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Abstract: In this paper, the real number system is reconstructed with the Peano’s axioms, to create systems of 

elements that demonstrate the properties of integer and rational numbers. Construction of two real number 

systems named Dedekind Real Number System that shows the completeness of the order and Cantor Real 

Number System that shows the Cauchy completeness are done and studied. During this process of systematic 

construction of real numbers, the integers and rational numbers can also be obtained. The process of 

constructing a real number system is made through mathematical concepts. 
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I. Introduction 

The real number system possesses the Archimedean property and it is Cauchy complete. The real 

number system such as the natural number system reveals that the fundamental properties play an essential role 

in the construction process. This work enables to show that the real number system is logically necessary and 

gives out the importance of the real number system. 

The real number system is reconstructed with the Peano‟s axioms to demonstrate the properties of 

integer and rational numbers. The real number system includes all the rational numbers including integers, 

fractions, irrational numbers, transcendental numbers and the square root of 2 also get included in the real 

numbers.  

Peano‟s axiom describes the natural number system in an efficient manner. Axioms are used to build a 

concrete natural system; they also do not pose any problem with reference to the definition of the Integer 

System and Field of Rational. This can be well explained with a preceding system. Initially real numbers 

consisted only of the rational numbers because irrational numbers were not derived. A system which is closed 

with basic mathematical operations is possible by carrying out it from the natural system which is not closed.  

Richard Dedekind‟s (1831-1916) and Georg Cantor‟s (1845-1918) intuition can be relied upon to help 

with the construction of real numbers. Therefore, these are classified as the Dedekind Real Number System and 

Cantor Real Number System. In this paper Peano‟s axiom, Dedekind Real Number System and Cantor Real 

Number System are used for reconstruction of real number system. Organization of the paper is with respective 

sections: Preliminaries, Properties of Dedekind Real Number Systems,  

 

II. Preliminaries 
Definition2.1: The five axioms of peano: We assume the existence of a set N with the following properties:  

(i) There exists an element 1∈N. 

(ii) For every n ∈ N, there exists an element S (n) ∈N such that {(n, S (n))| n ∈ N} is a function. 

(iii) 1∉ S (N). 

(iv) S is one-one. 

(v) If P is any subset of N such that 1∈ P and S (n) ∈ P ∀n ∈ P, then P=N. 

 

Definition 2.2: The Dedekind’s cut: A subset α of Q is called a cut if the following conditions are satisfied:  

(i) α ≠ ∅, α ≠ Q. 

(ii) For every r ∈ α and s ∈ Q\α, r < s.  
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(iii) Max α does not exist. 

 

Definition 2.3: Rational Cuts: If r ∈ Q, then the set can be defined by α r = {x ∈ Q | x < r} is a cut. We call αr a 

rational cut.  

Definition 2.3: The negative cut: For any α ∈ R, the set defined by -α = {-s ∈ Q | s ∉ α, s ≠ min (Q\α)} is also a 

cut. This is called the negative cut of α.  

 

Definition 2.4: The Dedekind Real Number System: An ordered field (RD, ⊕, ⊙, ≻) is called a Dedekind 

real number system if 

(i) There exist a subfield (QD, ⊕, ⊙, ≻) which is isomorphic to (Q, +,>). 

(ii) (RD, ⊕, ⊙, ≻) is order complete. 

 

III. Properties Of Dedekind Real Number Systems 
Most of the results proven here are usually regarded as properties fundamental to the real numbers. 

Order completeness of Dedekind real number systems are invoked in most of the proofs, and this may be how 

Dedekind stumble upon the idea that order completeness may just be the „essence‟ of the real numbers. It is now 

started off with the Archimedean Property, which incidentally also employs the fact that Dedekind real number 

systems are order complete. 

 

3.1: Archimedean Property 

Theorem 3.1.1: Let x, y ∈ R, x>0. Then there exist n ∈ N such that  𝑛𝑥 > 𝑦. Let A = {nx| n ∈ N}.By 

contradiction assume, A is bounded above by y then Sup A exists (By order completeness). Since 𝑥 > 0,
sup 𝐴 − 𝑥 < 𝑠𝑢𝑝𝐴  and sup 𝐴 − 𝑥 is not an upper bound for A. Hence m ∈ N such that sup 𝐴 − 𝑥 < 𝑚𝑥 , that 

is  sup 𝐴 <  𝑚 + 1 𝑥 . But  𝑚 + 1 𝑥 ∈ A and this contradict the fact that Sup A is an upper bound for A. Since 

the falsity of the claim leads to a contradiction, the claim must be true. 

 

Lemma 3.1.2: Let x, y ∈ R. Then the following holds: 

(i) There exist n ∈ N such that 𝑛 > 𝑦. 

(ii) If   𝑥 > 0, there exist n ∈ N such that   𝑥 >
1

𝑛
. 

(iii) If   𝑦 ≥ 0, there exist n ∈ N such that   𝑛 − 1 ≤ 𝑦 < 𝑛. 
Proof:  

(i) This is a special case of Archimedean Property for 𝑥 = 1 > 0. 

(ii) By Archimedean Property, for  𝑦 = 1, there exist n ∈ N such that  𝑛𝑥 > 1, that is 𝑥 >
1

𝑛
. 

(iii) Consider the set A = {m ∈ N | y<m}. (i) Ensures that A is not empty.  

Hence, since N is well-ordered, Min A = n exist. Then n-1∉ A.  

 

Lemma 3.1.3:    
𝑹

𝑸
  is not empty. 

Proof:  Take Q ⊆ R, then Q = R. Hence, (Q, +,>) = (R, +,>) which is order complete. 

 But (Q, +,>) is not order complete. Hence, 
𝑹

𝑸
  cannot be empty. We call elements in 

𝑹

𝑸
  as irrational points. 

 

Theorem3.1.4: Density theorem: Let x, y ∈ R be such that 𝑥 < 𝑦. Then there exist r ∈ Q, z ∈ 
𝑹

𝑸
  such that 

𝑥 < 𝑟, 𝑧  < 𝑦 

Proof:  Assume 𝑥 > 0 and if 
1

(𝑦−𝑥)
> 0 then 

1

(𝑦−𝑥)
< 𝑛 (by Archimedean property) there exist n ∈ N. Therefore 

𝑛𝑦 − 𝑛𝑥 > 1. Since 𝑛𝑥 > 0, there exist m ∈ N such that  𝑚 − 1 ≤ 𝑛𝑥 + 1 < 𝑚  (by Archimedean property). 

Then 𝑚 ≤ 𝑛𝑥 + 1 < 𝑛𝑦 that is   𝑚 < 𝑛𝑥 < 𝑛𝑦. Hence 
𝑥<𝑚

𝑛<𝑦
 and  𝑟 =

𝑚

𝑛
 ∈ Q. If  𝑥 = 0, then 𝑦 > 0 and by 

Archimedean property, there exist n ∈ N such that 𝑥 =
0<1

𝑛  <𝑦
 and it is simply let r=1/n ∈ Q. If 𝑥 < 0 and𝑦 > 0, 

then simply let 𝑟 = 0 ∈ 𝑄. Finally, if 𝑥 < 𝑦 ≤ 0, then – 𝑥 > −𝑦 ≥ 0 and we have proved that there exist  r′ ∈ Q 

such that–x>r′ >-y, that is 𝑥 < −𝑟′ < 𝑦 and we let 𝑟 = −𝑟′ ∈  𝑄. Since 
𝑹

𝑸
  is not empty there exist z′ ∈

𝑹

𝑸
. By 

above result there exist r ∈ Q such that 𝑥 +  𝑧′ < 𝑟 < 𝑦 +  𝑧′, that is 𝑥 < 𝑟 − 𝑧′ < 𝑦. we claim 𝑧 =  𝑟 − 𝑧 ′ ∉
 𝑄. Suppose not. Then there exist r′ ∈ Q such that 𝑟 − 𝑧′ = 𝑟′, that is   𝑧′ = 𝑟 − 𝑟′ ∈  𝑄, a contradiction. The 

density theorem is proven. 
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3.2. Cauchy Completeness of R 

Theorem 3.2.1: Let {xn} in R. Then the following holds: 

(i) If {xn} is monotonically increasing and bounded by M, then {𝑥𝑛} is convergent. 

