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Abstract: In thispaper,we considered a non-linear systemsof fractional partial differential equations.They have 

been solved by a computational method which is so-called a modified Laplace Homotopy Analysis method .The 

fractional derivatives are described in the Caputo sense. The proposed technique is only a simple modification 

of the Homotopy Analysis Method .The method was applied for some illustrative examples to solve non-linear 

systems of fractional partial differential equations. From the result of the illustrative examples we conclude that 

the method is computationally efficient. 
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I. Introduction 
       Fractional order partial differential equations are popularizations of classical partial differential equations. 

These have been of large attention in the recent literatures.                                           

      These topics have received a mighty deal of attention especially in the fields of viscoelasticity materials, 

electrochemical processes, dielectric polarization, colored noise, anomalous diffusion, signal processing, control 

theory and others. 

      Increasing extent, these models are used in applications such as fluid flow, finance and others.  most 

nonlinear fractional differential equations do not have exact solutions, so approximation and numerical 

techniques must be applied .The Laplace Homotopy Analysis method (LHAM) is   a combination of the 

Homotopy analysis method proposed by Liao in his Ph.D. Thesis [1] and the Laplace transform [2, 3] . 

      The Homotopy analysis method has been successfully employed to solve many types of nonlinear, 

homogeneous or nonhomogeneous equations and systems of equations as well as problems in science and 

engineering [4-5]. 

      Various authors have proposed several schemes to solve system of fractional partial differential equations 

with Liouville-Caputo and Caputo-Fabrizio fractional operators. 

      Dehghan in [6] applied the HAM to solve linear partial differential equations, in this work, fractional 

derivatives are described in the Liouville-Caputo sense, Xu in [7] calculated analytically the time fractional 

wave-like differential equation with a changeable coefficients, the author reduced the governing equation to two 

fractional ordinary differential equations. 

       Jafari in [8] exercise the HAM to obtain the solution of multi-order fractional differential equation studied 

by Diethelmand Ford [9], Goufo et al. [10] developed a mathematical analysis of a model of rock fracture in the 

ecosystem and applied the Caputo-Fabrizio fractional derivative, where analytical and computational 

approaches are obtained. Other analytical approaches that could be of interest are presented in [12- 14]. 

       This paper is organized as follows: in section 2 we recall the definitions of fractional derivatives and 

fractional integration simply, section 3 describes the formulation of Laplace Homotopy analysis method for 

solving system of fractional order P.D.Es.Some illustrative examples are given in section 4 finally a conclusion 

is given in section 5. 

 

II. Fractional Order Derivative And Integral: 
In this section, we review basic definitions of fractional order differentiation and fractional order integration 

such as:  

Definition 2.1:The Riemann –Liouville fractional integral of order 𝛼 > 0 is defined as follows: 

Ix
αf(x) =

1

Γ(α)
∫ (t − τ)α−1f(τ)dτ
x

0
, x> 0 ,𝛼 ∈ 𝑅+ 

Where Γ(α) is the Gamma function. 
Definition 2.2:The Caputo fractional derivative of order 𝛼 > 0 is defined as follows: 
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𝐷𝑥
𝛼𝑐 f (x) = {

1

Γ(x−α)
∫

f(m)(τ)

(x−τ)α+1−m
dτ                        m − 1 < 𝛼 < 𝑚 

x

0

dm

dxm
f(x)                                                               α = m         

 

For  𝛼 > 0, we have the following properties of the Caputo fractional derivative: 

1- Dx
αc (Ix

αf(x)) =f(x). 

