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Abstract: in the conventional one-dimensional mathematical modelling of fibre-reinforced thin-walled 

structures it is assumed that fibres have negligible thickness and they are perfectly flexible. Consequently, the 

constitutive equation forfinitedeformations of fibre-reinforced elastic solids involves no natural length. Based on 

incorporatingfibre bending stiffness into a continuum theory, asymmetric linearised elasticity theory that takes 

into consideration the effects of fibres bending stiffness, has been produced in[1]. Relatively, an accurate 2d 

thin-walled structures modeling has been presented in [2]. Based on the aforementioned 2d-theory and, as a 

particular case, this study presents one-dimensional mathematical modeling that takes into consideration the 

fibres bending stiffness, with the use of the displacement approximation of the bernoulli-euler beam model. 

Unlike its conventional one-dimensionalmodelingthe solution is obtained that contains an intrinsic material 

length parameter which may, for instance, be considered representative of thefibre diameter. Numerical results 

on the basis of the obtained solution are presented and discussed in this article for different boundary 

conditions of homogeneous fibre-reinforced rectangular beams. 

Keywords:fiber bending stiffness, beam deflection, couple-stress, asymmetric elasticity, intrinsic material area 

or length parameter. 

 

I. Introduction 
The presence of the fiber bending stiffness has received a significant attention that appears in the 

literature for studying the continuum theory of finite deformations of elastic materials. A non-symmetric stress 

and the couple-stress are requiredinasymmetric elasticity theory presented in [1]. Relatively, a version of 

asymmetric linear elasticity theory has been produced, as a particular case, by Spencer and Soldatos[1].A 

generalized, 6-degree-of-freedom, 2D model for plates with fibres resistant to bending has been developed by 

Soldatos in [2] where one extra elastic modulus, which has dimensions of force, is involved in each layer of the 

laminate. Consequently, some intrinsic material area or length parameter involved in the analysis that may be 

associated, for instance, with fiber thickness of fiber spacing[3]. With the use of the plate displacement 

approximation of Reissner (1944, 1945), plate model that accounts for fibrethickness and, consequently, for the 

ability of individual fibres to resist bending[4].Based on the aforementioned plates model developed in [2], 

different displacement approximations, which available in the literature, can be used to produce thin elastic plate 

and beam models that accounts for the effects of fibre resistant in bending. One of the commune usesof the 

aforementioned displacement approximations is the Bernoulli-Euler beam theory that provides a means of 

calculating the deflection of elastic beams which deformed in linear scale. As pointed out in [5], because of the 

simplicity of Euler-Bernoulli beam theory that provides reasonable engineering approximations when applied on 

several problems, it is commonly used. In addition, this theory appears in the literature with different names 

such as classical beam theory, Bernoulli beam theory, or Euler beam theory. This conventional theory was 

applied to solve problems of small elastic beams deflection where the beams are reinforced by fibres which 

assumed to have negligible thickness and they are perfectly flexible. In the present study, the fibres are assumed 

to have the ability to resist bending. Consequently, an extra elastic modulus has been involved in the theory, 

which, unlike its conventional counterparts.    

The purpose of the this article is to present a beam theory with the use of the displacement 

approximation of the Bernoulli-Euler beam model in connection with the generalized, 6-degree-of-freedom, 2D-

plates model thathas been developed by Soldatos in [2]. A cross-ply laminated beam of transversely isotropic, 

linearly elastic material that contains a single, unidirectional family of straight fibres which can resist bending is 

assumed to be subjected to small deformation is considered in the present study. The Constitutive equations 

considering fiber bending stiffness have been produced based on the use aforementioned displacement 

approximation of the Bernoulli-Euler beam model in section 3. Consequently, section 4 presents the Navier-type 

differential equations which have been solved for the static solution in section 5. Numerical results and relevant 

discussionbased on the obtained solutions have been conducted in section 7. The main conclusions of this article 

as well as some research points for future related work are finally summarized in Section 8. 
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II. Problem Formulation 
Consider a cross-ply laminated plate of transversely isotropic, linearly elastic material having arbitrary 

constant thickness h in the z direction and, horizontal constant length L1 in the x direction. The considered plate 

is assumed to be of infinite extent in the y direction. Furthermore, the plate contains fibers which are lying in 

parallel to the x-directionand has the ability to resist bending. Different sets of end boundary conditions are 

applied on the ends𝑥 = 0, 𝐿1. 