Proof: Since | xn | ≤ M ∀ n ∈ N, the set A = {xn | n ∈ N} is bounded above by M, x1∈A so A ≠ φ. x = SupA 

exists (by order completeness). Let any ε > 0 be given. Then there exist  𝑥𝑘 ∈ 𝐴 such that𝑥𝑘 >  𝑆𝑢𝑝𝐴 –  𝜀.Since 

{𝑥𝑛  } is increasing, we have   𝑥𝑛 ≥  𝑥𝑘  ∀ 𝑛 ≥  𝑘. Hence ∀ 𝑛 ≥  𝑘, Sup A – ε < xk ≤ xn ≤ Sup A < Sup A + ε, | 

xn – SupA | < ε. Therefore  𝑥𝑛  → 𝑆𝑢𝑝𝐴. 

(ii) If {xn} is monotonically decreasing and bounded by M, then {xn} is convergent. 

Proof: Since| 𝑥𝑛   |  ≤  𝑀 ∀ 𝑛 ∈  𝑁, the set A = {xn | n ∈ N} is bounded below by –M. Let x1∈A so A ≠ φ. Then 

–A = {-xn | n ∈ N} ≠ φ is bounded above and since {-xn} is increasing, we have{−𝑥𝑛}  →  𝑆𝑢𝑝 (−𝐴). 𝑖𝑛𝑓𝐴 =

 −𝑆𝑢𝑝 (−𝐴). Since lim {-xn} exists, we have  𝑚 𝑥𝑛  =  𝑙𝑖𝑚 ((−1) {−𝑥𝑛  }) –  𝑙𝑖𝑚 {−𝑥𝑛  } –  𝑆𝑢𝑝 (−𝐴)  −
 (−𝑖𝑛𝑓𝐴) 𝑖𝑛𝑓𝐴 , that is   {𝑥𝑛  }  →  𝑖𝑛𝑓𝐴. 
(iii) If {xn} is Cauchy and has a subsequence which converges to x, then we also have {xn} → x. 

Proof: Let some subsequence (x n(k)) → x. Let any ε > 0 be given. Since {xn} is Cauchy there exist N ∈ N s.t 

| 𝑥𝑛  –  𝑥𝑚  |  <  𝜀/2 ∀ 𝑛, 𝑚 ≥  𝑁 

𝑆𝑖𝑛𝑐𝑒 (𝑥𝑛(𝑘))  →  𝑥, , 𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡  𝑇 ∈ 𝑁 𝑠𝑢𝑐 𝑡𝑎𝑡 

| 𝑥𝑛𝑘) –  𝑥 |  <  𝜀/2 ∀ 𝑘 ≥  𝑇 

If taken as S = max (N, T), note that 𝑛𝑆 ≥  𝑛𝑁 ≥  𝑁. Hence, 

| 𝑥𝑛–  𝑥 |  =  | (𝑥𝑛  –  𝑥𝑛(𝑆))  +  (𝑥𝑛(𝑆) –  𝑥) | 
≤    𝑥𝑛  –  𝑥𝑛 𝑆  +    𝑥𝑛 𝑆 –  𝑥   

              <
𝜀

2
+

𝜀

2
 =  𝜀,   𝑛 ≥  𝑁  Therefore {xn} → x. 

(iv) If {xn} is bounded, ,there exist  a subsequence which is convergent (Bolzano – Weierstrass property) 

Proof: There exist a subsequence of {xn} which is monotone. Since {xn} is bounded, this subsequence is also 

bounded. Hence, by (i) and (ii), we can conclude that this subsequence must be convergent. 

(v) If {xn} is Cauchy, it is convergent (Cauchy Completeness). 

Proof: Now {xn} has a convergent subsequence. Since {xn} is also Cauchy, we can conclude, that {xn} is also 

convergent. 

Result 3.2.2:  

(i) {r | r ∈ Q, r < x + y} = {s + t | s, t ∈ Q, s < x, t < y. 

(ii) {r | r ∈ Q, 0 < r < xy} = {st | s, t ∈ Q, 0 < s < x, 0 < t < y}, x, y > 0. 

(iii) Sup{r | r ∈ Q, r < x} = Sup{r | r ∈ Q, 0 < r < x}, x > 0. 

 

3.3 Dedekind Real Number Systems Are Unique 

Consider any 2 Dedekind Real number system (𝑅, +, . , >) and  𝑅′ , +′ , .′ , >′ ,  by transitivity of isomorphism, 

(𝑄, +, . , >)  ≃  (𝑄′, +′, . ′, > ′) and we let 𝜑: 𝑄 →  𝑄′ be that isomorphism. Define the mapping 𝜓: 𝑅 →  𝑅′ by 

𝜓(𝑥)  =  𝑆𝑢𝑝 𝐴𝑥  ∀ 𝑥 ∈  𝑅. where 𝐴𝑥 =  {𝜑(𝑟) | 𝑟 <  𝑥, 𝑟 ∈  𝑄}. 
To prove: ψ is well-defined.  

Proof: For any 𝑥 ∈  𝑅, the Archimedean property for R demands that there exist  𝑛 ∈  𝑁 (hence in Q) such that  

𝑛 >  𝑥. Hence, 𝜑(𝑟)  ∈  𝐴𝑥 =>  𝑟 < 𝑥 <  𝑛 =>  𝜑(𝑟)  < ′ 𝜑(𝑛) (by isomorphism). Hence, Ax is bounded 

above (𝑏𝑦 𝜑(𝑛)) and so by order completeness of R′, Sup Ax exists, i.e. 𝜓(𝑥) ∈ 𝑅′. Also, for any 𝑥, 𝑦 ∈  𝑅 such 

that 𝑥 =  𝑦, we have   𝜓(𝑥)  =  𝑆𝑢𝑝{𝜑(𝑟) | 𝑟 <  𝑥, 𝑟 ∈ 𝑄} 

= 𝑆𝑢𝑝{𝜑(𝑟) | 𝑟 <  𝑥 =  𝑦, 𝑟 ∈ 𝑄} (note that suprema is unique) 
= 𝜓(𝑦) 
Hence ψ is well-defined. 

