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Abstract: Pool-testing prevalence estimators are poor estimators of the actual prevalence of a traitthat is they 

have large bias and Mean Square Error (MSE) and this is a drawback tostatistical inference. This paper 

proposes a method of minimizing bias and MSE when weallow errors in inspection. The probability of declaring 

a group as defective is derived byassumption of law of total probability. Using Maximum Likelihood Estimators 

(MLE)method we constructed a prevalence estimator of the ordered probabilities. Theseprobabilities are used 

to order the groups via the method of Pool Adjacent ViolatorsAlgorithm (PAVA) in increasing order of 

prevalence. The weights used in PAVA areobtained by Appropriate Lagrange Multiplier (ALM). The prevalence 

of the ordered groupsis constructed. The combined unbiased estimator based on ordered groups is obtained 

usingBest Linear Unbiased Estimator (BLUE) method. The properties of the prevalenceestimator such as Bias 

and MSE are studied via Monte Carlo simulation. Simulations ofMSE and bias for un-ordered are carried out 

for comparison. It is established that theprevalence estimator based on ordered scheme has small bias and MSE 

compared to estimator based on un-ordered in pool-testing schemes. 

Keywords: Best Linear Unbiased Estimator (BLUE),Lagrange Multiplier,Maximum Likelihood 
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I. Introduction 
Consider a sample of a population of size 𝑁 with a purpose of estimating a prevalence p ofa trait. When 

N is large, it is easier to pool the items into batches (pool) of say, equal sizesand subject the items to a single 

test. This procedure is called pool-testing strategy. The strategy involves pooling units into pools, testing them 

and classifying each pool as defectiveor non-defective. A tested unit will be declared defective if the test results 

indicate thepresence of a specific characteristic otherwise declared non-defective. This concept ofpool-testing 

originated from Dorfman, (1943) who during the Second World War proposedan economical method for 

detecting Syphilis in US soldiers. Since then, there is abundantliterature on the subject for instance (see Sobel 

and Elashoff, 1975; Nyongesa, 2011 andBrookmeyer, 1999). 

When testing for a trait for example Syphilis, a mixture of urine of different persons iscreated and a test 

on the sample may result into an error due to the dilution of the sampleas seen in Hwang, (1976) who made 

discussions on types of errors such as dilution andconcentration. In this study, we discuss pool-testing procedure 

with errors in inspection.Pool-testing is two-fold, the first being classification of samples in a population while 

thesecond is estimating the prevalence.  

In estimating prevalence using pool-testing procedure, restricted maximum likelihood is applied and 

this is the problem we are concerned with. This is achieved by ordering the pools in an increasing rate of 

prevalence as discussed inSection 2. We derive probabilities to be used in the paper in Section 3, while in 

Section 4construction the estimator based on un-ordered groups is done. Ordering the probability ofclassifying a 

stratum as defective is carried out in Section 5 leading to derivation of therestricted maximum likelihood 

estimate of the prevalence. In Section 5 investigation of theproperties of the constructed estimator is shown. 

Construction of the unbiased combinedestimator is derived in Section 6 followed by investigation of its 

properties in Section 7. In section 8 wegenerate the asymptotic variance. Simulations and findings are discussed 

in Section 9 thenconcluded in Section 10 
 

II. Ordered scheme 
Suppose we have population divided into groups, which are further then divided intosubgroups that 

share a specific characteristic. This subgroups we refer to them as strata. Letthere be a total of k strata and 

individuals are then pooled into groups within each stratum. We construct the 𝑖𝑡ℎ  stratum containing 

𝑛𝑖pools/groups of different sizes 𝑠𝑖 ;  𝑖 =  1, 2. . . 𝑘.In pool-testing strategy each unit is assumed to represent an 

independent Bernoulli randomvariable where the probability that a selected subject possesses the characteristic 

of interestis 𝑝𝑖 . 
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These probabilities of the subgroups 𝑝𝑖  are supposed to be ordered in an increasing manner.If they are 

not ordered we require some prior knowledge to order them. A fundamentalmethod that will be useful in 

ordering probabilities in ordered scheme known as Pooladjacent violators algorithm (PAVA). This is the most 

commonly used algorithm forcomputing the isotonic regression for a simple order, as studied by Robertson et al. 

