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Abstract: Ebola virus disease is dreadful and, therefore, the study of its transmission dynamics is worthwhile. 

The objective of this article is to investigate the impact of time of case detection and control strategy on Ebola 

virus disease epidemics.  A dynamic graph that captures human contact interactions, wherein, the numbers of 

contact interactions are generated by a Poisson distribution, is constructed by the mechanism of configuration 

model. Ebola virus disease models were simulated on the graph, using varying time frames for case detection 

and commencement of control response. The results show that the earlier the time of case detection and control 

response, the smaller the size of the epidemic. This probably explains the reason for varying distributions of 

Ebola cases in some West African countries recently. Therefore, early case detection and control interventions 

are crucial for eliminating the disease. 

Keywords: graph, network, Ebola virus disease, index case 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 23-07-2017                                                                           Date of acceptance: 13-08-2017 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Ebola, previously known as Ebola hemorrhagic fever, is a rare and deadly disease caused by infection 

with one of the Ebola virus species. Ebola can cause disease in human and nonhuman primates (monkeys, 

gorillas and chimpanzees). Ebola is caused by a virus of the family filoviridae, genus Ebola virus. Ebola viruses 

are found in several African countries. Ebola was first discovered in 1976 near the Ebola River in what is now 

the Democratic Republic of the Congo. Since then, outbreaks have appeared sporadically in Africa. The natural 

reservoir of host of Ebola viruses remains unknown. However, on the basis of evidence and the nature of similar 

viruses, researchers believe that the virus is animal-borne and that bats are the most likely reservoir (Ebola 

Factsheet, 2015). 

Ebola is spread through direct contact (through broken skin or unprotected mucous membranes in, for 

example, the eyes, nose, or mouth) with  blood or body fluids (including but not limited to feces, saliva, sweat, 

urine, vomit, breast milk, and semen) of a person who is sick with Ebola,  objects (like needles and syringes) 

that have been contaminated with the virus, infected fruit bats or primates (apes and monkeys), and  possibly 

from contact with semen from a man who has recovered from Ebola (for example, by having oral, vaginal, or 

anal sex) (Ebola Factsheet, 2015). 

As of 6 October 2015, WHO had reported 28 427 confirmed, probable and suspected cases of Ebola 

virus disease (EVD), including 11 297 deaths related to the West African epidemic (ECDC, 2015).  

 There is no treatment (like antiretroviral drugs) for Ebola disease neither is there any preventive 

vaccine. The only interventions are contact tracing, quarantine, isolation, and treatment of symptoms that may 

arise. The worse-hit countries for Ebola virus disease were Guinea, Sierra Leone and Liberia (Damon et al, 

2015). 

The plan of this article is as follows. Modeling is introduced in section 2.  Section 3 is devoted to 

model description.  Simulation set up is presented in section 4. Section 5 is for presentation of results. 

Discussion of results and conclusive remark are passed in sections 6 and 7 respectively. 

 

II. Modelling 

Classical models of Ebola disease using ODEs are available. In Conrad et al (2016), such models were 

proposed  by  Browne et al (2014);  Camacho et al (2014); Chowell et al (2014); Rivers et al (2014); Gomes et 

al (2014); Martin et al (2014); Nishiura et al (2014).  Graph or network-based models can be found in Arino et 

al (2003); Eubank et al (2004); Hyman and LaForce (2003); McMahon et al (2014); Xue et al (2012). 

Branching process models have been used to study Ebola virus disease. For a survey of these models, 

see Drake et al (2015). Damon et al (2015) employed the theory of branching processes with a negative 

binomial offspring distribution to estimate the probability that new introductions would lead to outbreaks 

exceeding various sizes.  
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III. Model Description 
At time 𝑡0, the population is wholly susceptible. At time 𝑡1,  the population is susceptible except an 

index case of Ebola disease. Let 𝑡𝑐  be the time when there is case detection and intervention starts. If case is 

detected immediately an index case invades the population, 𝑡1 = 𝑡𝑐 . When 𝑡1 < 𝑡𝑐 , there is no case detection, 

and it is assumed that members of the population exhibit their normal complex human contact interactions; and 

within this window, a member may be susceptible, exposed or infectious. It is assumed also that after time 

𝑡 ≥ 𝑡𝑐 , there is case detection and consequently, there is a change in human contact interactions and attendant 

provision of medical facility and safe burial of people that might die of Ebola disease. The simulation processes 

are outlined below. 

i. Between time 𝑡1 and 𝑡𝑐 , a graph that captures the normal complex human contact interactions is generated. 