 

 
Figure1. Co-ordinate system 

 

 
Figure 2.An example of the beam layer numbering 

 

 
Figure 3.Lateral loading 

 

As a result of the plane-strain symmetries involved in this problem, all quantities involved are 

independent of y and the displacement function in y direction is equal to zero. According to this any of the plate 

cross-sections could alternatively be regarded as a transversely isotropic beam of thickness h, length L1and a 

unit width along the y-direction.A given external lateral loading𝑞 𝑥  is applied on the beam which causes small 

static flexure. The loading acts normally and downwards on thetop lateral plane of the beam.  
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III. Constitutive Equations Considering Fiber Bending Stiffness 
The elastic beam model begins with the displacement approximation of the Euler-Bernoulli Beam 

theory that has the following form: 

𝑈 𝑥, 𝑧, 𝑡 = 𝑢 𝑥, 𝑡 − 𝑧𝑤,𝑥 ,(1-a)    

𝑊 𝑥, 𝑧, 𝑡 = 𝑤(𝑥, 𝑡),                                                                 (1-b)    

 

where t denotes time. In addition, U x, z, t   and W x, z, t  represent the displacement components of a 

point  x, y, z, t along x and z directions, respectively. Moreover, 𝑤(𝑥, 𝑡) presents the transverse deflection of the 

beam. It can be seen that the transverse deflection is assumed to be independent of the beam thickness. In 

addition, 𝑢 𝑥. 𝑡  represents the in-plane displacement of the beam middle plane. Because of that, they have 

evidently dimension of length. 

   Inserting the displacement approximation (1) into the following well-known linear kinematic relations: 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
, 𝛾𝑥𝑧 =

𝜕𝑈

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
,                                                                                                    (2)   

yields the following approximate strain field: 

𝜀𝑥 = 𝑒𝑥
𝑐 + 𝑧𝑘𝑥

𝑐  ,   𝛾𝑥𝑧 = 0 ,                                                                                                  (3) 

where 

𝑒𝑥
𝑐 = 𝑢,𝑥  ,  and𝑘𝑥

𝑐 = −𝑤,𝑥𝑥  ,   (4) 

 

where the prime denotes the ordinary differentiation with respect to z. The quantities denoted with a 

superscript “c” are identical with their classical beam theory counterparts where the fibers have no bending 

stiffness.  

The beam is assumed to be composed of an arbitrary number, N, of perfectly bonded transversely isotropic 

layers. Accordingly, the generalised Hooke’s law within the kth layer of such a cross-ply laminate is given as 

follows: 

𝜍𝑥
(𝑘)

= 𝑄11
(𝑘)

𝜀𝑥 , 𝜏(𝑥𝑧 )
(𝑘)

= 𝑄55
(𝑘)

𝛾𝑥𝑧 = 𝑄55
(𝑘) 0 = 0,                                                            (5) 

 

where𝜏(𝑥𝑧 ) denotes to the symmetric part of the stress tensor component and the appearing 𝑄,𝑠are the reduced 

stiffnesses [6]. Quantities with superscript “k” are due to the 𝑘𝑡ℎ  layer of a cross-ply laminate. 