2-Ix
α( Dx

αc f(x)) = f(x) − ∑ f (k)(0+)
xk

k!

n−1
k=0  

3- Dx
αc (c)=0, c∈ R 

4- Dx
αc (xγ)={

Γ(γ+1)

Γ(γ−α+1)
xγ−α     γϵ{0,1,2,3, … }, γ ≥ [α]

0                          γϵ{0,1,2,3, … }, γ < [𝛼]
  

Where [α] is the floor function of α 

 

III. The Approach 
Let us consider the following system of non-linear fractional partial differential equations.    

𝐷𝑡
𝛼𝑖𝐶 𝑢𝑖(𝑥, 𝑡) + 𝑅𝑖 (𝑢1, 𝑢2, … , 𝑢𝑚) + 𝑁𝑖(𝑢1, 𝑢2, … , 𝑢𝑚) = 𝑔𝑖(𝑥, 𝑡) , 𝑛 − 1 < 𝛼𝑖 ≤ 𝑛, 𝑖 = 1,2, . . 𝑚 

                                                                                                                                                                          … (1) 

With initial data 

𝑢𝑖(𝑥, 0) = 𝑓𝑖(𝑥)                                                                                                                                                … (2) 

Where 𝐷𝑡
𝛼𝑖𝐶  are the Caputo fractional derivatives of order 𝛼𝑖, 𝑅𝑖 and 𝑁𝑖   , 𝑖 = 1,2, … ,𝑚 are non-linear operators, 

respectively, and 𝑔
𝑖
 are source terms.                                                               

In order to solve this system by using Laplace Homotopy Analysis method, first we employing the Laplace   

transform to the both sides of (1) yields:                                                           

ℒ[𝑢𝑖(𝑥, 𝑡)] =
1

𝑠𝛼𝑖
∑ 𝑠𝛼𝑖−1−𝑘𝑢𝑖(𝑥, 0)
𝑚−1
𝑘=0 −

1

𝑠𝛼𝑖
ℒ[𝑅𝑖 (𝑢1, 𝑢2, … , 𝑢𝑚) + 𝑁𝑖(𝑢1, 𝑢2, … , 𝑢𝑚)] +

1

𝑠𝛼𝑖
ℒ[𝑔𝑖(𝑥, 𝑡)]                                                                                                                                

                                                                                                                                                                          … (3)  

The so-called zero-order deformation equation of the Laplace equation (3) has 
 

(1 − q)[ℒ∅𝑖(𝑥, 𝑡; q) −  ℒ𝑢𝑖0(𝑥, 𝑡)] =

𝑞ℎ [

ℒ∅𝑖(x, t; q) −
1

𝑠𝛼𝑖
∑ 𝑠𝛼𝑖−1−𝑘𝑓𝑖(𝑥)
𝑚−1
𝑘=0 +

1

𝑠𝛼𝑖
ℒ
𝑡
[𝑔𝑖(𝑥, 𝑡)] +                                       

 
1

𝑠𝛼𝑖
ℒ [
𝑅𝑖 (∅1(𝑥, 𝑡, 𝑞), ∅2(𝑥, 𝑡, 𝑞), … , ∅𝑚(𝑥, 𝑡, 𝑞) + 𝑁𝑖((∅1(𝑥, 𝑡, 𝑞), ∅2(𝑥, 𝑡, 𝑞),… ,

∅𝑚(𝑥, 𝑡, 𝑞)
] 
]                                            … (4) 

 

Subject to the initial conditions:   

∅𝑖(𝑥, 0, 𝑞) = 𝑓𝑖(𝑥),    𝑖 = 1,2, …𝑚                                                                                                                   … (5( 

Where q∈ [0,1]is an embedding parameter when q=0 we have ℒ∅𝑖(𝑥, 𝑡; 0) =ℒ𝑢𝑖0(𝑥, 𝑡) 
And when 𝑞 = 1 , ℎ = −1 the zero-order deformation eq (4) and (5) equivalent to (3) and (2), respectively, 

provides 

ℒ∅𝑖(𝑥, 𝑡; 1) = ℒ𝑢𝑖(𝑥, 𝑡). 
Thus as q increasing from 0 to 1, ℒ∅𝑖(𝑥, 𝑡, q) varies from ℒ𝑢0(𝑥, 𝑡)toℒ𝑢(𝑥, 𝑡). 
Expanding ℒ∅𝑖(𝑥, 𝑡; q) in Taylor series with respect to q, one has                        

ℒ∅𝑖(𝑥, 𝑡; q) = ℒ𝑢𝑖0(𝑥, 𝑡) + ∑ ℒ𝑢𝑖𝑚(𝑥, 𝑡)𝑞
𝑚∞

𝑚=1 , 𝑖 = 1,2, … ,𝑚                                                                     … (6)  

