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Abstract: In this article, we have discussed an integro-differential equation which describes the charged 

particle motion for certain configurations of oscillating magnetic fields. The differential transformation method 

(DTM) is used for solving this equation. Finally, the error analysis of the results of applying this procedure to 

the integro-differential equation with time-periodic coefficients illustrates the high accuracy, efficiency, 

simplicity and applicability of this method. 
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I. Introduction  
Mathematical modeling of engineering and physics problems usually results in integro-differential equations, 

these equations arise in electromagnetics, electrodynamics, fluid dynamics, optics, biological models and 

chemical kinetics statistical physics, inverse scattering problems and many other practical applications [1-3]. 

The integro-differential equations are commonly complicated to solve analytically so it is required to get an 

effective approximate solution. Integro-differential equations of Volterra type arise in many mathematical 

formulations are naturally nonlinear. Except some number of them, most nonlinear problems do not have 

analytical solution. Therefore, these nonlinear equations should be solved using different methods such as a 

numerical or approximate method. This work concerned with the solution of the Volterra integro–differential 

equation which describes the charged particle motion for certain configurations of oscillating magnetic fields [4] 

and [5]: 
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Where a(t), b(t) and g(t) are given periodic functions of time may be easily found in the charged particle 

dynamics for some field configurations. Taking for example the three mutually orthogonal magnetic field 

elements: 

 Bx = B1sin (ωpt), By = 0, Bz = B0. 

The non-relativistic equations of motion of a particle of mass m and charge q in this field configuration are 
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By integration of (2) and (4) and replacement of the time first derivatives of z and x in (3) one has (1) with 
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Making the additional simplification that   ( )    and  ( )     , equation (1) is finally written as 
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In this study, we consider the equation (1) with the following initial conditions: 

  ( )           ( )     (9) 

There are methods to solve this equation, such as, He’s Homotopy perturbation method [5], Chebyshev wavelet 

[6], Legendre multi-wavelets [7], Local polynomial regression [8], Shannon wavelets [9], Variational iteration 

method [10] and Homotopy analysis method [11]. The solution of this equation is presented by means of 

differential transform method. 

 

II. The Differential Transformation Method (DTM) 
The basic idea of the differential transformation method was first introduced by Zhou [6] in electrical circuit 

analysis. The concept of the differential transform is driven from Taylor series expansion. One of the most 

advantages of DTM is no needing to parameter and transform into a linear form (linearization). Likewise, it does 

not need to specify the auxiliary function or suitable initial guess against other analytical and mathematical 

methods. The fundamental definitions, operations and theorems of the differential transformation method are 

shown in [7-13]. The differential transform of the function  ( ) is the new function  ( ) that is given by: 
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The differential inverse of Y(S) is defined as: 
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The following TABLE 1 contains some important theorems of the differential transformation method: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Table 1. Some theorems of the DTM 
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III. Applications 
In this section, to illustrate the efficiency of The differential transformation method for solving equation (1), we 

consider this equation for different values of a(t), b(t) and g(t), which include some test examples with known 

exact solutions. 
Test example 1:  
Consider the equation (1) with 
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Then equation (1) becomes: 
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With the exact solution   ( )              
To solve the equation (13), we apply the DTM: 
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Since  ( )           ( )     
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Using the recurrence relation (14): 
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And so on, we get    ( )   (  )      
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Now, applying the inverse differential transform, we get the approximate solution in the form: 
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To illustrate the high accuracy of the differential transformation method (DTM), the absolute errors A.E. 

     |      ( )        ( )| have been calculated for different values of t as shown in TABLE 2.  

Where       ( )             and       ( ) estimated from (15).  

Fig. 1: shown the graphs of the approximate solution and exact solution of the test example 1.  

Fig. 2: shown the graph of the absolute errors in the DTM solutions for that problem.  

It is clear that the solutions obtained by the DTM are in excellent agreement with the exact solution. 
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Table 2. The absolute errors for different values of t. 