Suppose now that there exist  𝑥, 𝑦 ∈ 𝑅 such that  𝜓(𝑥)  =  𝜓(𝑦) but𝑥 ≠  𝑦. Without loss of generality, it may 

be assumed𝑥 < 𝑦. By density theorem for R there exist r1 ∈ Q such that𝑥 <  𝑟1 <  𝑦. Applying the density 

theorem for R on r1 and y, we obtain some r2∈Q such that𝑥 <  𝑟1  <  𝑟2  <  𝑦. Now𝜑(𝑟)  ∈  𝐴𝑥 =>  𝑟 <  𝑥 <
 𝑟1  <  𝑟2 =>  𝜑(𝑟)  < ′ 𝜑(𝑟1)  < ′ 𝜑(𝑟2) (by isomorphism). Hence, both φ (r1) and φ (r2) are upper bound for 

Ax. Since𝜑(𝑟1)  < ′ 𝜑(𝑟2), we cannot have 𝜑(𝑟2)  =  𝑆𝑢𝑝 𝐴𝑥 and hence𝜓(𝑥)  < ′ 𝜑(𝑟2). But𝜑 (𝑟2) ∈ 𝐴𝑦, so 

𝜓(𝑥)  < ′ 𝜑(𝑟2)  ≤ ′ 𝜓(𝑦), contradicting𝜓(𝑥)  =  𝜓(𝑦) 

Hence ψ must be one-one. 

Now take any 𝑥′ ∈ 𝑅′. Consider the element    𝑥 =  𝑆𝑢𝑝{𝑟  𝜖 𝑄 | 𝜑(𝑟)  <  𝑥′}. 
To claim: 𝑥 ∈  𝑅.  

By Archimedean property for R′, there exist 𝑛′ ∈  𝑁′ (hence in Q′) such that 𝑛′ >′ 𝑥 ′ , 𝑎s φ is onto, there exist 

𝑛 ∈  𝑄 such that 𝑛′ =  𝜑(𝑛). Then 𝜑(𝑟)  < ′ 𝑥′ =>  𝜑(𝑟)  < ′ 𝑥′ < ′ 𝜑(𝑛)  =>  𝑟 <  𝑛 (by isomorphism).  

Hence n is an upper bound for {𝑟 ∈  𝑄 | 𝜑(𝑟)  < ′ 𝑥′} and so by order completeness of R, 𝑥 exists 

To claim: 𝑆𝑢𝑝 𝐴𝑥 =  𝑥′.  
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If x′ is not an upper bound for Ax, then there exist 𝜑(𝑟) ∈ 𝐴𝑥 such that 𝜑(𝑟)  > ′ 𝑥′. Then 𝑟 ∉ {𝑟 ∈ 𝑄 | 𝜑(𝑟)  <
′ 𝑥′}. Since 𝑟 <  𝑥, r is not an upper bound for {𝑟 ∈ 𝑄 | 𝜑(𝑟)  < ′ 𝑥′} and so there exist  𝑟1 ∈ { 𝑟 ∈  𝑄 | 𝜑(𝑟)  <
′ 𝑥′} such that 𝑟 <  𝑟1. By isomorphism, 𝜑(𝑟)  < ′ 𝜑(𝑟1), i.e. 𝜑(𝑟)  < ′ 𝜑(𝑟1)  < ′ 𝑥′ and so 𝑟 ∈ {𝑟 ∈
 𝑄 | 𝜑(𝑟)  < ′ 𝑥′}, a contradiction! Hence x′ is an upper bound for Ax. Now take any 𝑦′ ∈ 𝑅′ such that 𝑦′ < ′ 𝑥′. 
Then by density theorem for R′, there exist  𝑟1′ ∈ 𝑄′ such that 𝑦′ < ′ 𝑟1′ < ′ 𝑥′. Applying the density theorem 

on r1′ and x′, we obtain r2′∈Q′ such that 𝑦′ < ′ 𝑟1′ < ′ 𝑟2′ < ′ 𝑥′. Since φ is onto there exist  r1, r2∈Q such that 

𝜑(𝑟1) = 𝑟1′, 𝜑(𝑟2)  =  𝑟2 ′, i.e. 𝑟1 , 𝑟2 ∈ {𝑟 ∈ 𝑄 | 𝜑(𝑟)  < ′ 𝑥′} and so 𝑟1 , 𝑟2  ≤  𝑥. By isomorphism 𝜑(𝑟1) <
′ 𝜑(𝑟2)  =>  𝑟1 <  𝑟2 and so we have r1 < x. Then  𝑟1′ =  𝜑(𝑟1) ∈ 𝐴𝑥  and 𝑦′ < ′ 𝑟1′ < ′ 𝑥′.  Hence  𝑥′ =
 𝑆𝑢𝑝 𝐴𝑥, i.e. 𝜓(𝑥)  =  𝑥′.  Hence ψ is onto.  

Take 𝑥, 𝑦 ∈ 𝑅. 
(i) 𝜓(𝑥 +  𝑦)   =  𝑆𝑢𝑝{𝜑(𝑟) | 𝑟 <  𝑥 +  𝑦, 𝑟 ∈ 𝑄} 
= 𝑆𝑢𝑝{𝜑(𝑠 +  𝑡) | 𝑠 <  𝑥, 𝑡 <  𝑦, 𝑠, 𝑡 ∈ 𝑄} 

= 𝑆𝑢𝑝{𝜑(𝑠)  + ′ 𝜑(𝑡) | 𝑠 <  𝑥, 𝑡 <  𝑦, 𝑠, 𝑡 ∈ 𝑄} (by isomorphism) 

= 𝑆𝑢𝑝{𝜑(𝑠) | 𝑠 <  𝑥, 𝑠 ∈ 𝑄}  + ′ 𝑆𝑢𝑝{𝜑(𝑡) | 𝑡 <  𝑦, 𝑡 ∈ 𝑄} 
= 𝜓(𝑥)  + ′ 𝜓(𝑦). 
(ii) Assume 𝑥, 𝑦 >  0. Then  𝛹 (𝑥. 𝑦)  =  𝑆𝑢𝑝{𝜑(𝑟) | 𝑟 <  𝑥. 𝑦, 𝑟 ∈  𝑄} 

= 𝑆𝑢𝑝{𝜑(𝑟) | 0 <  𝑟 <  𝑥. 𝑦, 𝑟 ∈  𝑄} 

= 𝑆𝑢𝑝{𝜑(𝑠. 𝑡) | 0 <  𝑠 <  𝑥, 0 <  𝑡 <  𝑦, 𝑠, 𝑡 ∈  𝑄} 

= 𝑆𝑢𝑝{𝜑(𝑠) . ′ 𝜑(𝑡) | 0 <  𝑠 <  𝑥, 0 <  𝑡 <  𝑦, 𝑠, 𝑡 ∈  𝑄} (by isomorphism) 

= 𝑆𝑢𝑝{𝜑(𝑠) | 0 <  𝑠 <  𝑥, 𝑠 ∈  𝑄} . ′ 𝑆𝑢𝑝{𝜑(𝑡) | 0 <  𝑡 <  𝑦, 𝑡 ∈  𝑄}( 

Note that by isomorphism, φ(s), φ(t)>′ 0′) 

= 𝑆𝑢𝑝{𝜑(𝑠) | 𝑠 <  𝑥, 𝑠 ∈  𝑄}  ∗ ′ 𝑆𝑢𝑝{𝜑(𝑡) | 𝑡 <  𝑦, 𝑡 ∈  𝑄} 

= 𝜓(𝑥) . ′ 𝜓(𝑦). 
To claim: One of 𝑥, 𝑦 is zero. Without loss of generality (due to commutative), it is assumed x = 0.  