Where  

ℒ𝑢𝑖𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚

𝜕𝑥𝑚
ℒ∅𝑖(𝑥, 𝑡; q) |

𝑞 = 0
                                                                                                          … (7) 

Define the vectors  

ℒ𝑢𝑖𝑚(𝑥, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {ℒ𝑢𝑖0(𝑥, 𝑡), ℒ𝑢𝑖1(𝑥, 𝑡), ℒ𝑢𝑖2(𝑥, 𝑡), … , ℒ𝑢𝑖𝑚(𝑥, 𝑡)}  ,  𝑖 = 1,2, … ,𝑚                                           … (8) 

Differentiating equation (4) m times with respect to the embedding parameter q, and setting q=0, h= -1 and 

finally dividing them by m!, we have the so-called 𝑚𝑡ℎ order deformation equation for 𝑖 = 1,2, …𝑛. 
 

ℒ𝑢𝑖𝑚(𝑥, 𝑡) = 𝑥𝑚ℒ𝑢𝑖𝑚−1(𝑥, 𝑡) − 𝑅𝑖𝑚(ℒ𝑢𝑖𝑚−1(𝑥, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)                                                                                       … (9)  

 

Where 
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𝑅𝑖𝑚( ℒ𝑢𝑖𝑚−1(𝑥, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = ℒ𝑢𝑚−1(𝑥, 𝑡)  +
1

𝑠𝛼𝑖
(

1

(𝑚−1)!

𝜕𝑚−1

𝜕q𝑚−1
[ℒ[𝑅𝑖 (∅1(𝑥, 𝑡, 𝑞), ∅2(𝑥, 𝑡, 𝑞), … , ∅𝑚(𝑥, 𝑡, 𝑞))  +

𝑁𝑖((∅1(𝑥, 𝑡, 𝑞), ∅2(𝑥, 𝑡, 𝑞), … , ∅𝑚(𝑥, 𝑡, 𝑞)] ) |
q = 0

− (1 − 𝑥𝑚) (
1

𝑠𝛼𝑖
∑ 𝑠𝛼𝑖−1−𝑘𝑓

𝑖
(𝑥)𝑚−1

𝑘=0 +
1

𝑠𝛼𝑖
ℒ[𝑔

𝑖
(𝑥, 𝑡)])  

                                                                                                                                                                       … (10) 

  

And        𝑥𝑚 = {
0             ,     𝑚 ≤ 1
1             ,      𝑚 > 1

                                                                                         … (11) 

Applying the inverse Laplace transform of both sides of (9), then we have a power series solution of (1) which 

can be expressed as:  

𝑢𝑖(x, t)= ∑ 𝑢𝑖𝑛(𝑥, 𝑡)
∞
𝑛=0    , 𝑖 = 1,2, …𝑚                                                                  ... (12)                                                       

  

        

IV. Illustrative Examples 
In this section we will apply the LHAM to systems of non-linear fractional partial differential equations 

(FPDEs). 

Example 1: Consider the following system of linear FPDEs: 

𝐷𝑡
𝛼𝐶 𝑢(𝑥, 𝑡) − 𝑣𝑥(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) = 0 

𝐷𝑡
𝛽𝐶 𝑣(𝑥, 𝑡) − 𝑢𝑥  (𝑥, 𝑡) + 𝑣(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) = 0                                                                                            … (13) 

With initial conditions as  

𝑢(𝑥, 0) = sinh(𝑥) , 𝑣(𝑥, 0) = 𝑐𝑜𝑠ℎ(𝑥)   , (0 < 𝛼, 𝛽 < 1)                                                                             … (14) 

The exact solution is given in [13] as 𝑢(𝑥, 𝑡) = sinh(𝑥 − 𝑡) , 𝑣(𝑥, 𝑡) = cosh (𝑥 − 𝑡) 
Taking the Laplace transform to the both sides of eq (13) and using (14), we have  

ℒu(x, t) −
sinh(𝑥)

𝑠
−

1

𝑠𝛼
ℒ[𝑣𝑥(𝑥, 𝑡)] +

1

𝑠𝛼
ℒ[𝑣(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)]  = 0

ℒv(x, t) −
cosh(𝑥)