At every time step, a susceptible individual may be exposed with the probability 𝜉1 , an exposed individual 

may proceed to infectious state with probability 𝜉2 and an infectious individual may recover with 

probability 𝜉3 or die of the disease with probability 𝜉4. 
ii. At any time 𝑡 ≥ 𝑡𝑐 , there is a change in human contact interactions influenced by the alarm of case 

detection and a graph that captures this is constructed. Within this time, a member of the population may be 

in any of these states: susceptible, exposed, infectious with the case managed at home or infectious with the 

case managed in a medical facility. At every time step, a susceptible may be exposed with probability 

𝜆1 < 𝜉1 , an exposed individual proceed to an infectious state with probability 𝜆2, an infectious individual 

remains at home with probability 𝜆3 or moves to a medical facility with probability 𝜆4. 

These steps are repeated until statistical significance is obtained. 

 

IV. Simulation 

The following parameter values used in Conrad et al (2016) are adopted for our simulation experiments. 
Symbol Parameter description Baseline  

𝑐∗
− Number of contacts per day when 𝑡 < 𝑡𝑐  

𝑐𝑠
− = 30, 𝑐𝑒

− = 30, 𝑐𝑖
− = 8.1657, 𝑐𝑚

− = 5, 𝑐𝑓
− = 20, 𝑐𝑟

− = 30 

 

𝑐𝑠
+ Number of contacts per day when 𝑡 ≥ 𝑡𝑐  

𝑐𝑠
+ = 30, 𝑐𝑒

+ = 30, 𝑐𝑖
+ = 3.0311, 𝑐𝑚

+ = 5, 𝑐𝑓
+ = 20, 𝑐𝑟

+ = 30 

 

𝛽∗ Probability of transmission per contact with state * 

𝛽𝑖 = 0.017,𝛽𝑚 = 0.0005,𝛽𝑓 = 0.05 

 

𝜏𝑒  Average days spent in exposed state 7 

𝜏𝑖  Average days spent in 𝐼 20 

𝑝𝑟  Probability an infectious person recovers at home 0.55 

𝑝𝑚𝑟  Probability an infectious person recovers in a medical facility 0.75 

 

For our simulation experiments, we consider varying times of case detection and control response: 30 

days, 20 days, 15 days, 10 days, 5 days, 2 days and 1 day before case detection and control response. The results 

are shown in Figures 1 through 6 respectively.  

 

V. Results 

The results of our experiments showing the sizes of the epidemics at varying times are depicted in the following 

Figures. 

 

 
𝐹𝑖𝑔𝑢𝑟𝑒 1:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 30 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 
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𝐹𝑖𝑔𝑢𝑟𝑒 2:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 20 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

 

 
𝐹𝑖𝑔𝑢𝑟𝑒 3:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 15 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

 

 
𝐹𝑖𝑔𝑢𝑟𝑒 4:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 10 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 
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𝐹𝑖𝑔𝑢𝑟𝑒 5:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 5 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

 

 
𝐹𝑖𝑔𝑢𝑟𝑒 6:𝐺𝑟𝑎𝑝 𝑠𝑜𝑤𝑖𝑛𝑔 𝐸𝑏𝑜𝑙𝑎 𝑐𝑎𝑠𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 2 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑎𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

 

VI. Discussion 

Ebola virus disease outbreaks in some countries in West Africa recently portray a high amount of 

variability across the region. One of the factors for this was the time the case was detected and interventions put 

in place. Another factor could be the level of complexity of human contact interactions among the members of 

the population. In this article, we have investigated the impact of the time of case detection and control response 

together with human contact interactions on the spread of Ebola virus disease. The results in Figures 1 through 6 

explain this impact. The results show that the time of case detection and control response determines whether 

there should be an epidemic take- off and the size if there is an epidemic. In our case, the time detection and 

control response after 30 days precipitates the highest epidemic size. Thus, we have the least epidemic size 

when the time of case detection and control response is 10 days.  Our results in Figures 5 and 6 show that case 

detection and control response at day 5 and day 2 does not lead to an outbreak, emphasizing the importance of 

early detection and control. 

 

VII. Conclusion 

In this article, we have developed a graph-based model to investigate the impact of the time of case 

detection and control response on the dynamics of transmission of Ebola virus disease. The main results are 

shown in Figures 1 through 6.  Our findings highlight the importance of early detection and control of Ebola 

virus disease. These findings also highlight the importance of case detection gadgets.  
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