Then 𝜓 (𝑥. 𝑦) =  𝜓(0. 𝑦) 
= 𝜓(0) 
= 0′ 
= 0′ . ′ 𝜓(𝑦) 
= 𝜓(𝑥) . ′ 𝜓(𝑦) 

(b) 𝑥, 𝑦 < 0      𝜓 𝑥. 𝑦 =  𝜓  −𝑥 .  −𝑦   

                =  𝜓 −𝑥 ∗′ 𝜓 −𝑦  (∵  −𝑥, −𝑦 >  0) 

=  −𝜓 𝑥  ∗ ′ (−𝜓(𝑦)) 

= 𝜓 𝑥 ∗ ′ 𝜓(𝑦) 
(c) 𝑥 >  0, 𝑦 <  0 

= −𝜓 𝑥. 𝑦 =  𝜓 − 𝑥. 𝑦  =  𝜓(𝑥. (−𝑦)) 

           =  𝜓 𝑥 .′ 𝜓 −𝑦  ∵  𝑥, −𝑦 >  0 = 𝜓(𝑥) . ′ (−𝜓(𝑦)) −  𝜓 𝑥 .′ 𝜓 𝑦  𝑖. 𝑒. 𝜓 𝑥. 𝑦  

            =  𝜓 𝑥 .′ 𝜓 𝑦  

 

IV. Cantor Real Number System 
Definition 4.1: Let C denote the set of all Cauchy sequences in Q. It is (rn ), (𝑠𝑛) ∈  𝐶 are equivalent and we 

write (rn) ∼  (sn) if given any rational𝜀 >  0, there exist  𝑘 ∈  𝑁 such that | (rn ) –  sn|  <  𝜺. 
Theorem 4.2: The relation ∼ is an equivalence relation on C.  

Proof: Take any(rn) ∈  𝐶. Given any 𝜀 >  0, take 1 ∈ 𝑁.Then | (rn), –  (rn ), |  =  0 <  𝜀 ∀ 𝑛 ≥  1.Hence, 

(rn)  ∼  (rn). Hence ∼ is reflexive.  

Take any (rn ), (sn) ∈  𝐶 such that (rn), ∼  (sn). Given any𝜀 >  0, there exist  𝑘 ∈ 𝑁 𝑠. 𝑡 | rn  –  sn|  <  𝜀 ∀ 𝑛 ≥

 𝑘 i.e. | sn–  (rn ), |  =  |(rn ), –  sn|  <  𝜀 ∀ 𝑛 ≥  𝑘. Hence,  sn ∼   rn . hence, ∼ is symmetric.  

Take any (rn ), (sn), (tn) ∈  𝐶  such that (rn)  ∼  (sn) and (sn)  ∼  (tn ). Then given any  >  0 , there exist  

𝑘1, 𝑘2 ∈ 𝑁s.t| sn–  tn |  <  𝜀/2 ∀ 𝑛 ≥  𝑘1 | sn–  tn |  <  𝜀/2∀ 𝑛 ≥  𝑘2.  

Take 𝑘 =  𝑚𝑎𝑥(k1, k2). Then| rn–  sn  |  <  𝜀/2, | sn  –  tn  |  <  𝜀/2 ∀ 𝑛 ≥  𝑘. But  

  rn  –  tn =     (rn ) –  sn +  sn–  tn   
≤    rn  –  sn   +   sn  –  tn  

 <
𝜀

2
+

𝜀

2
∀ 𝑛 ≥  𝑘  

=  𝜀 ∀ 𝑛 ≥  𝑘. 

 Hence (rn )  ∼  (tn ). Hence, ∼ is transitive. Hence, ∼ is an equivalence relation on C. 

 

 ∀ n > k. 
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Definition 4.3: Rational Convergence Point: Let (rn ) ∈  𝐶 be such that(rn)  →  𝑟 ∈ 𝑄. Then (rn )  ∼  (sn) only 

if (sn)  →  𝑟. It  is called [(rn )] a rational convergence point. In this case, it is denoted [(rn)] simply as [r]. 

 

Theorem 4.4: (rn )  ∼  (sn ). 

Proof: Suppose(rn)  ∼  (sn). Let any ε > 0 be given. Then there exist  𝑘1 ∈ 𝑁 such that   rn–  sn <  
𝜀

2
∀ 𝑛 ≥

 𝑘1. Since  rn →  𝑟, there exist  𝑘2 ∈ 𝑁 s.t   rn  –  𝑟  <
𝜀

2
∀ 𝑛 ≥  𝑘2. 

Take 𝑘 =  𝑚𝑎𝑥(𝑘1, 𝑘2) and we have | rn  –  sn|  <  𝜀/2, | rn  –  𝑟 |  <  𝜀/2, ∀ 𝑛 ≥  𝑘  

             But  | 𝑠𝑛 –  𝑟 |  =  | (sn–  rn )  +  (rn  –  𝑟) |       

                                       ≤  | sn–  rn  |  +  | rn  –  𝑟 |  
                                        <  𝜀/2 +  𝜀/2    ∀ 𝑛 ≥  𝑘 

                                                                                 =  𝜀  ∀ 𝑛 ≥  𝑘. 

Hence, (sn)  →  𝑟.  

Now suppose (sn)  →  𝑟. Note that this means(sn) ∈  𝐶. Then given  𝜀 >  0, there exist  𝑘1 ∈ 𝑁  

s.t | sn–  𝑟 |  <  𝜀/2  ∀ 𝑛 ≥  𝑘1 Since (rn )  →  𝑟 there exist  𝑘2 ∈ 𝑁 s.t | rn  –  𝑟 |  <  𝜀/2 ∀ 𝑛 ≥  𝑘2 

Take 𝑘 =  𝑚𝑎𝑥(𝑘1, 𝑘2) and we have | rn  –  𝑟 |  <  𝜀/2, | sn–  𝑟 |  <  𝜀/2  ∀ 𝑛 ≥  𝑘  

But  |rn  –  𝑠𝑛 |  =  | (rn  –  𝑟)  + (𝑟 –  sn) | 

                           ≤  | rn–  𝑟 |  +  | 𝑟 –  sn| 

                             <
𝜀

2
+

𝜀

2
     ∀ 𝑛 ≥  𝑘 

                              =  𝜀 ∀ 𝑛 ≥  𝑘. 

Hence (𝑟𝑛)  ∼  (𝑠𝑛). 
 

Definition 4.5: Order on R: For any (rn ) ∈  𝐶, we say that (rn) is a positive sequence if ,there exist  some 

rational 𝑟 > 0 and 𝑎 𝑘 ∈ 𝑁 such that rn >  𝑟 ∀ 𝑛 ≥ 𝑘. 

 

Definition 4.6: The subset PR of R by 𝑃𝑅 = { [(rn )]  ∈ 𝑅| (rn) 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 } 
 

Theorem 4.7: The set PR is a well-defined set. 

Proof: Let[(rn )] ∈ 𝑃𝑅. It must be shown that if (sn)  ∼  (rn ), then [(sn)] ∈ 𝑃𝑅 also, that is (sn) is a positive 

sequence. Since (rn) is a positive sequence there exist some rational 𝑟 > 0 and 𝑘1 ∈ 𝑁 such that rn  >  𝑟 ∀ 𝑛 ≥
𝑘1 Also as (sn)  ∼  (rn ), for 𝜀 =  𝑟/2 > 0 there exist  𝑘2 ∈ 𝑁 s.t∀ 𝑛 ≥  𝑘2. Take𝑘 =  𝑚𝑎𝑥(k1, k2). 

Then∀ 𝑛 ≥  𝑘, have got| rn  –  sn  |  <  𝑟/2 , rn  >  𝑟 =>  rn  –  sn   <  𝑟/2 , rn  >  𝑟 =>  𝑟 −  𝑟/2 <  rn–  𝑟/2 <
 sn  , that is 0 <  𝑟/2 <  sn . Hence, (sn) is also a positive sequence. Hence, PR is a well-defined set. 