𝑠
−

1

𝑠𝛽
ℒ[𝑢𝑥(𝑥, 𝑡)] +

1

𝑠𝛽
ℒ[𝑣(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)] = 0

}                                                               … (15)  

Furthermore, we can construct the Homotopy as follows  

𝑅1𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = ℒ𝑢𝑚−1(𝑥, 𝑡) −  
1

𝑠𝛼
ℒ [(𝑣𝑚−1(𝑥, 𝑡))𝑥] +

1

𝑠𝛼
ℒ[𝑣𝑚−1(𝑥, 𝑡) + 𝑢𝑚−1(𝑥, 𝑡)]  − (1 − 𝑥𝑚)

 sinh(𝑥)

𝑠
                

                                                                                                                                                                         ... (16) 

𝑅2𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = ℒ𝑣𝑚−1(𝑥, 𝑡) −
1

𝑠𝛽
ℒ [(𝑢𝑚−1(𝑥, 𝑡))𝑥] +

1

𝑠𝛽
ℒ[𝑣𝑚−1(𝑥, 𝑡) − 𝑢𝑚−1(𝑥, 𝑡)]  − (1 − 𝑥𝑚)

 sinh(𝑥)

𝑠
            

                                                                                                                                                                        … (17) 

and the 𝑚𝑡ℎ order deformation  equations for 𝑚 ≥ 1  become 

ℒ𝑢𝑚(𝑥, 𝑡) = 𝑥𝑚ℒ𝑢𝑚−1(𝑥, 𝑡) − 𝑅1𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                                                                        … (18) 

ℒ𝑣𝑚(𝑥, 𝑡) = 𝑥𝑚ℒ𝑣𝑚−1(𝑥, 𝑡) − 𝑅2𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                                                                         … (19) 

From Eqs (14), (18) and (19) and subject to initial condition  

𝑢𝑚−1(𝑥, 0) = 0, 𝑣𝑚−1(𝑥, 0) = 0,   𝑚 ≥ 1 

We successively obtain 

{
 ℒ𝑢0(𝑥, 𝑡) =

sinh (𝑥)

𝑠
 ,

ℒ𝑣0(𝑥, 𝑡) =
cosh (𝑥)

𝑠
 ,

{
ℒ𝑢1(𝑥, 𝑡) =

−1

𝑠𝛼+1
cosh(x)

ℒ𝑣1(𝑥, 𝑡) =
−1

𝑠𝛽+1
sinh(x)

 

{
ℒ𝑢2(𝑥, 𝑡) =

−1

𝑠𝛼+𝛽+2  
 cosh(x)  +

1

𝑠𝛼+𝛽+2
sinh(x)  +

1

𝑠2𝛼+2
cosh(x)

ℒ𝑣2(𝑥, 𝑡) =
−1

𝑠𝛼+𝛽+2
 sinh(x)  +

1

𝑠2𝛽+2
sinh(x)  +

1

𝑠𝛼+𝛽+2
cosh(x)

 

      ⋮ 
And so on. 

upon applying the inverse Laplace transform to the above equations and by using (12), one can get: 

u(x, t) =(1 −
𝑡𝛼+𝛽+1

Γ(𝛼+𝛽+2)
+. . . ) sinh(𝑥) + (

−𝑡𝛼

Γ(𝛼+1)
−

𝑡𝛼+𝛽+1

Γ(α+β+2)
+

𝑡2𝛼+1

Γ(2α+2)
+⋯)cosh (x) 

v(x, t) =(1 +
𝑡𝛼+𝛽+1

Γ(𝛼+𝛽+2)
+⋯) cosh(𝑥) + (

−𝑡𝛽

Γ(𝛽+1)
−

𝑡𝛼+𝛽+1

Γ(α+β+2)
+

𝑡2𝛽+1

Γ(2b+2)
+⋯)sinh (x) 

                                                                                                                                                                        … (20) 