(1988). 
The PAVA method will be applied in this study to ensure that the probabilities are in anincreasing 

order. The probability of randomly selecting a subject not possessing the characteristic of interestis(1 − 𝑝𝑖). 

Thus the probability of randomly selecting a group of 𝑠𝑖subjects all of whom donot possess the characteristic of 

interest is(1 −  𝑝𝑖)𝑠𝑖 . Let the probability that an 𝑖𝑡ℎ  stratumpossess the characteristic of interest be denoted by 

𝑖and it will be given by 

𝑖 = 1 − (1 − 𝑝𝑖)
𝑠𝑖(1) 

Notice that Equation (1) does not involve errors and our major contribution is to introducean error 

component in the model. This is realistic since in the field experimental errorssuch as human and manufacturers 

errors are unavoidable. To introduce errors into themodel we shall require the theory of indicator functions as 

provided in the next Section. 

 

III. Derivation of Probabilities 
In this section we derive probabilities that will be useful in the subsequent development. Forthis 

purpose, the theory of indicator functions that we now define will be useful. 

 

𝑇𝑖 =  
1, if the test on the ith group is positive 

0, otherwise
  

𝐷𝑖 =  
1, if the test on the ith group is positive

0, otherwise
  

 

These indicator functions will help us introduce the error element in our model. In terms ofindicator 

function Equation (1) becomes, 

Pr 𝐷𝑖 = 1 = 
𝑖

= 1 − (1 − 𝑝𝑖)
𝑠𝑖  

The errors in our model are based on the manufacturers testing kit specifications that issensitivity and 

specificity. By sensitivity we mean the probability of classifying a defectivesample correctly, herein denoted 

by . While specificity, is the probability of classifying anon-defective sample correctly, herein denoted by. 

These two parameters in terms of theindicator functions are 

 = Pr 𝑇𝑖 = 1|𝐷𝑖 = 1                                                  (2) 

and 

 = Pr 𝑇𝑖 = 0|𝐷𝑖 = 0  3  
respectively. In this development, the error under consideration is due to manufacturer’sspecifications while 

other errors such as human errors will be assumed held constant. Discussions on other types of errors such as 

dilution and concentration can be found forinstance in Hwang, (1976). With this in mind, if we introduce an 

error component inEquation (1) we have 

𝑖 = Pr 𝑇𝑖 = 1  
and using the law of total probability, we have 

𝑖 = Pr 𝑇𝑖 = 1, 𝐷𝑖 = 1 +  𝑃𝑟 𝑇𝑖 = 1, 𝐷𝑖 = 0 ,                                                            
and upon simplifying gives 

𝑖 = 𝑃𝑟 𝐷𝑖 = 1 Pr 𝑇𝑖 = 1|𝐷𝑖 = 1 +  𝑃𝑟 𝐷𝑖 = 0 𝑃𝑟 𝑇𝑖 = 1|𝐷𝑖 = 0 ,             (4)                   
With the definition of sensitivity and specificity defined in terms of our indicator functions, using 

Equations (1), (2), (3) and (4), we have 

𝑖 = (1 −  1 − 𝑝𝑖)
𝑠𝑖  +  ( 1 −   1 − 𝑝𝑖)

𝑠𝑖           (5) 

 

IV. Estimation of prevalence in unordered scheme 
Let 𝑌𝑖𝑗 = 1 if the j

th
group in the i

th
 stratum possesses the characteristic of interest, and𝑌𝑖 = 0 otherwise, 

i = 1, 2, ..., j , j = 1, 2, ..., 𝑛𝑖 . If 𝑋𝑖 =  𝑌𝑖𝑗
𝑛𝑖
𝑗=1  groups test positive onthe test then 𝑋𝑖Binomial(𝑛𝑖 ,𝑖) the joint 

distribution of the𝑛𝑖groups can be given as 

 𝑃𝑟 𝑋𝑖 = 𝑥𝑖 |𝑛𝑖 , 𝑖 ,,  𝑖
𝑥𝑖 1 − 𝑖)

