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Abstract:  In this paper, conditions under which linear control systems which are completely observable are 

stabilizable are investigated. Such systems are shown to be stabilizable provided they satisfy special computable 

conditions. 
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I. Introduction 
We shall study in    the stabilizability of linear control systems of the form 

 

   
                    

        
           

                                                            (1.1) 

 

where we take         as the state,        as the input,        as the output, where we also take 

A, B and H respectively as n x n, n x m and p x n constant matrices . Note that we shall regard n, m and p as 

positive integers. The importance of the concept of stabilizability of any control systems that is observable 

cannot be quantified on account of its intrinsic theoretical interest to Mathematicians and applied Economists. 

Its importance also lies in application to design engineering and business management. The importance of 

stabilizabilty of systems finds its applications in Political Sciences too, where those in power usually contend 

with many seeming variables which are not related. Such variables like national resource distribution, State and 

Local Government administrations, which constitute variable co-ordinates of the country under consideration.  

 In each of the above situations, however , we have to urgently point out that the stabilizability methods 

outlined in this paper may not be applicable directly to these rather  more complex problems which are non- 

linear systems. But in each case, however, the subject of stabilizability of solutions may still be considered by 

approximate methods solutions, either by linearization or by higher functional analytic methods or by more 

sophisticated algebraic concepts.  

 Note that stabilizability of systems of the form (1.1) has been studied extensively. We can see for 

instance [1], [2]  and other relevant references. In each of these cases, the proofs of the results are quite involved 

and big.  In this paper, we try to prove a shorter and rather easier proof of the stabilizability conditions for the 

systems (1.1) and so to make it more accessible to a greater number of people who may require the results. For 

any group of persons who need the stabilizability of control systems, the knowledge of some aspect of 

Functional Analysis, and of course, basic linear Algebra is very important. The stabilizability of linear control 

systems touches virtually all the aspects of systems theory. As pointed by LaSalle [2], an important condition for 

linear feedback stabilizability is controllability. Obviously, a state space     is such that a given control systems 

can be divided into sub-systems; some of which are controllable and others uncontrollable. As pointed out also 

by LaSalle [2], the entire systems is still stabilizable provided its uncontrollable sub-systems is asymptotically 

stable. So, we shall not be concerned with the nature of control systems mentioned, rather we require that the 

given initial state             , say, the systems (1.1) has a solution under suitable admissibility conditions on 

the part of the input u. Furthermore, it should be expected following the well-known duality principle between 

controllability and observability ( see Lee & Markus [3]) that observability should feature in stabilizability. 

 This paper is made into three major sections. Apart from introductory remarks which we refer to as 

section 1, we have preliminaries as Section 2. That section aims at explaining the relevant terms exactly and will 

also assemble facts in the form of lemmas or theorems that are very crucial to establish the main result that will 

be treated in section 3.Thus we have: 

 

II. Preliminaries 
Let us look into the linear differential systems  

                                                                                                                 (2.1) 

in      where A is a constant n x n  matrix. We want to establish the stabilizability of the control systems  (1.1) 

in relation to the stability conditions for systems of the form  (2.1). Let us first of all have some important 



Linear Feedback Observable Systems And Stabilizability 

DOI: 10.9790/5728-1303054348                                         www.iosrjournals.org                                     44 | Page 

definitions that will help us in this paper. Note that the stability and the asymptotic stability of solutions of the 

systems (2.2) are well known. We start with the following definitions and propositions.  

 

Proposition 2.1 [Kalman’s rank condition].  

The systems (1.1) with state         is controllable if and only if  

                                                                                             (2.2) 

 

Definition 2.1 (Controllability)  

 The control systems (1.1) is said to be Euclidean controllable if for each         
  and         

 , 

there exists a finite time         and admissible control u such that the solution       , say, of (1.1) satisfies  

            and            . 

Note that in the definition 2.1 above, if      , we say that the given systems is null-controllable.  

 

Lemma 2.1 

 If       is a fundamental matrix of the systems (1.1), then for        some non-zero vector, (1.1) is 

Euclidean controllable on          if and only if                implies that       where      stands for 

matrix transpose.  

