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Abstract: In this paper, two types of methods are presented: the basic type, which can be considered as an 

implicit integration factor (IIF) method, and an advanced type, which combinesthe IIF method with standard 

explicit ETD method through appropriate weights to ensure the conservation offixed points of the numerical 

schemes. Moreover, we present the weighted IIF-ETD methods and discuss their stability properties. 
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I. Introduction 

The following equation is considered for several biological and physical applications, 
𝜕𝑢

𝜕𝑡
= 𝐷∆𝑢 + 𝐹 𝑢 ,        (1.1) 

where𝑢 ∈ 𝑅𝑚  shows a group of biological or physical species, 𝐷 ∈ 𝑅𝑚×𝑚  represents  diffusion constraint 

matrix, ∆𝑢 is the Laplacian which is related to the diffusion of species 𝑢, and 𝐹 𝑢  illustrates chemical or 

biological reactions. To solve the equation numerically, the method of lines is utilized; reaction-diffusion (1. 1) 

is decreased to a system of ODEs: 

𝑢𝑡 = 𝐿𝑢 + 𝐺(𝑢),        (1.2) 

where𝐿𝑢 is a finite difference approximation of 𝐷∆𝑢. For the approximation of Laplacian ∆𝑢, 𝑁shows an 

independence of number of spatial dimensions (the number of spatial grid points).Thus 𝑢(𝑡) ∈ 𝑅𝑁×𝑚  and 𝐿are a 
 𝑁. 𝑚 × (𝑁. 𝑚) matrix instead of a spatial discretization of the diffusion. Tosolve (1.2), the range of the time-

step is limited for a time integrator via the inverse of the eigenvalues of the diffusion matrix D with the stiffness 

of the nonlinear reaction term 𝐺 𝑢 . As N increases, in the system (1.1), the diffusion constants become bigger 

or the spatial resolution get better and the stability restriction becomes very rigorous because of diffusion [1-3]. 

The part of the linear diffusion has been decreased to the estimation of an exponential function of the 

matrix𝐿, after that an approximation of an integral relating the nonlinear term 𝐺(𝑢). Unlike approximations of 

the integral relating, nonlinear term 𝐺(𝑢) gives rise to either the exponential time differencing (ETD) or the IF 

(integration factor)  method. For the ETD methods, particular treatments for a variety of operations on 𝐿 (e.g., 

its inverse) are required to preserve a steady order of accuracy [4-6]. Leo et al. [7] studied the fixed points for 

the new systems which are not precisely preserved in the numerical scheme, and consequently, further terms 

have to be included into the standard methods called IF to protect such preservation. Cox and Matthews 

discussed in one direction of reforming the region of stability for a stiff reaction is to take in an RK kind 

estimate for the term relating𝐺(𝑢) into the ETD scheme [8]. 

In general, the ETDRK method has a better region of stability than the standard ETD, while the multi-

stage nature of  RK methods needs additional function estimations[9]. On the other hand, for systems with 

extremely stiff reactions, it is still not effective enough, since generally it is the case for some applications of 

biological, for example, the morphogen gradient scheme in which the reaction rate constants in 𝐹 𝑢  can be 

different via four to five order of magnitude [10-13]. Other papers on this subject include [14 - 28]. 

The present paper is organized as follows: In section 1, we present the subject. In section 2, we 

demonstrate background of the study. In section 3, we consider the weighted IIF-ETD methods, and discuss 

their stability properties. In section 4, a brief conclusion is given. 

 

II. Background Of The Study 
2.1. Stability analysis of IIF 

In this section, we intend to show the stability region for IIF2[24].For this purpose, the steady condition 

is achieved as a dynamic progress by applying standard IF methods, which has an error of order (∆𝑡𝑝). 
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Moreover, discretization errors relate to space [3]. Since the fixed points of the numerical scheme are not 

preserved,  the following decoupled linear problem cannot be used directly,  

𝑢𝑡 = −𝑞𝑢 + 𝑑𝑢  𝑞 > 0 .      (2.1) 

For the IIF methods, the steady state of ODE system, the stability regions are examined by means of the 

diffusion and the reaction [7].The boundaries of the region of stability, which consist of a class of curves for 

unusual values of 𝑞∆𝑡 are shown, based on the analysis of problem (2.1) for IIF2 method. Thus,the IIF2 (second 

order) scheme is derived in the following form , 

𝑢𝑛+1 = 𝑒𝑐∆𝑡  𝑢𝑛 −
∆𝑡

2
𝑓 𝑢𝑛  −

∆𝑡

2
𝑓 𝑢𝑛+1  .      (2.2) 

The second order IIF (2.2) to equation (2.1) is applied, and then substituting 𝑢𝑛 = 𝑒𝑖𝑛𝜃  into resulting equation 