In the presence of the fiber bending stiffness, the elasticity theory requires to include the couple-stress 

and consequently asymmetric stress [1]. The anti-symmetric part of the associated shear stress tensor component 

is denoted by symbol with indices in square brackets. This part is defined as follows[2]:  

𝜏[𝑥𝑧 ]
(𝑘)

= −𝜏[𝑧𝑥 ]
(𝑘)

=
1

2
𝑚𝑥𝑦 ,𝑥

(𝑘)
=

1

2
𝑑𝑓 (𝑘)

𝐾𝑧 ,𝑥
𝑓

= −
1

2
𝑑𝑓 (𝑘)

𝑤,𝑥𝑥𝑥 .                                                 (6) 

 

Here 𝐾𝑧
𝑓(𝑘)

 represents the fibers curvature.In addition,𝑚𝑥𝑦
(𝑘)

represents the non-zero couple stress which is related 

to the fiber curvature [2]. Moreover,  𝑑𝑓(𝑘)
 is an elastic modulus that accounts for the fiber bending stiffness in 

the k-thlayer. This elastic modulus has dimension of force [2]. In this regard, the following notation: 

𝑑𝑓(𝑘)
= 𝐶11𝑙

(𝑘)𝐿1 ,                                                                                                           (7)      

 

is employed to include a material intrinsic length parameter𝑙(𝑘), which may, for instance, be considered to be 

related to the fiber thickness in the k-th layer[3].  Thus, the shear stresses take the following form: 

𝜏𝑥𝑧
(𝑘)

= 𝜏(𝑥𝑧)
(𝑘)

+ 𝜏[𝑥𝑧 ]
(𝑘)

 ,                                                                                                        

   (8) 

𝜏𝑧𝑥
(𝑘)

= 𝜏(𝑥𝑧)
(𝑘)

− 𝜏[𝑥𝑧 ]
(𝑘)

 , 

 

The equations of motion [2] take the following form: 

𝜍𝑥 ,𝑥
(𝑘)

+ 𝜏 𝑥𝑧 ,𝑧
(𝑘)

− 𝜏 𝑥𝑧 ,𝑧
(𝑘)

= 𝜌𝑈 (𝑘),                                                                                         (9-a) 

𝜏 𝑥𝑧 ,𝑥
(𝑘)

+ 𝜏 𝑥𝑧 ,𝑥
(𝑘)

 + 𝜍𝑧 ,𝑧
(𝑘)

= 𝜌𝑊 (𝑘).                                                                                       (9-b) 

 

Furthermore, with the use of equations (5), (6) and (8), the shear stresses can be written as follows:   

𝜏𝑥𝑧
(𝑘)

= 𝑄55
(𝑘)

𝛾𝑥𝑧 −
1

2
𝑑𝑓 (𝑘)

𝑤,𝑥𝑥𝑥 = −
1

2
𝑑𝑓 (𝑘)

𝑤,𝑥𝑥𝑥  ,                                                          (10-a) 

𝜏𝑧𝑥
(𝑘)

= 𝑄55
(𝑘)

𝛾𝑥𝑧 +
1

2
𝑑𝑓 (𝑘)

𝑤,𝑥𝑥𝑥 =
1

2
𝑑𝑓 (𝑘)

𝑤,𝑥𝑥𝑥  ,                                                               (10-b) 
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In addition, the force and moment resultants are as follows: 

𝑁𝑥
𝑐 =  𝜍𝑥

ℎ

2

−
ℎ

2

𝑑𝑧,  𝑀𝑥
𝑐 =  𝜍𝑥

ℎ

2

−
ℎ

2

𝑧𝑑𝑧,  𝑀𝑥
𝑓

=
1

2
 𝑚𝑥𝑦

ℎ

2

−
ℎ

2

𝑑𝑧,                                (11) 

 

Where Mx
f  is related to the moment resultants caused by the present of the fiber bending stiffness.   In order to 

obtain the tow unknown degrees of freedom (𝑢, and 𝑤), the following relevant equations of motion (Soldatos, 

2009) will be applied:  

𝑁𝑥 ,𝑥
𝑐 = 𝜌0𝑢 − 𝜌1𝑤 ,𝑥  ,         (12-a) 

Mx,xx
c + Mx,xx

f = q x + ρ
0

w + ρ
1

u ,x − ρ
2

w ,xx  ,      (12-b) 

