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Abstract:  To study problems in geometry the technique known as Differential geometry is used. Through which 

in calculus, linear algebra and multi linear algebra are studied from theory of plane and space curves and 

of surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry 

during the 18th century and the 19th century. Since the late 19th century, differential geometry has grown into a 

field concerned more generally with the geometric structures on differentiable manifolds. The differential 

geometry of surfaces captures many of the key ideas and techniques characteristic of this field. 
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I. Introduction 
Carl Friedrich Gaul (1777-1855)[1] is the father of differential geometry. He was (among many other 

things) a cartographer and many terms in modern differential geometry (chart, atlas, map, coordinate system, 

geodesic, etc.) reflect these origins. He was led to his Theorema Egregium by the question of whether it is 

possible to draw an accurate map of a portion of our planet. 

We can distinguish extrinsic differential geometry and intrinsic differential geometry. The former 

restricts attention to sub manifolds of Euclidean space while the latter studies manifolds equipped with a 

Riemannian metric. The extrinsic theory is more accessible because we can visualize curves and surfaces in R 3, 

but some topics can best be handled with the intrinsic theory. 

Organization of the paper is with respective sections: manifold, discussion of major branches of 

differential geometry, applications of differential geometry, differential geometry of curvature, differential 

geometry of surfaces and conclusions. 

 

II. Manifold 
In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean 

space [2]. In an n-dimensional Euclidean space any point can be specified by n real numbers. These are called 

the coordinates of the point. An n-D differentiable manifold is a generalization of n-dimensional Euclidean 

space. In a manifold it may only be possible to define coordinates locally. This is achieved by defining 

coordinate patches: subsets of the manifold which can be mapped into n-dimensional Euclidean space. 

 

1.1 Kähler manifold 

Kähler manifold is three mutually compatible structures; a complex structure, a Riemannian structure, and 

a symplectic structure. It finds important applications in the field of algebraic geometry where they represent 

generalizations of complex projective algebraic varieties via the Kodaira embedding theorem 

Definition 2.1.1: Symplectic viewpoint: A Kähler manifold is a symplectic manifold  equipped with 

an integral almost-complex structure which is compatible with the symplectic form.  
Definition 2.1.2: Complex viewpoint: A Kähler manifold is a Hermitian manifold whose associated Hermitian 

form is closed. The closed Hermitian form is called the Kähler metric. 

Definition 2.1.3: Equivalence: Every Hermitian manifold  is a complex manifold which comes naturally 

equipped with a Hermitian form  and an integral, almost complex structure . Assuming that  is closed, there 

is acanonical symplectic form defined as  which is compatible with J, hence satisfying the first 

definition. On the other hand, any symplectic form compatible with an almost complex structure must be 
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a complex differential form of type (1, 1), written in a coordinate chart   as 

for . The added assertions that  be real-valued, closed, and non-

degenerate guarantee  that defines Hermitian forms at each point in K. 

Remark 2.1.4: Relation between Hermitian and symplectic definitions 

Let be the Hermitian form,  the symplectic form, and J, the almost complex structure. Since   and J are 

compatible, the new form  is Riemannian. One may then summarize the connection between 

these structures via the identity  

1.2 Laplacians on Kähler manifolds 

Definition 2.2.1: Let * be the Hodge operator and then on an differential manifold X we can define the 

Laplacian as  Where d is the exterior derivative and .Furthermore if X is 

Kähler then d and   are decomposed as ,  and we can define another Laplacians  

,     that satisfy . From these facts we obtain the Hodge 

decomposition  where  is r - degree harmonic form and   is {p, q}-degree harmonic form 

on X.  

Remark 2.2.2: A differential form  is harmonic if and only if each  belong to the {i, j}-degree harmonic 

form. 

Definition2.2.3: A pseudo-Riemannian manifold (M, g) is a differentiable manifold M equipped with a non-

degenerate, smooth, symmetric metric tensor g which, unlike a Riemannian metric, need not be positive-

definite, but must be non-degenerate. Such a metric is called a pseudo-Riemannian metric and its values can be 

positive, negative or zero. The signature of a pseudo-Riemannian metric is (p, q) where both p and q are non-

negative. 

Definition2.2.4: Lorentzian manifold: A Lorentzian manifold is an important special case of a pseudo-

Riemannian manifold in which the signature of the metric is (1, n−1) (or sometimes (n−1, 1), see sign 

convention). Such metrics are called Lorentzian metrics. They are named after the physicist Hendrik Lorentz. 