(2.1), the following equation is derived 

𝑒𝑖𝜃 = 𝑒−𝑞∆𝑡  1 −
1

2
𝜆 −

1

2
𝜆𝑒𝑖𝜃 ,       (2.3) 

where𝜆 = 𝑑∆𝑡 has a real part 𝜆𝑟  and imaginary part 𝜆𝑖  . Thus, the equations for 𝜆𝑟  and 𝜆𝑖  are considered as 

follows  

𝜆𝑟 =
2(𝑒−2𝑞∆𝑡−1)

(1−𝑒−𝑞∆𝑡)2+2(1+cos 𝜃)𝑒−𝑞∆𝑡  ,       (2.4)  

𝜆𝑖 =
−4(𝑠𝑖𝑛𝜃 )𝑒−𝑞∆𝑡

(1−𝑒−𝑞∆𝑡)2+2(1+cos 𝜃)𝑒−𝑞∆𝑡 . 

Since 𝑞 > 0, then  𝜆𝑟 < 0, which resultedfor 0 ≤ 𝜃 ≤ 2𝜋 . Subsequently, IIF2  is A-stable because the region of 

stability has been included in the complex plane for 𝜆 with  𝜆𝑟 < 0 .  

 
Figure1: The regions of stability (exterior of the closed curves) for IIF2 with 𝒒∆𝒕 = 𝟎. 𝟓, 𝟏, 𝟐. 

 

III. Weighted IIF2 And ETD 
In this section, we derive a weight formula from the second order IIF and ETD. For this purpose, we 

define two weights 𝑤1and 𝑤2IIF and ETD, respectively. 

𝑢 𝑡𝑛+1 = 𝑢 𝑡𝑛 𝑒
𝑐∆𝑡 + 𝑤1  𝑒𝑐∆𝑡  𝑒−𝑐𝜏

∆𝑡

0

𝑓 𝑢(𝑡𝑛 + 𝜏) 𝑑𝜏 +𝑤2  𝑒𝑐∆𝑡  𝑒−𝑐𝜏
∆𝑡

0

𝑓 𝑢(𝑡𝑛 + 𝜏) 𝑑𝜏  

To estimate the integral in 𝑤1 term applying the second order IIF (IIF2) approach and the integral in 

𝑤2term applying the second order ETD (ETD2) approach, we find 

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 + 𝑤1  −

∆𝑡

2
𝑓 𝑢𝑛+1 −

𝑒𝑐∆𝑡∆𝑡

2
𝑓 𝑢𝑛   

                              +𝑤2  
 1+𝑐∆𝑡 𝑒𝑐∆𝑡−1−2𝑐∆𝑡

𝑐2∆𝑡
𝑓 𝑢𝑛 +

−𝑒𝑐∆𝑡+1+𝑐∆𝑡

𝑐2∆𝑡
𝑓 𝑢𝑛−1    (3.1)  

 

To show𝑢  as the fixed point of the above equation (setting𝑢𝑛+1 = 𝑢𝑛 = 𝑢𝑛−1 = 𝑢   )and 𝑢  as a fixed 

point of the equation (3.2) (setting c𝑢 = −𝑓(𝑢  )   ). If 𝑢 = 𝑢  yields 
𝑑𝑢

𝑑𝑡
= 𝑐𝑢 + 𝑓(𝑢),       𝑡 > 0  ,𝑢 0 = 𝑢𝑜      (3.2) 
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𝑤2 = 1 −
𝑐∆𝑡

2

1+𝑒𝑐∆𝑡

1−𝑒𝑐∆𝑡 𝑤1        (3.3) 

The scheme (3.1) has the second order accuracy due to 𝑤1 + 𝑤2 = 1 + 𝑂(∆𝑡2). 

For the stability,  𝑐 = −𝑞  and  𝑞 > 0 in the description of 𝑤2, and𝑤1should satisfy  

0 ≤ 𝑤1 ≤
2(1−𝑒−𝑞∆𝑡)

𝑞∆𝑡(1+𝑒−𝑞∆𝑡)
= 𝑊(𝑞∆𝑡)       (3.4) 

for any fixed 𝑞∆𝑡 in order to formulate𝑤1 and 𝑤2 both positive .As a result, 0 ≤ 𝑤2 ≤ 1.𝑞∆𝑡 = 𝛼ischosen , then 

we have 𝑊 𝛼 < 1 for 𝛼 > 0. This can be verified by considering 𝑓 𝛼 ≡ 2 1 − 𝑒−𝛼 − 𝛼(1 + 𝑒−𝛼) is a 

decreasing function for𝛼 ≥ 0.𝑊 𝛼 < 1comesfrom 𝑓 𝛼 < 𝑓 0 = 0 for 𝛼 > 0 .Moreover, we have𝑊 𝛼 → 1  

as 𝛼 → 0 and 𝑊 𝛼 → 0as → ∞ .Applying those properties, we can illustrate 0 ≤ 𝑤1 + 𝑤2 ≤ 1 for any 𝑞∆𝑡 > 0 

given that0 ≤ 𝑤1 ≤ 𝑊(𝑞∆𝑡). 