 

where the dots stand for ordinary differentiation with respect to time and, the coefficients which are in the 

inertia terms are defined as follows: 

𝜌𝑖 =  𝜌
ℎ

2

−
ℎ

2

𝑧𝑖𝑑𝑧.                                                             (13) 

 

Here 𝜌  denotes the material density of the elastic beam considered. The equations of motion (13) are associated 

with the following variationally consistent set of end boundary conditions at  𝑥 = 0, 𝐿1[2]: 

either𝑢 or 𝑁𝑥
𝑐  is prescribed,                                                                                         (14-a) 

either𝑤 or 𝑀𝑥 ,𝑥
𝑐 + 𝑀𝑥 ,𝑥

𝑓
 is prescribed,                                                                          (14-b) 

either𝑤𝑥  or  𝑀𝑥
𝑐 + 𝑀𝑥

𝑓
 is prescribed,                                                                            (14-c)                                 

 

IV. Navier-Type Differential Equations 
Inserting the equations (5-8) and (10) into equations (11) yields the following force and moment resultants in 

terms of the tow degrees of freedom and their derivatives: 

 
𝑁𝑥

𝑐

𝑀𝑥
𝑐  =  

𝐴11
𝑐 𝐵11

𝑐

𝐵11
𝑐 𝐷11

 ×  
𝑢,𝑥

−𝑤,𝑥𝑥
   ,𝑀𝑥

𝑓
= −

1

2
ℎ𝑑𝑓𝑤,𝑥𝑥 ,                                         (15) 

 

where the appearing rigidities can be calculated by the use of the following expressions: 

(𝐴11
𝑐 , 𝐵11

𝑐 )  = 𝑄55
 𝑘  1, 𝑧 𝑑𝑧

ℎ

2

−
ℎ

2

,        (16-a) 

𝐷11 =  𝑄11
 𝑘 

𝑧2𝑑𝑧
ℎ

2

−
ℎ

2

,         (16-b) 

 

The equations of motion (12) which contain the term that related to the presence of the fiberbending 

stiffness can be converted into a set of tow differential equations for the same number of main unknowns as 

follows: With the use of equation (3.13), these differential equations can be obtained in terms of the 

displacement field yielding the following Navier-type differential equations system:  

𝐴11
𝑐 𝑢,𝑥𝑥 − 𝐵11

𝑐 𝑤,𝑥𝑥𝑥 = 𝜌0𝑢 − 𝜌1𝑤 ,𝑥 ,                       (17-a) 

𝐵11
𝑐 𝑢,𝑥𝑥𝑥 −  𝐷11

𝑓
 𝑤,𝑥𝑥𝑥𝑥 = 𝑞 𝑥 + 𝜌0𝑤 + 𝜌1𝑢 ,𝑥 − 𝜌2𝑤 ,𝑥𝑥 ,     (17-b) 

 

which are called the Navier-type differential equations system where the shown rigidity in equation 

(3.16-b) is depending on the conventional rigidity,D11 , and  the fiber bending elastic modulus df  and defined 

according to: 

𝐷11
𝑓

=
1

2
ℎ𝑑𝑓 + 𝐷11          (18) 

 

According to the number of end boundary conditions (14), with respect to the co-ordinate parameter x, 

the equations (3.15) would be a sixth order set of ordinary differential equations. These can be solved when a 

particular set of boundary conditions is specified at each end of the beam. It can be observed that, the difference 

between equations (3.15) and their counterparts, met in the case perfectly flexible fibers seen in the classical 

beam theory, is the definition of the rigidity𝐷11
𝑓

 shown in equation (18). 