𝑛𝑖−𝑥𝑖                                  (6) 

assuming Equation (6) is continuous with respect to 𝑝𝑖  while other parameters are heldconstant the likelihood 

function of (6) can simply be written as 

𝐿 𝑝𝑖 |𝑛𝑖 , 𝑖 ,,  𝑖
𝑥𝑖 1 − 𝑖)

𝑛𝑖−𝑥𝑖   7  
 Maximum Likelihood Estimator of (7) has been derived see Brookmeyer, (1999) andNyongesa, (2011) 

as 
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𝑝𝑖 = 1 −  
 −

𝑥𝑖

𝑛𝑖

 +  − 1
 

1

𝑠𝑖

                                                                   (8) 

If we take our sensitivity and specificity as 100% i.e. = =100% as assumed by Thompson, (1962); 

that is, the test is free of errors Equation (8) reduces to 

𝑝𝑖 = 1 −  1 −
𝑥𝑖

𝑛𝑖

 

1

𝑠𝑖  9  

hence a result similar to Thompson, (1962). Also the asymptotic variance of (8) is shownas 

𝑣𝑎𝑟 𝑝𝑖  = 𝑠𝑖
−2 1 − 𝑝𝑖 

2−2𝑠𝑖   𝑖 1 − 𝑖   +  − 1 −2  (10) 
see Nyongesa, (2011). For further discussion of the properties of the estimator (8) see forexample Brookmeyer, 

(1999) and Hepworth, (2009) and Nyongesa, (2011). Equations (9)and (10) will be useful in our subsequent 

development of ordered testing scheme andconstruction of confidence intervals. The next section discusses the 

primary objective ofthis study; that is, ordered pool-testing scheme. 

 

V. Ordering of 
Consider an𝑖𝑡ℎ  stratum whose sample prevalence’s are isotonic with𝑝1 ≤ 𝑝2 …… ≤ 𝑝𝑖 .Hence,  are 

1 ≤ 2 . . . ≤ 𝑖and are increasing functions of 𝑝. The estimators of 𝑝 thatis𝑝1 ,𝑝2 , , . . . ,𝑝𝑖 , might not be isotonic 

in practice, Tebbs,(2003) i.e., 𝑝1 ,𝑝2 , , . . . , 𝑝𝑖 , might notbe ordered and in such circumstances 1
 ≤ 2

 . . . ≤

𝑖
 might not also be ordered. To estimate𝑖 ′𝑠 the method of MLE is applied by maximizing 

𝐿 𝑝𝑖 |𝑛𝑖 , 𝑖 ,,   𝑖
𝑥𝑖 1 − 𝑖)

𝑛𝑖−𝑥𝑖  

𝑛𝑖

𝑗 =1

 

 = (
1

, 2 . . . , 𝑖) subject to 1 ≤ 2 . . . ≤ 𝑖 . For   to be isotonic we need to put weightson the 𝑝𝑖  and 

this leads to estimating  by MLE under the condition 

                              {  ∶  0 ≤ 𝑖 ≤ 1, 1 ≤ 2 . . . ≤ 𝑖} , 

and this is accomplished by computing 

∗ = (1
∗ , 2

∗ . . . 𝑖
∗ ) , 

the isotonic regression of  = (
1

, 2 . . . , 𝑖) with weights 𝑤1 , 𝑤2 …… . 𝑤𝑖 . The method ofPAVA is used in 

ordering ∗ . For example, if ∗ = (1
∗ ≤ 2

∗ … . . ≤ 𝑖
∗ ) is the isotonic regression of   = (1

 < 2
 . . . < 𝑖

 .) with 

weights 𝑛1 , 𝑛2 …… . 𝑛𝑖  where 𝑛𝑖  is the number ofgroups/pools in an𝑖𝑡ℎ  stratum. 