Following figure (1) represent the approximate solution of problem (13) for different values of 𝛼 and 𝛽 

compared with the exact solution when 𝛼 = 𝛽 = 1 at t=0.01, 0.05, 0.1    
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Fig(1) the approximate solution of problem (13) for different values of 𝛼 and 𝛽 compared with the exact 

solution when 𝛼 = 𝛽 = 1 

 

Example 2: Consider the nonlinear system of FPDEs: 

𝐷𝑡
𝛼𝐶 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) = 1 

𝐷𝑡
𝛼𝐶 𝑣(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) = 1       , 0 < 𝛼 ≤ 1                                                                        … (21) 

With initial conditions  

u(x, 0)=𝑒𝑥  ,v(x,0)=𝑒−𝑥                                                                                                                                  … (22) 

Taking the Laplace transform to the both sides of eq. (21) and using (22), we have 

 

ℒu(x, t)  −
𝑒𝑥

𝑠
+

1

𝑠𝛼
ℒ[𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)] +

1

𝑠𝛼
ℒ[𝑢(𝑥, 𝑡)] −

1

𝑠𝛼+1
= 0

ℒv(x, t)  −
𝑒−𝑥

𝑠
−

1

𝑠𝛼
ℒ[𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)] −

1

𝑠𝛼
ℒ[𝑣(𝑥, 𝑡)] −

1

𝑠𝛼+1
= 0

}                                                             … (23) 

 

Furthermore, we can construct the Homotopy as follows  

 

𝑅1𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = ℒ𝑢𝑚−1(𝑥, 𝑡) +
1

𝑠𝛼
ℒ [𝑣𝑚−1(𝑥, 𝑡)(𝑢𝑚−1(𝑥, 𝑡))𝑥 + 𝑢𝑚−1

(𝑥, 𝑡)] − (1 − 𝑥𝑚) (
𝑒𝑥

𝑠
+ 

1

𝑠𝛼+1
) 
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𝑅2𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = ℒ𝑣𝑚−1(𝑥, 𝑡) −
1

𝑠𝛼
ℒ [𝑢𝑚−1(𝑥, 𝑡)(𝑣𝑚−1(𝑥, 𝑡))𝑥 + 𝑣𝑚−1

(𝑥, 𝑡)] − (1 − 𝑥𝑚) (
𝑒−𝑥

𝑠
+ 

1

𝑠𝛼+1
) 

 

and the 𝑚𝑡ℎ order deformation  equations for 𝑚 ≥ 1  become 

 

ℒ𝑢𝑚(𝑥, 𝑡) = 𝑥𝑚ℒ𝑢𝑚−1(𝑥, 𝑡) − 𝑅1𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                                                                        … (24) 

ℒ𝑣𝑚(𝑥, 𝑡) = 𝑥𝑚ℒ𝑣𝑚−1(𝑥, 𝑡) − 𝑅2𝑚(𝑢𝑚−1,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑣𝑚−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )                                                                                         … (25)     

From Eqs (22), (24) and (25) and subject to initial condition  

𝑢𝑚−1(𝑥, 0) = 0, 𝑣𝑚−1(𝑥, 0) = 0,   𝑚 ≥ 1 
 

We successively obtain 

{
 ℒ𝑢0(𝑥, 𝑡) =

𝑒𝑥

𝑠

ℒ𝑣0(𝑥, 𝑡) =
𝑒−𝑥

𝑠

  ,    {
ℒ𝑢1(𝑥, 𝑡) =

−𝑒𝑥

𝑠𝛼+1

ℒ𝑣2(𝑥, 𝑡) =
𝑒−𝑥

 𝑠𝛼+1

 

{
 
 

 
 ℒ𝑢2(𝑥, 𝑡) =

−Γ(2α + 1)𝑡3𝛼

Γ(α + 1)Γ(α + 1)𝑠3𝛼+1
+

𝑒𝑥

𝑠2𝛼+2

ℒ𝑣2(𝑥, 𝑡) =
Γ(2α + 1)𝑡3𝛼

Γ(α + 1)Γ(α + 1)𝑠3𝛼+1
+

𝑒−𝑥

𝑠2𝛼+2

 