 

V. Static Solution 
In the present section, the considered beam is subjected to under normal static load applied on its top 

surface. Therefore, the 1D static solution is found for the considered flexure problem. It can be resulted that the 

inertia terms appearing in the right-hand sides of the motion equations (17) are disregarded to yield the 

following equilibrium equations: 
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𝐴11
𝑐 𝑢,𝑥𝑥 − 𝐵11

𝑐 𝑤,𝑥𝑥𝑥 = 0,            (19-a) 

𝐵11
𝑐 𝑢,𝑥𝑥𝑥 −  𝐷11

𝑓
 𝑤,𝑥𝑥𝑥𝑥 = 𝑞 𝑥  ,    (19-b)                         

The lateral load function can be expressed in the following Fourier series. 

𝑞 𝑥 = 𝑞𝑚 𝑠𝑖𝑛 𝑝𝑚𝑥 , 𝑝𝑚 = 𝑚𝜋 𝐿1 ,       𝑚 = 1, 2, …  .        (20) 

In addition, the following boundary conditions can be applied on the ends𝑥 = 0, 𝐿1 : 

at a simply supported end: 𝑁𝑥
𝑐 = 0, 𝑤 = 0,𝑀𝑥

𝑐 + 𝑀𝑥
𝑓

= 0,                                      (21-a) 

at a clamped end: 𝑢 = 0, 𝑤 = 0, 𝑤,𝑥 = 0,        (21-b) 

and at a free end: 𝑁𝑥
𝑐 = 0,𝑀𝑥 ,𝑥

𝑐 + 𝑀𝑥 ,𝑥
𝑓

= 0, 𝑀𝑥
𝑐 + 𝑀𝑥

𝑓
= 0,                                     (21-c) 

 

The general solution of the non-homogeneous ordinary differential system (19) will be the tow degrees of 

freedom𝑢, and𝑤and has the following form:  

𝑆 = 𝑆𝑐 + 𝑆𝑝 .                  (22)                                                                                               

 

where𝑆𝑐  is the complementary solution and 𝑆𝑝  is a particular solution of the non-homogeneous system. 

The effective way to test the reliability of the presented theory is by performing numerical comparison with the 

corresponding results of the static plane strain asymmetric-stress elasticity solution found in[7] and, further, has 

been discussed in[3].In this subsection, the beam is taken as simply supported at the ends 𝑥 = 0, 𝐿1.  

The simply supported boundary conditions (21-a) are satisfied by the following trigonometric displacement 

choice of 𝑆𝑝 :  

𝑢 = 𝐴𝑐𝑜𝑠 𝑝𝑚𝑥 ,𝑤 = 𝐶𝑠𝑖𝑛(𝑝𝑚𝑥).       (23) 

 

Inserting equations (23) into Navier-type differential equations (21) will convert it into the following system of 

tow simultaneous linear algebraic equations of the tow unknown constants A and B. 

 
𝑝𝑚

2 𝐴11
𝑐 −𝑝𝑚

3 𝐵11
𝑐

𝑝𝑚
3 𝐵11

𝑐 −𝑝𝑚
4 𝐷11

𝑓   
𝐴
𝐵
  =  

0
𝑞𝑚

 ,        (24) 

 

In order to find the values of A and B, the algebraic equations system (24) will be solved.For a homogeneous 

rectangular (𝑁 = 1)plate, Eq. (16-a) gives: 

𝐵11
𝑐 = 0.                                                             (25) 

 

Therefore, the Navier-type differential equations (19) reduce to the following uncoupled sets of differential 

equations: 

𝐴11
𝑐 𝑢,𝑥𝑥 = 0,            (26-a) 

− 𝐷11
𝑓
 𝑤,𝑥𝑥𝑥𝑥 = 𝑞 𝑥 ,                (26-b)      

 

The general solution of the sixth order equilibrium differential equations system (19) can be written as follows:  

𝑢 =
𝑘1

𝐴11
𝑐 𝑥 +

𝑘2

𝐴11
𝑐 +𝐴𝑐𝑜𝑠 𝑝𝑚𝑥 ,    (27-a) 

𝑤 =
−𝑘3

6𝐷11
𝑓 𝑥3 −

𝑘4

2𝐷11
𝑓 𝑥2 −

𝑘5

𝐷11
𝑓 𝑥 −

𝑘6

𝐷11
𝑓 +𝐶𝑠𝑖𝑛(𝑝𝑚𝑥).     (27-b) 