 

VI. Restricted maximum likelihood estimate of prevalence 
In the preceding discussion, we have discussed how 𝑖 ′𝑠can be ordered and even how theycan be 

estimated. We are now in a position to estimate the prevalence of the trait. Utilizing(5) and replacing 𝑖 ′𝑠with 

𝑖
∗′𝑠after ordering, we have 

𝑖
∗ = (1 −  1 − 𝑝𝑖)

𝑠𝑖  +  ( 1 −   1 − 𝑝𝑖)
𝑠𝑖  

− 𝑖
∗ =   1 − 𝑝𝑖 

𝑠𝑖  +  − 1  

 1 − 𝑝𝑖 
𝑠𝑖 =

 − 𝑖
∗

  +  − 1 
 

 1 − 𝑝𝑖 =  
 − 𝑖

∗

 +  − 1
 

1

𝑠𝑖

 

 

hence𝑝𝑖
∗ becomes 

𝑝𝑖
∗ = 1 −  

 − 𝑖
∗

 +  − 1
 

1

𝑠𝑖

                                   ( 11) 

 

Notice by Invariance property in estimation theory (Lehmann and Cassella , 1994) that 𝑝𝑖
∗in (11) is the 

restricted MLE for 𝑝 under the group testing model subject to the constraintsthat 𝑝 is isotonic, then its ultimate 

estimator 𝑝 𝑖
∗ is given by 

𝑝 𝑖
∗ = (𝑝 1

∗, 𝑝 2
∗, … . . 𝑝 𝑛𝑖)

∗                 (12) 

where each 𝑝 𝑖
∗is as given in (11). Now that we have derived the estimator, it is customaryto discuss its properties 

namely biasness, MSE and its variance to measure its efficiency. 
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VII. Bias and MSE of Restricted MLE Estimator 𝑷 𝒊
∗ 

After deriving the restricted maximum likelihood estimator as provided in (12) we can nowdiscuss its 

properties. To compute the expectation and variance of 𝑝 𝑖
∗ ,we need to computethe expected value and variance 

of each 𝑝 𝑖
∗, the expectation is upon simplification using (9)becomes by letting 𝑥𝑖 = 𝑙 

𝐸 𝑝 𝑖
∗ = 1 −   

−
1

𝑛𝑖

+−1
 

1

𝑠𝑖

 𝑛𝑖
𝑙
 

𝑛𝑖
𝑙=1 𝑖

∗𝑙[1 − 𝑖
∗]𝑛𝑖−𝑙                 (13) 

If we take our sensitivity and specificity as 100% i.e.= = 100% as assumed by Thompson, (1962); 

that is, the test is free of errors Equation (13) reduces to 

𝐸 𝑝 𝑖
∗ = 1 −   1 −

𝑙

𝑛𝑖

 

1

𝑠𝑖
 
𝑛𝑖

𝑙
 

𝑛𝑖

𝑙=1

𝑖
∗𝑙[1 − 𝑖

∗]𝑛𝑖−𝑙                  

as derived by Swallow, 1985, using different notation. The variance of each 𝑝 𝑖
∗ is given by 

𝑉𝑎𝑟 𝑝 𝑖
∗ = 𝐸[(𝑝 𝑖

∗ − 𝐸 𝑝 𝑖
∗ )2] 

= 𝐸[(𝑝 𝑖
∗ − 𝐸 𝑝 𝑖

∗ −1 + 1)2] 
= 𝐸[(1 − 𝐸 𝑝 𝑖

∗ −(1 − 𝑝 𝑖
∗)2] 

which simplifies to 

𝑉𝑎𝑟 𝑝 𝑖
∗ = 𝐸[1 − 𝑝 𝑖

∗]2 − 1 −   𝐸 𝑝 𝑖
∗ 2                                                            (14) 

Substituting Equation (13) in (14) we get 

𝑉𝑎𝑟 𝑝 𝑖
∗ = 1 −   

1−
𝑙

𝑛 𝑖

+−1
 

2

𝑠𝑖

 𝑛𝑖
𝑙
 

𝑛𝑖
𝑙=1 𝑖

∗𝑙[1 − 𝑖
∗]𝑛𝑖−𝑙     − [1 −   𝐸 𝑝 𝑖

∗ ]2(15) 