 

Theorem 4.8: For any [(rn)] ∈ 𝑅, one and only one of the following 

holds:   rn  =  0 ,   rn  ∈ 𝑃𝑅, −  rn  ∈ 𝑃𝑅. PR is closed under ⊕ and ⊙.  

Proof:  

Case 1:Take any [(rn)] ∈ 𝑅. It is first shown that one of the cases must hold. If [(rn)] ≠ [0], then it cannot 

have(𝑟𝑛) → 0. Hence, there exist a rational 𝑟 > 0 and 𝑘1 ∈ 𝑁 such that|rn | ≥  𝑟 ∀ 𝑛 ≥ 𝑘1 For 𝜀 =  𝑟/2 >  0 , 

there exist k2∈N s.t  | rn–  𝑟𝑚  | <  𝑟/2 ∀ 𝑛, 𝑚 ≥  k2. Take𝑘 =  𝑚𝑎𝑥(k1, k2). Then it is | rn| ≥  𝑟| rn  –  rm |  <

 𝑟/2 ∀ 𝑛, 𝑚 ≥  𝑘. In particular, have got   𝑟𝑘  ≥  𝑟  rn–  𝑟𝑘   <
𝑟

2
∀ 𝑛 ≥  𝑘.Hence ∀ 𝑛 ≥  𝑘, it is  −(𝑟/2)  <

rn–  𝑟𝑘  <  𝑟/2 rk–  𝑟/2 <  rn <  rk +  𝑟/2  

Case 2: | rk| ≥  𝑟 
(a) 𝑟𝑘  ≥  𝑟 

Then 𝑟/2 =  𝑟 –  𝑟/2 ≤  𝑟𝑘  –  𝑟/2 <  𝑟𝑛.This means rn  >  𝑟/2 ∀ 𝑛 ≥  𝑘 and so (rn) is a positive sequence, 

i.e. [(rn )] ∈ 𝑃𝑅. 
(b) 𝑟𝑘  ≤  −𝑟 
Thenrn <  𝑟𝑘  +  𝑟/2 ≤  −𝑟 +  𝑟/2 =  −(𝑟/2).This means − rn  >  𝑟/2 ∀ 𝑛 ≥  𝑘 and so (−rn) is a positive 

sequence.  

Hence−[(rn)]  =  [(rn )] ∈ 𝑃𝑅. If [(rn )] ∈ 𝑃𝑅, then, there exist  𝑟 >  0, 𝑘 ∈ 𝑁 such that rn  >  𝑟 ∀ 𝑛 ≥  𝑘.i.e. 

− rn <  −𝑟 <  0 ∀ 𝑛 ≥  𝑘 and hence it is impossible that −[(rn )]  =  [(rn )] ∈ 𝑃𝑅.By symmetry, it can be 

claimed that [(rn )] ∈ 𝑃𝑅 𝑎𝑛𝑑 − [(𝑟𝑛)] ∈ 𝑃𝑅 never be held together. If  [(rn )]  = [0], then(rn) →  0. Hence for 

any rational 𝑟 >  0, there exist  𝑘 ∈ 𝑁 such that| rn |  <  𝑟 ∀ 𝑛 ≥  𝑘  i.e.rn  ≤  | rn  |  <  𝑟 ∀ 𝑛 ≥  𝑘 and hence it 

is impossible that [(rn )] ∈ 𝑃𝑅 

Hence [(rn )]  =  [0] 𝑎𝑛𝑑 [(rn)] ∈ 𝑃𝑅 never be held together. Since [(rn)]  =  [0]  ⇔  −[(rn )]  =  [0], it may 

be claimed from preceding result that [(rn )]  =  [0] 𝑎𝑛𝑑 − [(rn )] ∈ 𝑃𝑅 never hold together also. Hence, only 
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one of the cases is true. Take any [(rn )], [(sn)] ∈ 𝑃𝑅. Then there exist rational 𝑟, 𝑠 >  0 such that, there exist  

𝑘 1𝑘 2 ∈ 𝑁 where   𝑟𝑛  >  𝑟 >  0 ∀ 𝑛 ≥  k2sn)  >  𝑠 >  0 ∀ 𝑛 ≥  𝑘 2 

Take 𝑘 =  𝑚𝑎𝑥(𝑘 1𝑘 2) and have got rn  >  𝑟 >  0, sn >  𝑠 >  0 ∀ 𝑛 ≥  𝑘 i.e. rn  +  sn >  𝑟 +  𝑠 >
 0, rn sn >  𝑟𝑠 >  0 ∀ 𝑛 ≥  𝑘.Hence, (rn + sn) ), (rnsn ) ) are both positive sequence.  

Then [(rn)]  ⊕  [(sn)]  =  [(rn  +  sn)]  ∈ 𝑃𝑅and  [(rn )]  ⊙  [(sn)]  =  [(rnsn)]  ∈ 𝑃𝑅.  

Hence, PR is closed under ⊕ and ⊙. 

 

V. The Cantor Real Number System 
Theorem 5.1: (RQ, ⊕, ⊙, ≻) is a subfield of (R, ⊕, ⊙, ≻). Furthermore, (RQ, ⊕, ⊙, ≻) ≃ (Q, +, ., >). 

Take any [r], [s]∈ RQ. Then 

[r] ⊕  (−[𝑠])  =  [(𝑟)]  ⊕  (−[(𝑠)]) 
= [(𝑟)]  ⊕  [(−𝑠)] 

= [(𝑟 –  𝑠)] 

= [𝑟 –  𝑠] (∈ 𝑅𝑄) 
 

[r] ⊙  ([𝑠]) − 1 =  [(𝑟)]  ⊙  ([(𝑠)]) − 1 
= [(𝑟)]  ⊙  [(1/𝑠)] ∀ [𝑠]  ≠  [0], note this means s ≠ 0 

= [(𝑟/𝑠)] 

=  
𝑟

𝑠
  ∈ 𝑅𝑄  

 [1] ∈ 𝑅𝑄. Hence (𝑅𝑄,⊕,⊙, ≻) is a subfield of (𝑅,⊕,⊙, ≻).  

Consider the mapping 𝜑: 𝑅𝑄 →  𝑄 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝜑([𝑟])  =  𝑟 ∀ [𝑟] ∈ 𝑅𝑄. 
[𝑟1]  =  [𝑟2]  =>  𝑙𝑖𝑚(𝑟1)  =  𝑙𝑖𝑚(𝑟2)  =>  𝑟1  =  𝑟2. Hence, φ is well-defined. 

Let r1 = r2. Then 𝑙𝑖𝑚(𝑟1)  =  𝑙𝑖𝑚(𝑟2)  and so (𝑟1)  ∼  (𝑟2), i.e., [𝑟1]  =  [𝑟2]. Hence, φ is one – one. 

For any𝑟 ∈ 𝑄, take [𝑟] ∈ 𝑅𝑄 and we will have 𝜑([𝑟])  =  𝑟. Hence φ is onto.  

Hence φ is bijective. 