 

Values of the arbitrary constants (𝐾1, 𝐾2 , … , 𝐾6) can be found when a set of six end boundary 

conditions is specified, see Eqs.( 21). It should be noticed that as in perfectly flexible fibers case, thesearbitrary 

constants take zero value when SS boundary conditions are applied. This has as well been pointedoutin [8].It is 

worth mentioning the obtained general solution (27) is influenced the resistance of fibers in bending. This 

general solutioncanbe reduced to the perfectly flexible fibers solution by giving value of zero to the fiber 

bending elastic modulus 𝑑𝑓 .Consequently, the value of the rigidity 𝐷11
𝑓

= 𝐷11  (see equation 18). 

 

VI. Numerical Results and Discussion 
The following numerical results are for homogeneous transverse fiber-reinforced rectangular beams 

characterized by the following material properties[8]: 

𝐸𝐿 𝐸𝑇 = 40,    𝐺𝐿𝑇 𝐸𝑇 = 0.5,   𝐺𝑇𝑇 𝐸𝑇 = 0.2, 𝑣𝐿𝑇 = 𝑣𝑇𝑇 = 0.25.                        (28) 

Here, the subscript L signifies the longitudinal fibers direction, T denotes the transverse fiber direction, and 𝑣𝐿𝑇  

stands of the Poisson ratio that measure strain in the transverse direction T under uniaxial normal stress in the L-

direction. The elastic moduli shown in equations (5) and (7) are thus obtained by the use of equations (28) in 

conjunction with well-known related formulas (e.g. [6]). As pointed out in [4], the material property (28 a) 

characterizes the high stiffness ratio, such as, strong graphite-epoxy fibers, an appropriate value to the bending 
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stiffness modulus of the fibers has to be assigned. In this regard and, in order to perform an appropriate 

comparison in the presented numerical results, the additional elastic 𝑑𝑓  is represented as follows: 

𝑑𝑓 =
1

12
𝐶11𝑙𝐿1 ,                                       (29) 

whichis employed to include a material intrinsic length parameter𝑙, which may, for instance, be considered 

related to the thickness or the diameter of the fiber. Furthermore, the following non-dimensional intrinsic 

material parameter:  

𝜆 =
𝑙

ℎ
         (30) 

which is related the additional elastic 𝑑𝑓 , and may be thought of as a fiber-to- plate or beam thickness.The 

normalized deflection employed for presentation of numerical results is defined according to:  

𝑊 = 𝐸𝑇𝑊 𝑞1𝐿
2        (31) 

In the beginning of this section, the accuracy of the obtained solutions is assessed by comparing the 

results based on it to their counterparts based on the exact elasticity solution presented in [7] and [3].  After the 

reliability of the method has been checked, the effects of different sets of endboundary on the deflection of 

corresponding beams deformed by cylindrical bending. These boundary conditions are clamped-clamped end 

(CC), clamped-free end CF) and clamped-simply end (CS) boundary conditions.  

 

 
Figure 4. Deflection pattern along the x-axis of a SS homogeneous beam 

 

Figure 4 depicts and compares non-dimensional SS beam deflection and predicted by both the solution 

obtained in the present study and the corresponding exact polar elasticity solution [7] and [3] in which used as a 

benchmark in [4]. The beam is thin (ℎ 𝐿 = 0.01) where the fiber runs along the x-direction. For comparison 

reason, the figure describes deflection not only for a case that fibers which have the bending stiffness (𝜆 =
0.03) but also for the case of the perfectly flexible (𝜆 = 0).It is initially observed that, the differences between 

the deflection obtained based on the exact and the thin theory where (𝜆 = 0) is very similar to that obtained 

based on the present solution presented in this study and the exact polar elasticity solution [7] and [3] where 

(𝜆 = 0.03). It can be seen that, fiber bending resistance (𝜆 = 0.03)  reduces the beam deflection shown in the 

case of theperfectly flexible (𝜆 = 0).  