 

To apply the equation (3.1) to equation (2.1), in that case,   substituting 𝑢𝑛 = 𝑒𝑖𝑛𝜃 into the resulting 

equation, the following equation is obtained   

𝑒𝑖𝜃 = 𝑒−𝛼 + 𝑤1  −
𝜆

2
𝑒𝑖𝜃 −

𝑒−𝛼𝜆

2
 +  1 +

𝛼 1+𝑒−𝛼  

2 1−𝑒−𝛼  
 𝑤1  

 1−𝛼 𝑒−𝛼−1+2𝛼

𝛼2 𝜆 +
−𝑒−𝛼 +1−𝛼

𝛼2 𝜆𝑒−𝑖𝜃  or,  

       (3.6) 

𝜆 =
𝑒𝑖𝜃 − 𝑒−𝛼

−
𝑤1

2
 𝑒𝑖𝜃 + 𝑒−𝛼 +  1 +

𝛼 1+𝑒−𝛼  

2 1−𝑒−𝛼  
 𝑤1  

 1−𝛼 𝑒−𝛼−1+2𝛼

𝛼2  +
1−𝛼−𝑒−𝛼

𝛼2 𝑒−𝑖𝜃  
 

           (3.7) 

where𝜆 = 𝑑∆𝑡 , 𝛼 = 𝑞∆𝑡 and  . 

 

 
Figure 2: The regions of stability for IIF2 scheme with 𝒘𝟏 = 𝟎, 𝟎. 𝟓 

 
Figure 3: The regions of stability for IIF2 scheme with𝒘𝟏 = 𝟎. 𝟓𝟓, 𝟎. 𝟔 
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Figure 4: The regions of stability for IIF2 scheme with 𝒘𝟏 = 𝟎. 𝟔𝟔, 𝟎. 𝟖 

 

 
Figure 5: The regions of stability for IIF2 scheme with 𝒘𝟏 = 𝟎. 𝟖𝟖, 𝟎. 𝟗 

 

 
Figure6:The regions of stability for IIF2 scheme with𝒘𝟏 = 𝟎. 𝟗𝟗, 𝟏 

 
Figure 7: The regions of stability for IIF2 scheme with 𝒘𝟏 = 𝟑𝟓, 𝟒𝟎 
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IV. Results and Discussion 
In IIF2, Figures 2 and3 illustrate the regions of stability are chaos. However, Figures 4,5, 6 and 7 show 

the step by step stability region for the third-order scheme, which finally becomes A-stable. Clearly, the regions 

of stability are considered extremely sensitive to the value of  𝑞∆𝑡, since it depends on the values of 𝑞∆𝑡. It is 

found that the stability region is maintained by increasing 𝑞∆𝑡. Thus when 𝑞 → ∞, the region of stability in the 

complex plane approaches a point in the real axis. 
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Appendix A 
clear 

clc 

closeall 

 

qdelta=.5; 

http://dx.doi.org/10.4028/www.scientific.net/AMM.729.213


The Effect of Weighton Simi-ImplicitScheme 

DOI: 10.9790/5728-1305014853                                             www.iosrjournals.org                                 53 | Page 

w1=[0 .5 .55 .6 .66 .8 .88 .9 .99 1 35 40]; 

 

for h=1:length(w1); 

% k3=w1; 

teta=0:0.1:2*pi; 

alfa=qdelta; 

num=exp(1i*teta)-exp(-alfa); 

a1(h,:)=-0.5*w1(h)*(exp(1i*teta)+exp(-alfa)); 

 

% k=(exp(1i*teta)+exp(-alfa)) 

a2(h,:)=w1(h).*(1+alfa*(1+exp(-alfa)))./2*(1-exp(-alfa)); 

 

% a3=((1-alfa)*exp(-alfa)-1+2*alfa)./(alfa)^2; 

a4(h,:)=(((1-alfa)*exp(-alfa)-1+2*alfa)./(alfa)^2)+((1-alfa-exp(-

alfa))./(alfa).^2).*exp(-1i*teta); 

 

% denm=-1/2*exp(1i*teta)-1/2*exp(-qd);elta)-1/2*exp(-2*qdelta-1i*teta); 

denm(h,:)=a1(h,:)+a2(h,:).*(a4(h,:)); 

 

landa(h,:)=num./denm(h,:); 

abs_complex(h,:)=abs(landa(h,:)); 

teta_complex(h,:)=angle(landa(h,:)); 

figure 

polar(abs_complex(h,:),teta_complex(h,:)); 

end 
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