For any [𝑟], [𝑠] ∈ 𝑅𝑄,   𝜑([𝑟]  ⊕  [𝑠])  =  𝜑( [(𝑟)]  ⊕  [(𝑠)] )  

= 𝜑( [(𝑟 +  𝑠)] ) 
= 𝜑([𝑟 +  𝑠]) 
= 𝑟 +  𝑠 
= 𝜑([𝑟])  +  𝜑([𝑠]) 
𝜑([𝑟]  ⊙  [𝑠])  =  𝜑( [(𝑟)]  ⊙  [(𝑠)] ) 
= 𝜑( [(𝑟. 𝑠)] ) 
= 𝜑([𝑟. 𝑠]) 
= 𝑟. 𝑠 
= 𝜑([𝑟]). 𝜑([𝑠]) 
[r] ≻  [𝑠]  =>  [(𝑟)]  ≻  [(𝑠)] 

=>  (𝑟 –  𝑠) is a positive sequence. 

=>  rn–  sn >  𝑡 ∀ 𝑛 ≥  𝑘 For some 𝑡 ∈ 𝑄, 𝑡 >  0, 𝑘 ∈ 𝑁. 

=>  𝑟 –  𝑠 >  𝑡 Since rn  =  𝑟, sn)  =  𝑠 ∀ 𝑛 ∈ 𝑁. 

  𝑟 >  𝑡 +  𝑠, i.e. 𝑟 >  𝑠 since 𝑡 >  0. 

Hence φ is an isomorphism from RQ to Q and so (RQ, ⊕, ⊙, ≻) ≃ (Q, +, ., >). 

 

Theorem 5.2: Denseness of rational:  

Let   𝑠𝑛  ,   tn  ∈ 𝑅 be such that  𝑠𝑛  ≺    tn  .Then there exist  𝑟 ∈ 𝑅𝑄 such that  sn)   ≺   𝑟 ≺    tn  . 

since   𝑠𝑛  ≺    tn  ,  tn–  𝑠𝑛  is a positive sequence and so there exist  a rational r′ > 0 and a k1∈N s.t 

tn–  sn  >  𝑟′∀ 𝑛 ≥  k1. 𝐴𝑠  𝑠𝑛  ,  tn  are Cauchy, ,there exist  k2, k3 ∈ 𝑁 𝑠. 𝑡  

| 𝑡𝑛  –  𝑡𝑚  |  <  𝑟′/3  ∀ 𝑛, 𝑚 ≥  k2. | 𝑠𝑛  –  𝑠𝑚  |  <  𝑟′/3  ∀ 𝑛, 𝑚 ≥  k3.  

Take 𝑘 =  𝑚𝑎𝑥(k1, k2, k3) and have got, ∀ 𝑛 ≥  𝑘, | tn–  tk  |  <  𝑟′/3, | 𝑠𝑛  –  sk |  <  𝑟′/3, 𝑖. 𝑒. 𝑡𝑘 –  𝑟′/3 <

 tn  <  tk +  𝑟′/3 tn–  sn)  >  𝑟′, sk–  𝑟′/3 <  sn)  <  sk +  𝑟′/3, tn–  sn)  >  𝑟′ 

Now,( tk +  sk)/2 –  𝑠𝑛 =  ½ (( tk–  𝑠𝑛)  +  ( sk–  𝑠𝑛)) 

> ½ (( tk–   sk–  𝑟′/3) –  𝑟′/3) 

> ½  𝑟′–
𝑟 ′

3
–

𝑟 ′

3
 =

𝑟 ′

6
 

>  tn–  ( tk +  sk)/2 =  ½ (( tn–   tk)  +  ( tn–   sk)) 

> ½ (−𝑟′/3 + ( tk–  𝑟′/3 –   sk)) 

> ½ (–  𝑟′/3 +  (–  𝑟′/3 +  𝑟′)) =  𝑟′/6 
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Let 𝑟 =  ( tk +   sk)/2. Then both (𝑟 –  𝑠𝑛) 𝑎𝑛𝑑 ( tn–  𝑟) are positive sequence, i.e. [𝑟]  ≻  [(𝑠𝑛)] 𝑎𝑛𝑑 [( tn )]  ≻
 [𝑟]. Hence [(𝑠𝑛 )]  ≺  [𝑟]  ≺  [( tn )] for some [𝑟] ∈ 𝑅𝑄. 

 

Theorem 5.3: Let 𝑟𝑛 , 𝑟 ∈ 𝑄. Then the following holds: 

(i) | [𝑟] |  =  [| 𝑟 |] 
(ii) ([rn]) is Cauchy iff (rn) is Cauchy. 

(iii) ([rn]) → [r] iff (rn ) → r 

(iv) (rn )∈[r] iff ([rn ]) → [r] 

(v) Let 𝛼 ∈ 𝑅 and (rn ) ∈ 𝛼. Then ([rn ]) is Cauchy and furthermore, ([rn ])  →  𝛼. 

By isomorphism,  𝑟 ≻   0 =>  𝑟 >  0, 𝑖. 𝑒.   𝑟  =  𝑟;   𝑟 ≺   0 =>  𝑟 <  0, 𝑖. 𝑒.   𝑟  =  −𝑟  𝑟 =   0 =>
 𝑟 =  0, 𝑖. 𝑒.   𝑟  =  𝑟.Hence  | [𝑟] |  =  [𝑟]  =  [| 𝑟 |] 𝑖𝑓 [𝑟]  ≽  [0], −[𝑟]  =  [−𝑟]  =  [| 𝑟 |], 𝑖𝑓 [𝑟]  ≺
 [0], 𝑖. 𝑒. | [𝑟] |  =  [| 𝑟 |]. 

Suppose(rn )  ∼  (𝑠𝑛 ). Let any ε > 0 be given. Then there exist   k1 ∈ 𝑁 such that  rn–  sn <  
𝜀

2
∀ 𝑛 ≥  k1. 

Since rn →  𝑟, ,there exist  k2 ∈ 𝑁 s.t   rn–  𝑟  <
𝜀

2
∀ 𝑛 ≥  k2 .Take 𝑘 =  𝑚𝑎𝑥(k1 , k2) and we have  

| rn–  𝑠𝑛 |  <  𝜀/2, | rn–  𝑟 |  <  𝜀/2, ∀ 𝑛 ≥  𝑘  

But  | sn–  𝑟 |  =  | (sn) –  rn )  +  (rn–  𝑟) |       

                                       ≤  | sn) –  rn|  + | rn–  𝑟 |  
                                        <  𝜀/2 +  𝜀/2    ∀ 𝑛 ≥  𝑘 

                                      =  𝜀  ∀ 𝑛 ≥  𝑘. (sn) →  𝑟.  

Now suppose (sn) )  →  𝑟. Note that this means(sn ) ) ∈  𝐶. Then given  𝜀 >  0 there exist  k1 ∈ 𝑁  s.t 

| sn–  𝑟 |  <  𝜀/2  ∀ 𝑛 ≥  k2Since (rn )  →  𝑟 there exist  k2 ∈ 𝑁 s.t | rn–  𝑟 |  <  𝜀/2 ∀ 𝑛 ≥  k2Take 𝑘 =

 𝑚𝑎𝑥(k1, k2) and we have | rn–  𝑟 |  <  𝜀/2, | sn) –  𝑟 |  <  𝜀/2  ∀ 𝑛 ≥  𝑘  

But  | rn–  𝑠𝑛 |  =  | (rn–  𝑟)  +  (𝑟 –  sn) ) | 

                           ≤  | rn–  𝑟 |  +  | 𝑟 –  sn) | 

                             <
𝜀

2
+

𝜀

2
     ∀ 𝑛 ≥  𝑘 

                              =  𝜀 ∀ 𝑛 ≥  𝑘. Hence  rn ∼   sn . 
 

Theorem 5.4: (𝑅,⊕,⊙, ≻) is Cauchy Complete. 