 Now let us consider the solution      of the control systems (1.1) with initial state     . If the control 

function (input) is known from time      , say, and the initial state      is uniquely determined for each output 

y, we say that the initial state    is observable. Formally, we have the following definition; 

 

 Definition 2.2(Observability)  

 The systems (1.1) with the state x, input u and output y, is said to be observable if for each initial point  

                                       , there exists           such that for each admissible input u and 

output y with               , the state     can be determined.  

 

Definition  2.3 [Complete Observability]. 

 If all the initial states for the systems (1.1) are observable, then we say that the given system is 

completely observable. 

 

 In short, it is easy to obtain from the above definitions of controllability and observability that the two 

concepts in a system theory enjoy some mutual duality relationship (see[4].. Because of this, a computational 

condition derivable from the famous Kalman rank condition is also available for observability, which we 

express as follows; 

 

Proposition 2.2 [Kalman rank condition].  

 The systems (1.1) is observable if and only if  

  rank                                                                                      (2.3)   

  

 As we know, stabilizability is derivable from stability. In short, as pointed out by LaSalle [2], linear 

systems (1.1) can be stabilized if there exists a matrix K such that the systems   

                                                                                                        (2.4) 

is asymptotically stable. This can be stated equivalently as if the matrix       is stable. For this situation, the 

control      `is given in the feedback form  

                     

ensuring the control systems (1.1) assumes the form (2.4). Let us remark as follows; 

 

Remark 2.1 

 For convenience, we take              (a suitable  n x n constant matrix ) and define          
  . That is  Z now becomes any convenient  n x n constant matrix. In view of this remark, (2.4) can assume the 

form 

     
                

           

             
  `                                                                                     (2.5)

  

As a matter of fact, LaSalle [2][5] defines stability of control systems (1.1) in terms of the stability of the 

differential systems (2.1), in terms of definition which we hereby adopt. 
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Definition 2.4 (Stabilizability LaSalle [2] )   

The systems (1.1) or the pair  (A , B) is stabilizable  if there exists a matrix  C such that         is 

stable. 

 

Note:  A simple test for asymptotic stability of linear systems of the form (2.5) is that all the eigenvalues of Z 

have negative real parts [4]  

Now, a nice method of determining stabilizability is the use of Lyapunov functions. Any systems for which a 

suitable Lyapunov function can be constructed is asymptotically stable. For linear systems, however, the process 

of determining Lyapunov functions is not very difficult. Lyapunov functions are usually defined along the 

solution paths x, say, of the systems under consideration.  

 

Definition 2.5 

 A real-valued positive function       whose first order derivative for all non-zero values of x exists is 

said to be Lyapunov function for the systems (2.5) of which x is a solution, (see [5]). 

 

 Now, from (2.5) and by the well known variation of parameter formula, it can be seen that the input  y 

is given by  

                                
 

 
                                                  (2.6) 

 

Now, let us define  

                   
 

 
                                                       (2.7) 

 So we have  

                                                                                                        (2.8) 

If we now consider the performance of the systems  (2.5) over some time interval          , we have the 

observability  grammain. 

 

Definition 2.6 [Observability Grammain]. 

 The n x n matrix denoted           and defined by  

   

                 
     

 
                                                                  (2.9) 

Is called the observability grammain of the systems (2.5) over the interval           
    

Remark 2.2 

 We hereby remark as follows;  

(a) The controllability grammain is defined just as in (2.9) with H replaced by B.  

(b) If the systems (2.5) is completely observable and we consider the entire interval           we write the 

grammain (2.9) as  

 

               
   

 
                  

 (2.10) 

 

We note that              is a positive semi-definite n x n matrix. LaSalle [2]. We hereby state the following well 

known result which is very very important in greater detail for completeness. 

 

Lemma 2.2  

 A necessary and sufficient condition for the control systems (2.5) to be completely observable on  

          is that the observability grammain             is nonsingular (see [6]). 

Proof:   

(Necessity): We assume the system (2.5) is completely observable; we prove that              is non-singular. 

But suppose, on the contrary, that              is singular. This means that for some non-zero p-row vector v, 

say, we have               then 

                                                                     
 (2.11) 
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Thus, from (2.9), we get (2.11) above as  

 

             

 
                   

 

         
  
 

                         

 

                                                                                           
 (2.12) 

 

Now, from some initial state      in (2.9), taking        , (2.12) together with (2.8) imply that for some non-

zero initial state     , the signal   and the output  y, each always zero for all non-zero initial point. This therefore 

contradicts the observability of this systems. Consequently we conclude that              is non-singular.  