 

III. Discussion Of Major Branches Of Differential  Geometry 
1.3 Riemannian geometry 

It studies Riemannian manifolds, smooth manifolds with a Riemannian metric. This is a concept of 

distance expressed by means of a smooth positive definite symmetric bilinear form defined on the tangent space 

at each point. Riemannian geometry generalizes Euclidean geometry to spaces that are not necessarily flat, 

although they still resemble the Euclidean space at each point infinitesimally, i.e. in the first order of 

approximation.  Various concepts based on length, such as the arc length of curves, area of plane regions, 

and volume of solids all possess natural analogues in Riemannian geometry. The notion of a directional 

derivative of a function from multivariable calculus is extended in Riemannian geometry to the notion of 

a covariant derivative of a tensor. Many concepts and techniques of analysis and differential equations have 

been generalized to the setting of Riemannian manifolds.A distance-preserving diffeomorphism between 

Riemannian manifolds is called an isometry. This notion can also be defined locally, i.e. for small 

neighborhoods of points. Any two regular curves are locally isometric. In higher dimensions, the Riemann 

curvature tensor is an important point wise invariant associated to a Riemannian manifold that measures how 

close it is to being flat. An important class of Riemannian manifolds is the Riemannian symmetric spaces, 

whose curvature is not necessarily constant. These are the closest analogues to the "ordinary" plane and space 

considered in Euclidean and non-Euclidean geometry. 
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1.4 Pseudo-Riemannian geometry 

Pseudo-Riemannian geometry generalizes Riemannian geometry to the case in which the metric tensor need not 

be positive-definite. A special case of this is a Lorentzian manifold, which is the mathematical basis of 

Einstein's general relativity theory of gravity. 

 

1.5 Finsler geometry 

Finsler geometry has the Finsler manifold as the main object of study. This is a differential manifold with 

a Finsler metric, i.e. a Banach norm defined on each tangent space. A Finsler metric is a much more general 

structure than a Riemannian metric.  

Definition: A Finsler structure on a manifold M is a function  such that: 

 for all x, y in TM, 

F is infinitely differentiable in  

The vertical Hessian of  is positive definite. 

 

 

1.6 Symplectic geometry 

Symplectic geometry is the study of symplectic manifolds. An almost symplectic manifold is a differentiable 

manifold equipped with a smoothly varying non-degenerate skew-symmetric bilinear form on each tangent 

space, i.e., a non degenerate 2-form ω, called the symplectic form. A symplectic manifold is an almost 

symplectic manifold for which the symplectic form ω is closed: .  

Definition: A diffeomorphism between two symplectic manifolds which preserves the symplectic form is called 

a symplectomorphism. 

Non-degenerate skew-symmetric bilinear forms can only exist on even dimensional vector spaces, so symplectic 

manifolds necessarily have even dimension. In dimension 2, a symplectic manifold is just a surface endowed 

with an area form and a symplectomorphism is an area-preserving diffeomorphism.  

 

1.7 Complex and Kähler geometry 

Definition: A real manifold , endowed with a tensor of type  i.e. a vector bundle endomorphism (called 

an almost complex structure)  It follows from this definition that an almost complex 

manifold is even dimensional. 

Definition: An almost complex manifold is called complex if , where  is a tensor of type  related 

to , called the Nijenhuis tensor (or sometimes the torsion).  

Remark: An almost complex manifold is complex if and only if it admits a holomorphic.  

Definition: An almost Hermitian structure is given by an almost complex structure J, along with a Riemannian 

metric g, satisfying the compatibility condition  

Definition: An almost Hermitian structure defines naturally a differential two-form  

The following two conditions are equivalent: 

1.  

2. where  is the Levi-Civita connection of . In this case,  is called a Kähler structure, and 

a Kähler manifold is a manifold endowed with a Kähler structure. In particular, a Kähler manifold is both a 

complex and a symplectic manifold. A large class of Kähler manifolds (the class of Hodge manifolds) is given 

by all the smooth complex projective varieties. 

 

1.8 CR geometry 

CR geometry is the study of the intrinsic geometry of boundaries of domains in complex manifolds. 

 

1.9 Synthetic differential geometry 

Synthetic differential geometry is a reformulation of differential geometry in the language of topos 

theory, in the context of an intuitionistic logic characterized by a rejection of the law of excluded middle. There 

are several insights that allow for such a reformulation. The first is that most of the analytic data for describing 

the class of smooth manifolds can be encoded into certain fibre bundles on manifolds: namely bundles of jets . 

The second insight is that the operation of assigning a bundle of jets to a smooth manifold is functorial in nature. 

The third insight is that over a certain category, these are representable functors. Furthermore, their 

representatives are related to the algebras of dual numbers, so that smooth infinitesimal analysis may be 

used.Synthetic differential geometry can serve as a platform for formulating certain otherwise obscure or 

confusing notions from differential geometry. For example, the meaning of what it means to 
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benatural (or invariant) has a particularly simple expression, even though the formulation in classical differential 

geometry may be quite difficult. 

 

1.10 Abstract differential geometry 

The adjective abstract has often been applied to differential geometry before, but the abstract 

differential geometry (ADG) of this article is a form of differential geometry without the calculusnotion of 

smoothness, developed by Anastasios Mallios and others from 1998 onwards. Instead of calculus, an axiomatic 

treatment of differential geometry is built via sheaf theory and sheaf cohomology using vector sheaves in place 

of bundles based on arbitrary topological spaces. Mallios says non commutative geometry can be considered a 

special case of ADG, and that ADG is similar to synthetic differential geometry. 