Proof: Let (𝛼𝑛) be any Cauchy sequence in R. Now, by denseness of rational, for each𝑛 ∈ 𝑁 , there exist 

[rn ] ∈ 𝑅𝑄 s.t 

𝛼𝑛  ⊕  (−[1/𝑛])  ≺  [rn ]  ≺  𝛼𝑛  ⊕  [1/𝑛], i.e. | [rn]  ⊕  (−𝛼𝑛) |  ≺  [1/𝑛].  
Let any real 𝜺 ≻ [0] be given. Since (𝛼𝑛) is Cauchy there exist  𝑘1 ∈ 𝑁 such that | 𝛼𝑛 ⊕ (−𝛼𝑚 ) |  ≺
 𝜺/3 ∀ 𝑛 ≥  𝑘. By denseness of rational, there exist  [𝜀] ∈ 𝑅𝑄 such that[0]  ≺  [𝜀] ≺  𝜺/3. By Archimedean 

property for Q there exist  k2 ∈ 𝑁 s.t 1/k2  <  𝜀, hence 1/𝑛 <  𝜀 ∀ 𝑛 ≥ k2. By isomorphism, It can then be 

claimed [1/𝑛]  ≺  [𝜀] ≺ 𝜺/3 ∀ 𝑛 ≥  k2. 

Take 𝑘 =  𝑚𝑎𝑥(k1 , k2). Then 

    rn ⊕   − r   =      rn ⊕   −𝛼𝑛  ⊕   𝛼𝑛  ⊕   −𝛼𝑚   ⊕   𝛼𝑚  ⊕   − rm      

                             ≼  | [rn]  ⊕  (−𝛼𝑛)|  ⊕  | 𝛼𝑛  ⊕  (−𝛼𝑚 ) |  ⊕  | 𝛼𝑚  ⊕  (−[𝑟𝑚]) | 
≺ [1/𝑛]  ⊕  | 𝛼𝑛 ⊕  (−𝛼𝑚 ) |  ⊕  [1/𝑚] 
≺  𝜺/3 ⊕  𝜺/3 ⊕  𝜺/3 ∀ 𝑛, 𝑚 ≥  𝑘 
=  𝜺 ∀ 𝑛, 𝑚 ≥  𝑘 
Hence ([rn ]) and (rn ) is a Cauchy sequence in Q. 𝛼 = [(rn )] will be in R, therefore ([rn])  →  𝛼.  

Now let any real 𝜺 ≻  [0] be given. There exist k1 ∈ 𝑁 s.t | [rn ]  ⊕  (−𝛼) |  ≺  𝜺/2 ∀ 𝑛 ≥  k1.There exist  

k2 ∈ 𝑁 s.t  

[1/𝑛]  ≺  𝜺/2 ∀ 𝑛 ≥  k2. Take 𝑘 =  𝑚𝑎𝑥(k1 , k2) and it is  

  𝛼𝑛 ⊕   −𝛼  =   𝛼𝑛  ⊕   − rn   ⊕    rn ⊕   −𝛼    

                        ≼    𝛼𝑛  ⊕   − rn   ⊕     rn ⊕   −𝛼   

                        ≺   
1

𝑛
 ⊕     rn ⊕   −𝛼   

                         ≺
𝜺

2
⊕

𝜺

2
∀ 𝑛 ≥  𝑘 

                         = 𝜺 ∀ 𝑛 ≥  𝑘. Hence(𝛼𝑛)  →  𝛼.  

(𝑅,⊕,⊙, ≻) is Cauchy Complete. 

 

Theorem 5.5: Archimedean Property 

For every[(rn )], [(sn)] ∈R such that[(rn)]  ≻  [0] there exist  [𝑛] ∈ 𝑅𝑁 such 

that[𝑛]  ⊙  [(rn )]  ≻  [(sn )].If[(rn )]  ≻  [(sn)], then since [1]∈RN, there is nothing to prove. Hence, it can be 
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assumed that[(sn)]  ≽  [(𝑟𝑛)]  ≻  [0]. By denseness of rational there exist  [r], [𝑠] ∈ 𝑅𝑄 such that[(sn)]  ⊕
 [1]  ≻  [𝑠]  ≻  [(sn)]  ≽  [(rn)]  ≻  [𝑟]  ≻  [0].Under isomorphism, it is invoked that the Archimedean property 

of Q so ,there exist  [n]∈RN such that[n] ⊙ [r] ≻ [s]. It is then[𝑛]  ⊙  [(𝑟𝑛)]  ≻  [𝑛]  ⊙  [𝑟]  ≻  [𝑠]  ≻  [(sn)] 
𝑖. 𝑒. [𝑛]  ⊙  [(rn )]  ≻  [(sn )]. Hence, the Archimedean property holds. 

Definition 5.6: For any ordered field (𝑅𝐶,⊕,⊙, ≻), we say that it is a Cantor Real Number System if 

(i) there exist  a subfield (𝑄𝐶,⊕,⊙, ≻) that is  isomorphic to (𝑄, +, . , >). 
(ii) (𝑅𝐶,⊕,⊙, ≻) is Cauchy Complete 

(iii) (RC, ⊕, ⊙, ≻) has the Archimedean property. 

Hence it is Cantor Real Number System and so Cantor Real Number System does exist.  

 

Theorem 5.7: (ℝ, +, . , >) is order complete. 

Take any non-empty subset of A of ℝ that is bounded above by some u0.Let U = {𝑢 ∈ ℝ | u is an upper bound 

of A}. Since  

𝐴 ≠  𝜑, ∃𝑎 0 ∈ 𝐴. ∃ 𝑚 ∈ ℕ 𝑠. 𝑡 𝑚 >  −𝑎 0𝑖. 𝑒. 𝑎0 <  −𝑚  𝑠𝑜 − 𝑚 ∉ 𝑈. (By Archimedean property) it is 

defined 2 sequences (xn), (yn) as such: 𝑥1 = −𝑚 (∉ 𝑈) 𝑦1 =  𝑢0 (∈ 𝑈).  Suppose thatxn ∉ 𝑈 𝑎𝑛𝑑 𝑦𝑛 ∈ 𝑈. 

Define xn+1 = ½(xn + yn) if ½(xn + yn) ∉U xn otherwise 𝑦𝑛 + 1 =  ½(xn  +  𝑦𝑛)if ½ xn  +  𝑦𝑛 ∈ 𝑈 𝑦𝑛otherwise. 

By definition, note that then will be xn ∉ 𝑈, 𝑦𝑛 ∈ 𝑈 ∀ 𝑛 ∈ 𝑁. Hence, for every n, there exist  𝑎𝑛 ∈ 𝐴 such 

that𝑥𝑛 <  𝑎𝑛 ≤  𝑦𝑛), i.e. xn <  𝑦𝑛  . Let 𝑁 =  𝑦1 –  𝑥1 >  0. First a few observations shall be made. If 

½ xn  +  𝑦𝑛 ∈  𝑆, then 𝑦𝑛) + 1 –  xn + 1 =  ½ xn  +  𝑦𝑛) –  xn  =  ½ 𝑦𝑛) –  xn . If½ xn  +  𝑦𝑛 ∉ 𝑆, then 

𝑦𝑛 + 1 – xn + 1 =  𝑦𝑛  –  ½ xn  +  𝑦𝑛) =  ½ 𝑦𝑛  –  xn . Hence 𝑦𝑛 + 1 –  xn + 1 =  ½ xn  +  𝑦𝑛 ∀ 𝑛 ∈

𝑁.Hence𝑦𝑛  –  xn =  ½ xn − 1 + 𝑦𝑛) − 1  = ½(½(xn − 2 +  𝑦𝑛) − 2)) = 𝑁/2𝑛 − 1 ∀ 𝑛 ∈ 𝑁. 

