑥

𝐿

0

 =    𝜑′
𝑗
𝜑′

1

𝐿

0

 𝑢𝑛,1𝑑𝑥 +    𝜑′
𝑗
𝜑′

2

𝐿

0

 𝑢𝑛,2𝑑𝑥+ . . . +   𝜑′
𝑗
𝜑′

𝑚

𝐿

0

 𝑢𝑛,𝑚𝑑𝑥. 

 

By using the linear piecewise function 𝜑𝑗 (𝑥) with uniform mesh 

𝜑𝑗  𝑥  =   

𝑥−𝑥𝑗−1

𝑕
,      𝑥 ∈  𝑥𝑗−1, 𝑥𝑗  

𝑥𝑗+1 −𝑥

𝑕
 ,      𝑥 ∈  𝑥𝑗 , 𝑥𝑗+1 

0,                   𝑒𝑙𝑠𝑒.

 (23) 

Then, we obtain   𝐴𝑑  =
1

𝑕
 tridiag −1, 2, −1  ∈ 𝑅(𝑚−1)Χ(𝑚−1). 
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 Similarly, for all the indices   𝑗 = 1, 2, . . .  , 𝑚  the mass matrix 𝑀 is defined as 

𝑀𝑢𝑛  =    𝑢𝑛𝜑𝑗𝑑𝑥
𝐿

0
. 

With the function (23) for uniform partition, we obtain 𝑀 =
𝑕

6
tridiag 1, 4, 1  ∈ 𝑅(𝑚−1)Χ(𝑚−1). 

 

3.3 Improved Runge-Kutta Method of Order Six 

Here we adopt the improved Runge – Kutta method of order six in the form that was used in our earlier 

study [20]. However, for the ready reference the algorithm is presented here once again. The algorithm is given 

as   

𝑢6 𝑡0 + h =  𝑢0 + 
1

840
 41 𝑘0 + 𝑘7 + 216 𝑘2 +  𝑘6 + 27 𝑘3 + 𝑘5 + 272𝑘4   (24) 

Here in (24), the quantities 𝑘𝑖 ,   ∀𝑖 = 0, 1, … . ,7 represent 

𝑘0 = h𝑓 𝑡0, 𝑢0  

𝑘1 = h𝑓  𝑡0 + 
1

9
h,   𝑢0 +  

1

9
𝑘0  

𝑘2 = h𝑓  𝑡0 +  
1

6
h, 𝑢0 +  

1

24
 𝑘0 + 3𝑘1   

𝑘3 = h𝑓  𝑡0 +  
1

3
𝑕, 𝑢0 + 

1

6
 𝑘0 − 3𝑘1 + 4𝑘2   

𝑘4 = h𝑓  𝑡0 + 
1

2
h, 𝑢0 +  

1

8
 𝑘0 + 3𝑘3   

𝑘5 = h𝑓  𝑡0 +  
2

3
h, 𝑢0 +  

1

9
 17𝑘0 − 63𝑘1 +  51𝑘2 +  𝑘4   

𝑘6 = h𝑓  𝑡0 +  
5

6
h, 𝑢0 +  

1

24
 −22𝑘0 + 33𝑘1 +  30𝑘2 − 58 𝑘3 +  34 𝑘4 +  3 𝑘5   

𝑘7 = h𝑓  𝑡0 + h,   𝑢0 +  
1

82
 281𝑘0 − 243𝑘1 − 522𝑘2 + 876 𝑘3 −  346 𝑘4 −  36𝑘5 +  72𝑘6  . 

The reaction term given in (7) – (8) is solved using improved sixth order formula together with initial 

conditions of 𝑢1 and 𝑢2 and with the inclusion of parametric values.  

 

4 Numerical Results 
Let us now compute numerical solutions for the system of equations (3) and (4) by restricting the 

independent variables to the regions 0 ≤ 𝑥 ≤ 1 and𝑡 > 0. The initial conditions are considered as 𝑢1 𝑥, 0 =
1  𝑘𝑔𝑚−3 and𝑢2 𝑥, 0 = 6  𝑘𝑔𝑚−3. Similarly, the boundary conditions are chosen as 𝑢1 0, 𝑡 =  𝑢1 1, 𝑡 =
1  𝑘𝑔𝑚−3 and𝑢2 0, 𝑡 =  𝑢2 1, 𝑡 = 0  𝑘𝑔𝑚−3. Also, the parametric values are set as 𝜔 = 1𝑘𝑔𝑚−3 and𝛾 =
1 𝑑𝑎𝑦−1. Then, we vary the parameters𝐷1, 𝐷2 and 𝜆 to study the effects of reaction, diffusion and reaeration in 

river pollution. 

 

4.1 Zero Diffusion 

 Consider the case when diffusion taken to be zero, i.e.𝐷1 = 𝐷2 = 0. In this case the system of 

diffusion-reaction equations (3) and (4) reduces to a system of reaction equations as given in (7) and (8). This 

resembles to a well – mixed case. Thus, we are only studying the effect of self-purification, without considering 

the spatial distribution. We now employ the method of improved Runge-Kutta of order six on the system of 

equations given in (7) and (8). For this purpose we consider the initial conditions and parametric values given in 

Section 4. The results of the simulation study are given in Figures 1 and 2. 
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Figure 1: Numerical simulation of the system of equations (7) and (8) with zero diffusion term and 

𝜆 = 1𝑚2𝑑𝑎𝑦−1. 