Now that we have found the expected value and variance of each 𝑝 𝑖
∗ we compute varianceand expected 

value of 𝑝 𝑖
∗as follows 

𝑝 𝑖
∗ =  𝑤𝑖𝑝 𝑖

∗

𝑛𝑖

𝑖=1

 

where𝑤 is chosen so that it gives unbiased estimator and at the same time minimizevariance on the 

condition that 𝑤𝑖 = 1
𝑛𝑖
𝑖=1 . To find these weights 𝑤𝑖we construct alagrangean function 

𝐿 𝑤,  = 𝐸  𝑤𝑖(𝑝𝑖
∗ − 𝑝∗)

𝑛𝑖
𝑖=1  

2
+ (1 −  𝑤𝑖 

𝑛𝑖
𝑖=1 , 

 

where𝑤 = (𝑤𝑖 , … . . 𝑤𝑛𝑖
)and find a saddle point of L(𝑤, ) (a relative maximum with respectto the  weight 𝑤 and 

a relative minimum with respect to ). Since we do not have anyinequality or sign restrictions on the choice of 

variables we have 
𝜕𝐿(𝑤,)

𝜕𝑤𝑖

= 2  𝑤𝑖
𝑛𝑖
𝑖=1 𝐸 (𝑝𝑖

∗ − 𝑝∗)(𝑝𝑖
∗ − 𝑝∗) − . (16) 

Now, using the fact that independence implies zero covariance, we obtain 
𝜕𝐿

𝜕𝑤𝑖

= 0 whichimplies 

𝜕𝐿(𝑤,)

𝜕𝑤𝑖

= 2𝑣𝑎𝑟 𝑝 ∗ =  (17) 

Solving for𝑤 by using Equation (17), we have 𝑤𝑖 =


2𝑣𝑎𝑟  𝑝 ∗ 
 , then substituting this into 

𝜕𝐿 𝑤,  

𝜕𝑤𝑖

= 1 −  𝑤𝑖

𝑛𝑖

𝑖=1

 

and solving for  gives 1 =  𝑤𝑖 = 𝑛𝑖
𝑛𝑖
𝑖=1



2𝑣𝑎𝑟  𝑝 ∗ 
and thus   =

2𝑣𝑎𝑟  𝑝 ∗ 

𝑛𝑖
. We obtain theoptimal weights for 𝑝 ∗as 

𝑤𝑖 =
1

𝑛𝑖
. The expectation of 𝑝 ∗ is thus given by 

𝐸(𝑝 ∗) = 𝐸   𝑤𝑖𝑝 𝑖
∗

𝑛𝑖

𝑖=1

  

 

=  𝑤𝑖𝑝 
∗

𝑛𝑖

𝑖=1

 

The variance of 𝑝 ∗is 

𝑣𝑎𝑟 𝑝 ∗ = 𝐸[(𝑝 ∗ − 𝐸[𝑝 ∗])2]. (18) 

           = 𝐸  𝑤𝑖
𝑛𝑖
𝑖=1 (𝑝𝑖

∗ − 𝑝∗) 
2
. 
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The bias of the estimator 𝑝 ∗ is 

𝐵𝑖𝑎𝑠 𝑝 ∗ = 𝐸 𝑝 ∗ −  𝑝 ∗
𝑛𝑖
𝑖=1 .      (19) 

Having found the variance and bias of 𝑝 ∗the MSE can be stated as 

MSE[ 𝑝 ∗] = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑝 ∗ + 𝐵𝑖𝑎𝑠[𝑝 ∗]2(20). 