⋮ 
 

Upon applying the inverse Laplace transform to the above equations and by using (12), one can get: 

u(x, t) =(1 −
𝑡𝛼

Γ(𝛼+1)
+

𝑡2𝛼+1

Γ(2α+2)
+. . . ) 𝑒𝑥 + (

−Γ(2α+1)𝑡3𝛼

Γ(𝛼+1)Γ(𝛼+1)Γ(3α+1)
+⋯) 

v(x, t) =(1 −
𝑡𝛼

Γ(𝛼+1)
+

𝑡2𝛼+1

Γ(2α+2)
+. . . ) 𝑒−𝑥 + (

Γ(2α+1)𝑡3𝛼

Γ(𝛼+1)Γ(𝛼+1)Γ(3α+1)
+⋯) 

 

Following fig (2) represent the approximate solution of problem (21) for different of 𝛼 
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Figure (2) the approximate solution of problem (21) for different values of 𝛼 

 

V. Conclusions 
We present in this paper a computational method for solving a system of fractional order partial 

differential equations which is known as Laplace Homotopy analysis method. The method considered proved 

that it is a powerful tool which enables us to handle a wide class of non-linear fractional partial differential 

equations in a simple way and in order to reach the desired accuracy, all what we have to do is to increase the 

number of iterations.If the non-linear problems has an exact solution ,then after a certain stages ,every iteration 

leads to the same exact solution .Therefore Laplace Homotopy analysis method is adequate for both linear and 

non-linear problems                 

                                                                                                          

References 
[1] SJ .Liao, The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Shanghai Jiao Tong 

University; 1992. 

[2] Gepree.M, Gepreel.MS,Al-Malki. KA,and Al-Humyani. FA. M: Approximate solutions of the generalized Abel’s integralequations 
using the extension Khan’s homotopy analysis transformation method. J. Appl. Math. 2015, 357861 (2015) 

[3] Gupta. VG,Kumar. P: Approximate solutions of fractional linear and nonlinear differential equations using Laplace Homotopy 

analysis method. Int. J. Nonlinear Sci. 19(2), 113-120 (2015)                 
[4] Jafari. H, Seifi S: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun 

Nonlinear Sci Numer Simulat 2009; 14:2006–12.                                          

[5] Liao .S, Homotopy analysis method: a new analytical technique for nonlinear problems. Commun Nonlinear Sci Numer Simulat 

1997;2(2):95–100                                                                                   

[6] Dehghan .M, Manafian. J and   Saadatmandi. A: The solution of the linear fractional partial differential equations using 

thehomotopy analysis method. Z. Naturforsch. A 65(11), 935-949 (2010) 
[7] Xu. H, Cang. J: Analysis of a time fractional wave-like equation with the homotopy analysis method. Phys. Lett. A 372(8), 1250-

1255 (2008)                                                                                                                                                       

[8] Jafari. H, Das. S, Tajadodi. H: Solving a multi-order fractional differential equation using homotopy analysis method.  J. King Saud 
Univ., Sci. 23(2), 151-155 (2011) 

[9] Diethelm. K, Ford, NJ: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154, 621-

640 (2004) 
[10] Goufo. EF, Doungmo, MKP, Mwambakana, JN: Duplication in a model of rock fracture with fractional derivative without singular 

kernel. Open Math. 13(1), 839-846 (2015) 

[11] Yousefi. SA, Dehghan. M, Lotfi. A: Generalized Euler-Lagrange equations for fractional variational problems with free boundary 
conditions. Comput. Math. Appl. 62(3), 987-995 (2011).                                                                                                                            

[12] Mohebbi. A, Abbaszadeh. M and Dehghan. M: High-order difference scheme for the solution of linear time fractional Klein-Gordon 

equations. Numer. Methods Partial Differ. Equ. 30(4), 1234-1253 (2014) 
[13] Atangana. A: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl .Math. 

Comput. 273, 948-956 (2016) 

[14] Atangana. A, Alkahtani. BST: Analysis of the Keller-Segel model with a fractional derivative without singular kernel. Entropy 
17(6), 4439-4453 (2015) 

 

 

 
 

Osama H.Mohammed. “Laplace Homotopy Analysis Method for Solving Fractional Order 

Partial Differential Equations.” IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 5, 2017, 

pp. 49–54. 