For every 𝑛 ∈ 𝑁, either𝑦𝑛 =  𝑦𝑛 + 1 𝑜𝑟 𝑦𝑛  –  𝑦𝑛 + 1 =  𝑦𝑛  –  ½(xn + 𝑦𝑛) 

= ½(𝑦𝑛  –  xn) 
= N/2

n
 

> 0   i.e. 𝑦𝑛 + 1 ≤  𝑦𝑛  and so (yn) is decreasing. 

For every 𝑛 ∈ 𝑁, either xn  =  xn + 1 𝑜𝑟xn + 1 –  xn  =  ½(xn +  𝑦𝑛) –  xn  

= ½(𝑦𝑛  –  xn) 
= 𝑁/2𝑛 
 > 0    i.e.xn + 1 ≥  xn  and so {xn} is increasing. If m, n ∈ N are such that𝑚 <  𝑛, have got 0 <

 𝑦𝑚   –  𝑦𝑛  <  𝑦𝑚   –  xn  (∵ 𝑦𝑛   xn <  𝑦𝑚   –  𝑥𝑚 (∵  xn  >  𝑥𝑚)  =  𝑁/2𝑚 − 1  i.e. | 𝑦𝑚  –  𝑦𝑛  |  <  𝑁/2𝑚 − 1. Let 

any 𝜀 >  0 be given by Archimedean property, there exist  𝑘′ ∈ 𝑁 such that𝑁 <  𝑘′𝜀.By the exponentiation 

version of Archimedean property for N , there exist  𝑘 ∈ 𝑁 such that2𝑘 >  𝑘′.Hence, ∀ 𝑛 ≥  𝑘, have got  

2𝑛 ≥  2𝑘 >  𝑘′ i.e. 𝜀2𝑛 ≥  𝜀2𝑘 >  𝜀𝑘′ >  𝑁, 𝑖. 𝑒. 𝑁/2𝑛 <  𝜀 Hence | 𝑦𝑚   –  𝑦𝑛  |  <  𝑁/2𝑚 − 1 ( by 

symmetry of absolute order, it can always be assumed  𝑚 <  𝑛. m = n, | 𝑦𝑚  –  𝑦𝑛 |  =  0 <  𝑁/2𝑚 − 1) <
 𝜀∀ 𝑛, 𝑚 ≥  𝑘 +  1. Hence, it is shown that (yn ) is Cauchy. By Cauchy Completeness, (𝑦𝑛) converges to some 

𝑦 ∈ 𝑅. Suppose 𝑦 ∉ 𝑈. Then there exist  𝑎 ∈ 𝐴 such that 𝑎 >  𝑦. By density theorem there exist  𝑧 ∈ 𝑅 such 

that 𝑎 –  𝑦 >  𝑧 >  0. Since it is always been𝑦𝑛 ≥  𝑎, it will be 𝑦𝑛  –  𝑦 ≥  𝑎 –  𝑦 >  𝑧 >  0. But(𝑦𝑛  ) →  𝑦, i.e. 

for there exist  𝑘 ∈ 𝑁 s.t | 𝑦𝑛 –  𝑦 |  <  𝑧/2∀ 𝑛 ≥  𝑘. In particular,𝑦𝑘  –  𝑦 ≤  | 𝑦𝑛 –  𝑦 |  <  𝑧/2 <  𝑧 <  𝑦𝑘–  𝑦, 

a contradiction! Hence, 𝑦 ∈ 𝑈.Now suppose there exist  𝑢 ∈ 𝑈 such that 𝑢 <  𝑦. Note first that similar to above, 

by Archimedean property and its exponentiation version for N, given any ε > 0 there exist  𝑘 ∈ 𝑁 such that 

𝑁/2𝑛 <  𝜀 ∀ 𝑛 ≥ i.e.    𝑦𝑛  – xn –  0  =  𝑦𝑛  –  𝑥𝑛  ∵  𝑦𝑛  –  xn >  0 =
𝑁

2𝑛
− 1 <  𝜀∀ 𝑛  𝑘 + 1 

i.e. (𝑦𝑛  –  xn)  →

 0. If there exist 𝑦𝑘  such that 𝑦𝑘  <  𝑦, then it is 𝑦𝑛 ≤  𝑦𝑘  <  𝑦 ∀ 𝑛 ≥  𝑘 as (𝑦𝑛) is decreasing. But (𝑦𝑛)  →  𝑦 so 

for 𝜀 =  𝑦 –  𝑦𝑘 >  0 there exist N ∈ N such that | 𝑦𝑛   –  𝑦 |  <  𝑦 –  𝑦𝑘  ∀ 𝑛 ≥  𝑁.For𝑁′ =  𝑚𝑎𝑥(𝑘, 𝑁), have got 

in particular | 𝑦𝑁
,  –  𝑦 |  =  −(𝑦𝑁

,  –  𝑦), | 𝑦𝑁
,  –  𝑦 |  <  𝑦 –  𝑦𝑘 =>  −(𝑦𝑁

,  –  𝑦)  <  𝑦 –  𝑦𝑘 =>  𝑦𝑁
,  >  𝑦𝑘 , 

contradicting (yn) being decreasing. Hence, we always have 𝑦𝑛   –  𝑦 ≥  0. since (𝑦𝑛   –  𝑥𝑛) → 0, for ε = y – u > 

0 there exist 𝑘 ∈  𝑁 such that 𝑦𝑛  –  xn  =    𝑦𝑛  –  xn   <  𝑦 –  𝑢, 𝑖. 𝑒. 𝑦𝑛  –  𝑦 <  𝑥𝑛 –  𝑢 ∀ 𝑛 ≥  𝑘 .In 

particular0 ≤  𝑦𝑘  –  𝑦 <  𝑥𝑘–  𝑢, 𝑖. 𝑒. 𝑥𝑘 >  𝑢. But this means 𝑥𝑘 >  𝑢 ≥  𝑎 ∀ 𝑎 ∈ 𝐴, making 𝑥𝑘 an upper 

bound, which is a contradiction! Hence, 𝑦 ≤  𝑢 ∀ 𝑢 ∈  𝑈 and so 𝑆𝑢𝑝 𝐴 =  𝑦 exists. Since (𝑅, +, . , >) has the 

least upper bound property, it is hence order complete. 

 

VI. Conclusion 
Peano‟s axiom allows creating natural number system, integer system, field of rational, and the real 

number system. The existence of the real number system was proceeded to pursue the instinct of Richard 

Dedekind and Georg Cantor. These two approaches congregate distinctive number system. Dedekind built a 

system that is not only reliable with normal operation but also free from the predicament of the immeasurable 



Real Analysis of Real Numbers- Cantor and Dedekind Real Number Structuring 

DOI: 10.9790/5728-1305023240                                           www.iosrjournals.org                                   40 | Page 

triangle from the rational numbers. Cantor with his natural approach resulted with the same system that has 

given more confidence on this observation. The real number system is a complete ordered field that is therefore 

Dedekind real number system. 

This paper enunciates two things about the system, the real number system is distinctive and any 

complete ordered field is the real number system. An ordered field is Cauchy complete and possesses the 

Archimedean property only if the order is complete.  Through this paper, a better insight on how the number 

system actually works.  The relationship between the fundamental subsets such as the integer and the natural 

numbers could be seen well.  
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