 

VIII. Asymptotic variance of 𝒑 ∗ 
Since we have constructed an estimator it will be of interest that the confidence interval and asymptotic 

variance be established. The statistic 𝑝 ∗is strongly consistent for𝑝, the true prevalence. However, in 

general 𝑛𝑖  𝑝 
∗ − 𝑝  converges to a standard normal with mean 0 and variance 𝑣𝑖 distribution as 𝑛 tends to 

infinity, where 𝑖 =  1, 2, . . . , 𝑛𝑖 . We know that 𝑝 is isotonic, a consistent estimator and 𝑣𝑖  is given by 

𝑣𝑖 = 𝑠𝑖 1 − 𝑝𝑖
∗ 2−2𝑠𝑖  𝜃𝑖

∗(1 − 𝜃𝑖
∗)( +  − 1)−2, see Nyongesa, (2011). From Equation (16), using the 

fact that independence implies zero covariance, the asymptotic variance of 𝑝 ∗ isgiven by 

𝑣𝑎𝑟 𝑝 ∗ =  

𝑣1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑣𝑛𝑖

  

For further discussion on the above subject see Tebbs et al.,(2003), for the case with no errors in inspection for 

an uncombined case. We know that  𝑛𝑖  𝑝 
∗ − 𝑝 converges to a 𝑁(0, 𝑣𝑖) distribution as 𝑛𝑖  tends to infinity. 

Hence the Wald Interval =𝑝 𝑖
∗ ± 𝑍

1−
𝛼

2
  

𝑣 𝑖

𝑠𝑖
 , serves as 100(1 − 𝛼)% confidence interval for𝑝𝑖

∗ . The 

value𝑍1−
𝛼

2
is the 1 −

𝛼

2
 quantile of the standard normal distribution. Using the Wald Interval some computer 

simulations have been generated as shown in Tables 7, 8 and 9. 
 

IX. Discussion 
In this Section we provide highlights of our findings in this paper. To enrichen thediscussions herein 

we have Monte Carlo simulations for bias and Mean Squared Error(MSE) for various group sizes for given 

sensitivity and specificity. In Table 1 we haveresults of simulated bias and MSE for various group sizes with 

sensitivity and specificity of99%.from the simulated results, we observe that bias of the unordered estimator 

increasewith increase in group sizes but vice versa for MSE that is MSE reduce with increase ingroup size. We 

note that the group of size 5provides the minimal bias and the observationenrich with that of Swallow, (1985) 

who recommend that relatively small groups size to beused to obtain optimal results. 
 

 Bias MSE 

𝑠𝑖  𝑝 1 𝑝 2 𝑝 3 𝑝 4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

1 −45.3   −84.0 −64.9 −63.6 7.47 12 17  21 

5 2.37  4.74  7.33  10  1.16  2.29  3.48  4.75 

10 2.69  5.85  9.76  15  0.59  1.27  2.08  3.10 

15 2.91  6.8  12  20  0.41  0.95  1.72  2.85 

25 3.33  9.07  20  43  0.27  0.76  1.76  3.77 

40 4.05  15  44  50  0.21  0.83  1.84  3.98 

Table 1: The bias,∗ 104 and mean squared error (MSE) ∗ 104of 𝑝  for various group sizes, 𝑠𝑖and with prevalence 

𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 99% 
 

 Bias MSE 

𝑠𝑖  𝑝 1 𝑝 2 𝑝 3 𝑝 4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

1 -79.7  −97.0  −61.6  −69.2  10  15  19  24 

5 2.64  5.06  7.73  11  1.30  2.4  3.67  4.97 

10 2.88  6.13  10  15  0.63  1.33  2.18  3.24 

15 3.07  7.10  13  21  0.43  1.00  1.80  3.03 

25 3.47  9.52  22  50  0.29  0.80  1.74  5.06 

40 4.23  16  55  70  0.22  0.93  3.43  0.57 

Table𝟐: The bias,∗ 104 and mean squared error (MSE)  ∗ 104of 𝑝  for various group sizes,𝑠𝑖  and with 