 

 
 

Figure 2: Numerical simulation of the system of equations (7) and (8) with zero diffusion term and 

𝜆 = 3𝑚2𝑑𝑎𝑦−1. 

 

 In Figures 1 and 2, the blue and red curves represent the amounts of dissolved oxygen (DO), 𝑢1 and the 

biochemical oxygen demand (BOD), 𝑢2 respectively at a given time in the river. At time 𝑡= 0, the amount of 

DO is 𝑢1(𝑡) = 1𝑘𝑔𝑚−3 and the amount of BOD is 𝑢2(𝑡) = 6𝑘𝑔𝑚−3. Since the BOD consumes DO and as a 

result both the BOD and DO availability are declined. Now in this situation the self-purification capacity of the 

river becomes active. This helps 𝑢1 in performing two activities: (i) to reduce 𝑢2 to zero and (ii) to increase 𝑢1 

to reach its normal value 1 due to the effect of the re-aeration or the term 𝜆 𝜔 − 𝑢1 . This process is slower with 

smaller re-aeration effects as seen in Figure 1 and faster with larger re-aeration effects as seen in Figure 2. 

 In other words, Figures 1 and 2 can be interpreted as follows: At 𝑡 = 0, biological waste material or 

pollutant is added to the river water with BOD concentration 6 times as high as DO concentration. The 

biological waste material immediately reacts with the DO causing the concentration to drop. Also the BOD 

concentration caused to drop. At a later time, the self-cleaning system of the water takes a leading role, so BOD 

concentration goes down to zero and the DO concentration goes up its normal value 1 due to re-aeration effects. 

For a high re-aeration rate 𝜆, the DO concentration immediately goes to its normal value and BOD concentration 

goes down to zero rapidly as figure 2 describes. 

 

4.2 Including Diffusion 

 We now consider that both the diffusion coefficients 𝐷1 and 𝐷2appear in the system of equation (3) and 

(4) are different from zero, i.e., 𝐷1 ≠  0  and𝐷2 ≠  0. Hence,the equations remain to be a system of diffusion-

reaction equations. Note that splitting the diffusion term from reaction term has computational advantages since 

simultaneous coupling over space and the various chemical species is then avoided, and it also offers room for 

massively parallel computing. Thus, using the discretization of diffusion term given in equations (21) and (22) 

and algorithms of an improved Runge–Kutta of order six given in [20], we have the simulation results with 

different diffusion and reaeration coefficients as shown in Figures 3 - 6. 
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Figure 3: Numerical solution for including diffusion with𝐷1 = 0.01𝑚2𝑑𝑎𝑦−1, 𝐷2 = 0.001𝑚2𝑑𝑎𝑦−1and 

𝜆 = 1𝑚2𝑑𝑎𝑦−1. 

 

 
 

Figure 4: Numerical solution for including diffusion with𝐷1 = 0.001𝑚2𝑑𝑎𝑦−1, 𝐷2 = 0.01𝑚2𝑑𝑎𝑦−1and 

𝜆 = 1𝑚2𝑑𝑎𝑦−1. 

 
 

Figure 5: Numerical solution for including diffusion with𝐷1 = 0.01𝑚2𝑑𝑎𝑦−1, 𝐷2 = 0.001𝑚2𝑑𝑎𝑦−1 and 

𝜆 = 3𝑚2𝑑𝑎𝑦−1. 
 

 
 

Figure 6: Numerical solution for including diffusion with𝐷1 = 0.001 𝑚2𝑑𝑎𝑦−1, 𝐷2 = 0.01 𝑚2𝑑𝑎𝑦−1and 

𝜆 = 3𝑚2𝑑𝑎𝑦−1. 
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In the Figures 3 – 6, we ignore all variations along the flow direction and depth of the river, but only 

observe along the cross-sectional area of a river of width one unit. At time𝑡 =  0, waste water is poured into the 

river water all over. But we assume that the water at the boundaries is clean and so there, the oxygen 

concentration is 1, and the BOD concentration is zero. But then, in addition to the self-cleaning effect from the 

reactive term, we get diffusion of the clean water from the boundaries which make the river clean faster than if 

we did not have this effect. As shown in figures, whenever the parameters 𝐷1 , 𝐷2and 𝜆 assume larger values the 

river gets cleaned faster. However, the same statement can be equivalently stated as: the parameters 𝐷1 , 𝐷2and 

𝜆 assume smaller values the river gets cleaned slower. 

 

5 Conclusions 

In this study, we have presented one-dimensional and unsteady coupled pair of nonlinear diffusion-

reaction equations to describe the environmental purification model and also computed its solutions using 

different numerical methods. We applied the results to two test cases and verified. Of these,the first being a zero 

diffusion case, while the other is a non-zero diffusion case. In the former case we have observed that the self-

purification of river takes place and the purification process is slower. However, in the latter case because of the 

diffusion coefficients of DO and BOD, the purification process of the river becomes so fast. In both cases with 

higher reaeration coefficient the river cleans faster. The algorithm has been implemented in Matlab, which was 

also used in generating all the graphics presented in the text. 
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