        ( )       ( ) 
Absolute errors 

  |      ( )        ( )| 

0 1 1 0 

0.1 1.004987507 1.004987507 0 

0.2 1.019800444 1.019800444 0 

0.3 1.043992551 1.043992551 1.09912E-13 

0.4 1.076828331 1.076828331 3.46789E-12 

0.5 1.117295331 1.117295331 5.04676E-11 

0.6 1.164121098 1.164121099 4.50009E-10 

0.7 1.215794565 1.215794568 2.8617E-09 

0.8 1.270591568 1.270591582 1.42093E-08 

0.9 1.326604129 1.326604187 5.84059E-08 

1 1.381773084 1.381773291 2.06826E-07 

 

 

 
Fig. 1: Shown the graphs of the DTM solutions and the exact solution of the test example 1. 

 

 

 
Fig. 2: Shown the graph of the absolute errors in the DTM solutions. 
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Test example 2: 

Consider the equation (1) with 
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Then equation (1) becomes: 
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The exact solution:  ( )      
 

   
To solve the equation (17), we apply the DTM: 
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Using the recurrence relation (18): 
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And so on, we get  
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Now, applying the inverse differential transform, we get the approximate solution in the form: 
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As in Test example 1, we calculate the absolute errors |      ( )        ( )| in the results for different values 

of t as shown in TABLE 3. Where       ( )             and       ( ) estimated from (19).  

Fig. 3: shown the graphs of the approximate solution and exact solution of the test example 2.  

Fig. 4: shown the graph of the absolute errors in the DTM solutions for that problem. 

It is clear that the solutions obtained by the DTM are in excellent agreement with the exact solution. 



Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields  

DOI: 10.9790/5728-1305029093                                www.iosrjournals.org                                              95 | Page 

Table 3. The absolute errors for different values of t. 

        ( )       ( ) 
Absolute errors 

  |      ( )        ( )| 

0 1 1 0 

0.1 1.0672161 1.0672161 2.22045E-16 

0.2 1.135506985 1.135506985 9.76996E-15 

0.3 1.204837418 1.204837418 2.45581E-13 

0.4 1.275173319 1.275173319 2.44116E-12 

0.5 1.346481725 1.346481725 1.44973E-11 

0.6 1.418730753 1.418730753 6.21088E-11 

0.7 1.491889566 1.491889566 2.12398E-10 

0.8 1.565928338 1.565928338 6.15903E-10 

0.9 1.640818219 1.640818221 1.57457E-09 

1 1.716531307 1.716531311 3.64468E-09 

 

 

 

Fig. 3: Shown the graphs of the DTM solutions and exact solutions of test example 2. 
 

 

 
Fig. 4: Shown the graph of the absolute errors in the DTM solutions. 
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Test example 3: 

Consider the equation (1) with 
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Then equation (1) becomes: 
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The exact solution:  ( )               

To solve the equation (21), we apply the DTM:  
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Since  ( )           ( )      
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Using the recurrence relation (22): 
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And so on, we get 
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Now, applying the inverse differential transform, we get the approximate solution in the form: 

  ( )              (23) 

This approximate solution is the exact solution for our test example 3. 
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IV. Conclusion 
  In this work we have successfully applied differential transform method (DTM) on an integro-

differential equation with time periodic coefficients which describes the charged particle motion for certain 

configurations of oscillating magnetic fields. We have considered three test problems to solve and illustrated its 

efficiency, wider applicability and high accuracy. This study shows that the differential transformation method 

(DTM) is a useful method for such type of problems because the time periodic coefficients are very complex 

expressions and other numerical methods add more complexity to it because of their lengthy procedures. The 

precision of the resulted solution can be improved by obtaining more terms in the solution. In some cases, the 

approximate solution obtained with the differential transformation method (DTM) can be resulted the exact 

solution. It can be easily observed from the test problems results that the approximate solution is approaching 

towards an exact solution in some problems and the absolute error has very small values in other problems. 
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