prevalence 𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 98% 
 Bias MSE 

𝑠𝑖  𝑝 1 𝑝 2 𝑝 3 𝑝 4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

1 93.0  −91.8  −96.0 −100.3  40  45 49  54 

5 5.58  8.63  12  16  2.76  4.19  5.76  7.50 

10 4.92  9.22  15  23  1.09  2.01  3.23  4.94 

15 4.8  10  20  40  0.68  1.48  2.9  10.00 

25 5.14  15  88  477  0.43  1.68  54  408 

40 6.30  112  926  1531  0.34  87  866  1483 

Table 𝟑: The bias,∗ 104 and mean squared error (MSE)  ∗ 104of 𝑝  for various group sizes,𝑠𝑖  and with 

prevalence 𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 90% 
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Similar observations as discussed above are depicted when the sensitivity and specificity ofthe test are 

reduced from 99% to 98% and 90% respectively. Notably the bias and meansquared error increases with 

decrease in testing kit accuracy as it can be seen in Tables 2and 3 respectively. Computer simulation for bias 

and mean squared error (MSE) for ourrestricted maximum likelihood estimator for ordered testing scheme are 

provided in Tables4, 5 and 6 with sensitivity and specificity of 99%, 98% and 90% respectively. For 

thisestimator, similar observations are depicted as noted in unordered testing scheme and theonly benefit of 

using the restricted maximum likelihood estimator is that bias and meansquared errors are relatively small as 

compared to unordered testing scheme. 

 
 Bias MSE 

𝑠𝑖  𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 

1 −45.3   −84.0 −64.9 −63.6 7.47 12 17  21 

5 2.37  4.74  7.33  1.30 1.10 2.29  3.48  4.75 

10 2.69  1.0  8.4 15  0.59  1.26 2.08  3.10 

15 2.91  5.6 12  20  0.41  0.95  1.72  2.85 

25 3.33  9.07  20  43  0.27  0.76  1.76  3.77 

40 4.05  15  44  50  0.21  0.83  1.84  3.98 

Table 4: The bias,∗ 104 and mean squared error (MSE) ∗ 104of𝑝 ∗ for various group sizes, 𝑠𝑖   and with 

prevalence 𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 99% 

 
 Bias MSE 

𝑠𝑖  𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 

1 -79.7  −97.0  −61.6  −69.2  10  15  19  24 

5 2.64  5.06  7.73  11  1.30  2.4  3.60  4.90 

10 2.88  6.13  7.4  15  0.63  1.33  2.10  3.20 

15 3.07  5.1  13  21  0.43  1.00  1.80  3.03 

25 0.78  9.52  22  50  0.28  0.80  1.74  5.06 

40 4.23  16  55  70  0.22  0.93  3.43  0.57 

Table 𝟓: The bias,∗ 104 and mean squared error (MSE)  ∗ 104of𝑝 ∗  for various group sizes,𝑠𝑖  and with 

prevalence 𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 98%\ 

 
 Bias MSE 

𝑠𝑖  𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 𝑝 1
∗ 𝑝 2

∗ 𝑝 3
∗ 𝑝 4

∗ 

1 -93.0  −91.8  −96.0 −100.3  40  45 49  54 

5 5.58  8.63  12  16  2.76  4.19  5.76  7.50 

10 4.92  9.22  1.38 28 1.09  2.01  3.21 4.94 

15 4.8  0.41 20  40  0.68  1.40 2.9  10.00 

25 5.14  15  88  477  0.43  1.68  54  408 

40 6.30  112  926  1531  0.34  87  866  1483 

Table 𝟔: The bias,∗ 104 and mean squared error (MSE)  ∗ 104of𝑝 ∗   for various group sizes,𝑠𝑖  and with 

prevalence 𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 90% 

 

To compute confidence interval (CI) for both restricted maximum likelihood estimator andthe ordinary 

maximum likelihood estimator, we employed Wald interval procedure withvarious confidence coefficient 

(𝑐1,  𝑐2, 𝑐3 , 𝑐4)  =  (0.90, 0.95, 0.975, 0.99) which gives theprobability that the interval produced includes the 

true value of the parameter and resultsare present in Tables 7, 8 and 9 for various group sizes, prevalence of the 

trait and forsensitivity and specificity of 99%, 99% and 90% respectively. 