 

 
Figure 5.Deflection of a SS homogeneous beam at different values of λ 
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Figure 5 displays the through length distribution of 𝑊  for the simply-simply supported (SS) beam at different 

values of𝜆. It is observed that by increasing the values of𝜆, the deflection of the beam decreases. This, as 

pointed out in [4], makes evident that the increase of the𝜆valuesis equivalent to increasing the fiber bending 

stiffness. The curve which presents the largest values of deflection (𝜆 = 0) is due to the case of perfectly 

flexible fibers.   

 

 
Figure6.Deflection of a CC homogeneous beam at different values of λ 

 

Figure 6 shows the defection of a CC homogeneous beam at different values of λ. It is, again, seen that 

increasing the value of λ reduces the beam deflection. Attention is drawn on the shape of the deflection at the 

fiber ends by presenting aseparate 'window' that lies underneath of the principal figure. It is observed that the 

effect of the clamped-clamped boundary conditions (21-b)becomes more evident where the beam ends are 

restrained against rotation. Furthermore,regardlessof whether the fibers are assumed perfectly flexible (𝜆 = 0) 

or have the ability to resist bending (𝜆 = 0.0001, 𝜆 = 0.0003 and𝜆 = 0.0005), the maximum beam deflection 

of the clamped-clamped case is considerably smaller than that in the case of simply-simply supported beam 

(figure 5). 

 

 
Figure 7. Deflection of a CF homogeneous beam at different values of λ 
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Figure 7 presents the deflection of a CF homogeneous beam at different values of λ including the case 

of the perfectly flexible fibers(𝜆 = 0). The deflection of this cantilevered beam is clearly seen decreasing when 

the value of 𝜆 increses. This emphasise, again, that the increase of the𝜆 values is equivalent to increasing the 

fiber bending stiffness or, consequently, increasing the resistance of the beam bending.    

 

 
Figure 8. Deflection of a CS homogeneous beam at different values of λ 

 

The deflection distribution through the length of theCS homogeneous beam is shown in figure 8 for the case of 

perfectly flexible fiber 𝜆 = 0  and different cases of the presence of fiber bending stiffness(𝜆 = 0.0001, 𝜆 =
0.0003 and𝜆 = 0.0005). The difference of the effects of the boundary conditions can be seen clearly at the 

beamends. This is observed where the clamped beam end(X 𝐿 = 0) is restrained against rotation while is not at 

the simply supported end  (X 𝐿 = 1). In addition, the maximum beam deflection of the clamped-simply case is 

smaller thanthat in the case of simply-simply supported beam, and beiger than that beam is clamped-clamped 

ends. It should be observed that, the presence of fiber bending stiffness 𝜆 = 0.0005results an approximately 

23% reduction of the maximum non-dimensional deflection at the middle beam length(X 𝐿 = 0.5) (see fig.5, 

6and 8). 

 

VII. Conclusion 
Fiber bending stiffness is considered in the present study of Euler-Bernoulli beam theory. The 

displacement field of the classical beam theory is employed in the equations of motions which takes into 

account the ability of fibers to resist bending that have been presented in [2]. The static solutions of these 

equations of motions has been found in the present study where associated with an appropriate different sets of 

boundary equations that consider the fiber bending stiffness. Considerable numerical results have been 

presented for the static homogeneous beam bending problem where the beam is reinforced by fibers that resist 

bending. An attention is focused on the influence of the resistance of fibers in bending on the beam deflection. It 

has been evidently, as expected, shown that the increase of the fiber bending stiffness decreases the deflection of 

the beam. An attention has been drawn to the effect of the boundary conditions on the shape of deflection 

practically for the clamped beam ends where compared that with the simply-supported ends. Further study could 

be conducted on the other versions of plate theory considering the fiber bending stiffness such as Kirchhoff plate 

theory, Timoshenko beam theory and Higher-order theory.  
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