  

(Sufficiency): Let us now assume that the grammain            is non-singular. From (2.8), we obtain by 

multiplying each side by    
        thus  

 

    
                   

              
 

Integrating both sides from  0 to     we get  

       
    

 
                    

    
 

            

 

This, considering (2.9) gives  

 

                      
 
  

  
 

     .  

That is  

 

                    
      

            
  
 

                                      

 (2.13) 

 

(2.13) shows that the initial state      can be uniquely determined from the signal ɳ and the output, provided that 

the grammain           is invertible. This means that the given systems (2.5) is observable, completing the 

proof of the lemma. 

 Now, we are ready to face the main result of this paper. However, in doing so, we must strictly adhere 

to the following very crucial remarks.  

 

Remark 2.3 

(a) In what follows, Z in (2.5) above and A + BC of (3.4) below will play an interchangeable roles each being a 

constant n x n matrix. The only precaution we must take is to obey the laws of matrix transpose for product 

s of matrices.  

(b) As a result of (a) above, all the conditions to be outlined in the following section as a whole concerning  Z 

are transferable to  A + BC. For example, the expression (2.9) for the observability grammain can be 

written simply as  

 

                     
    

 
                                                  

 (2.14) 

 

We are now ready to state our main result. 

 

III. Main Result 
Theorem 3.1 (Stabilizability Theorem). 

In       the n-dimensional Euclidean space, consider the linear control systems  

 

                          

        
                                                        (3.1) 

 

                                                                                               (3.2) 
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For which C, a constant m x n matrix, has a linear feedback control 

                                                                                  (3.3) 

 

which transforms the control systems (3.1) to  

 

                                                                                   (3.4) 

In (3.1),                         are vectors and A, B and H are respectively n x n, n x m and p x n 

constant matrices and the n x n constant matrix  A  + BC is asymptotically stable. Assuming that the given 

systems (3.1) is completely observable, then for D, some positive n x n symmetric  matrix, the condition for the 

stabilizability of the systems (3.1)is that  

 

                                                           (3.5) 

where       denotes the matrix transpose.            

 

Proof:  

 Now, from hypothesis, the asymptotic stability of (2.5) is  

 

                                 

for the two solutions     and       of (2.5). By ( 2.10) we obtain the grammain of (2.5) as  

 

                
             

 

 
                                                   (3.6) 

Differentiating  (3.6), we get  

 

  
 

  

 

 
   

                      
           

 

 
     

                           (3.7) 

Now, evaluating this, we get  

 

  
            

       
                   

   

 
                               

 

and by asymptotic stability, we get  

 

                                     
 

Or 

 

                                                                       (3.8) 

 

and this is the required stabilizability condition as it applies to equation of type (2.5). Now, defining     
          and setting Z = A + BC  in  (3.8), with regards to the remark 2.3(a), we finally get the stabilizability 

equation for the systems (3.1) as  

 

                              

 

which reduces to  

 

                                       
 

                                        
completing the proof of the theorem. 

 

Example.  

The following example illustrates the application of the above theorem. 

Consider in     , the control systems  

 

                     
                   

                                                   (4.1) 

with feedback 

 

                                                                                              (4.2) 



Linear Feedback Observable Systems And Stabilizability 

DOI: 10.9790/5728-1303054348                                         www.iosrjournals.org                                     48 | Page 

  

 where                                                                             (4.3) 

 

Obviously, the systems (4.1) is of the standard form  

 

                
               

  

 

where           
  
   

          
 
                         

By the lemma 2, the given systems is clearly observable. Now, choosing        
  
  

  a positive symmetric 2 

x 2 matrix, we can determine a Lyapunov function for the systems (4.1) in terms of H. Also, with C of (4.3), the 

systems  (4.1) is now of the form  

 

                   
Where  

 

              
  
    

 . 

 The eigenvalues of A + BC have negative real parts, thus the systems (4.1) is stabilizable and clearly 

we seen that  

 

                                
Or 

 

                                         
as required. 
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