 
 Confidence coefficient Prevalence 

𝑠𝑖  𝑐1  𝑐2 𝑐3 𝑐4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

     𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  

5 0.90  0.95  0.975  0.99  0.0042  0.0393  0.0122  0.0708  0.0057  0.1167  0.0105  0.1513 

10 0.90  0.95  0.975  0.99  0.0083  0.0332  0.0189  0.0621  0.0177  0.1026  0.0240  0.1355 

15 0.90  0.95  0.975  0.99  0.0100  0.0308  0.0215  0.0587  0.0218  0.0975  0.0275  0.1307 

Table𝟕: Coverage probability for the Wald interval, of𝑝  for various group sizes,𝑠𝑖  and withprevalence rate 

𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 99% 
 

 Confidence coefficient Prevalence 

𝑠𝑖  𝑐1  𝑐2 𝑐3 𝑐4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

     𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  

5 0.90  0.95  0.975  0.99  0.0050  0.0421  0.0127  0.0732  0.0054  0.1194  0.0097  0.1538 

10 0.90  0.95  0.975  0.99  0.0086  0.0344  0.0188  0.0631  0.0169  0.1036  0.0225  0.1364 

15 0.90  0.95  0.975  0.99  0.0102  0.0315  0.0212  0.0592  0.0207  0.0980  0.0253  0.1311 

Table 𝟖: Coverage probability for the Wald interval, of𝑝  for various group sizes, 𝑠𝑖 , and withprevalence rate 

𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 98% 
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 Confidence coefficient Prevalence 

𝑠𝑖  𝑐1  𝑐2 𝑐3 𝑐4 𝑝 1 𝑝 2 𝑝 3 𝑝 4 

     𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  𝑝𝑙  𝑝𝑢  

5 0.90  0.95  0.975  0.99  0.0113  0.0651  0.0160  0.0947  0.0013  0.1433  0.0203  0.1578 

10 0.90  0.95  0.975  0.99  0.0111  0.0447  0.0179  0.0718  0.0093  0.1134  0.0236  0.1309 

15 0.90 0.95 0.975 0.99 0.0111 0.0376 0.0182 0.0638 0.0101 0.1035 0.0202 0.1227 

Table 𝟗: Coverage probability for the Wald interval, of𝑝  for various group sizes, 𝑠𝑖 , and withprevalence rate 

𝑝 =  (0.02, 0.04, 0.06, 0.08) and    =  = 90% 

 

From the simulated results no negative value of confidence interval was observed in thethree tables 

which imply that Wald interval procedure performs satisfactory. When thegroup sizes is increased at a fixed 

sensitivity and specificity the confidence interval sizereduces. Notably across the three tables that is Table 7, 

Table 8 and Table 9 is that13confidence interval increase with decrease in sensitivity and specificity. 

 

X. Conclusion 
Based on ourdiscussion we provide conclusion to our present study. In this paper we have constructed 

arestricted maximum likelihood estimator of prevalence in a population. The properties ofthe maximum 

likelihood estimator such as bias, mean squared error, asymptotic varianceand confidence interval are provided 

in the discussion. To justify the purpose of this study, we also discussed the estimator of un-ordered group 

testing. We compared the efficiency ofour developed estimator and the existing estimator by simulation of the 

bias and meansquared error for both procedures. When the group size 𝑠𝑖 >  1 the bias in both procedures 

isminimal as compared to one-at-a-time testing. Similar observations are noted for meansquared error for both 

procedures. For fixed sensitivity and specificity the bias of restrictedmaximum likelihood estimator is less than 

that of un-ordered maximum likehood estimator. For example for    =  = 99%and group size (𝑠𝑖  =  10) 

when we use restricted maximumlikelihood estimator we have bias of 1.0 and when we use ordinary maximum 

likelihoodestimator we have a bias of5.85. Therefore, our constructed restricted maximum likelihoodestimator 

yields an estimator with smaller variance as compared to ordinary maximumlikelihood estimator hence 

substantial improvement. A similar conclusion is arrived at inthe case of mean squared error (MSE). 
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