 

1.11 Discrete differential geometry 

Discrete differential geometry is the study of discrete counterparts of notions in differential geometry. Instead of 

smooth curves and surfaces, there are polygons, meshes, and simplicial complexes. It is used in the study 

of computer graphics and topological combinatorics. 

 

IV. Applications Of Differential  Geometry 
In physics: 

a) Differential geometry is the language in which Einstein's general theory of relativity is expressed. 

According to the theory, the universe is a smooth manifold equipped with a pseudo-Riemannian metric, which 

describes the curvature of space-time. Understanding this curvature is essential for the positioning 

of satellites into orbit around the earth. Differential geometry is also indispensable in the study of gravitational 

lensing and black holes. 

b) Differential forms are used in the study of electromagnetism. 

c) Differential geometry has applications to both Lagrangian mechanics and Hamiltonian 

mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems. 

d) Riemannian geometry and contact geometry have been used to construct the formalism of geometro 

thermodynamics which has found applications in classical equilibrium thermodynamics. 

In economics [2]: differential geometry has applications to the field of econometrics.  

Geometric modeling (including computer graphics) and computer-aided geometric design draw on ideas from 

differential geometry. 

In engineering, differential geometry can be applied to solve problems in digital signal processing.  

In probability, statistics, and information theory, one can interpret various structures as Riemannian manifolds, 

which yields the field of information geometry, particularly via the Fisher information metric. 

In structural geology, differential geometry is used to analyze and describe geologic structures. 

In computer vision, differential geometry is used to analyze shapes.  

In image processing [3], differential geometry is used to process and analyse data on non-flat surfaces.  

In wireless communications [4], Grassmanian manifold is used for beam forming techniques in multiple 

antenna systems.  

 

V. Differential Geometry Of Curvature[5] 
1.12 Pinched sectional curvature 

1. Sphere theorem. : If M is a simply connected compact n-dimensional Riemannian manifold with 

sectional curvature strictly pinched between 1/4 and 1 then M is diffeomorphic to a sphere. 

2. Cheeger's finiteness theorem: Given constants C, D and V, there are only finitely many (up to 

diffeomorphism) compact n-dimensional Riemannian manifolds with sectional curvature  diameter 

≤ D and volume ≥ V. 

3. Gromov's almost flat manifolds.  There is an  such that if an n-dimensional Riemannian 

manifold has a metric with sectional curvature |K| ≤ εn and diameter ≤ 1 then its finite cover is diffeomorphic to 

a nil manifold. 

 

1.13 Sectional curvature bounded below 

1. Cheeger-Gromoll's Soul theorem:If M is a non-compact complete non-negatively curved n-

dimensional Riemannian manifold, then M contains a compact, totally geodesic sub manifold S such that M is 

diffeomorphic to the normal bundle of S (S is called the soul of M.) In particular, if M has strictly positive 

curvature everywhere, then it is diffeomorphic to R
n
. 
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2. Gromov's Betti number theorem:There is a constant  such that if M is a compact 

connected n-dimensional Riemannian manifold with positive sectional curvature then the sum of its Betti 

numbers is at most C. 

3. Grove–Petersen's finiteness theorem. Given constants C, D and V, there are only finitely many 

homotopy types of compact n-dimensional Riemannian manifolds with sectional curvature K ≥ C, diameter 

≤ D and volume ≥ V. 

 

1.14 Sectional curvature bounded above 

1. The Cartan–Hadamard theorem states that a complete simply connected Riemannian manifold M with 

non positive sectional curvature is diffeomorphic to the Euclidean space R
n
 with n = dim M via the exponential 

map at any point. It implies that any two points of a simply connected complete Riemannian manifold with non 

positive sectional curvature are joined by a unique geodesic. 

2. The geodesic flow of any compact Riemannian manifold with negative sectional curvature is ergodic. 

3. If M is a complete Riemannian manifold with sectional curvature bounded above by a strictly negative 

constant k then it is a CAT (k) space. Consequently, its fundamental group Γ = π1(M) is Gromov hyperbolic. 

This has many implications for the structure of the fundamental group: 

 it is finitely presented; 

 the word problem for Γ has a positive solution; 

 the group Γ has finite virtual cohomological dimension; 

 it contains only finitely many conjugacy classes of elements of finite order; 

 the abelian subgroups of Γ are virtually cyclic, so that it does not contain a subgroup isomorphic 

to Z×Z. 

 

1.15 Ricci curvature bounded below 

1. Myers theorem. If a compact Riemannian manifold has positive Ricci curvature then its fundamental 

group is finite. 

2. Splitting theorem. If a complete n-dimensional Riemannian manifold has nonnegative Ricci curvature 

and a straight line (i.e. a geodesic which minimizes distance on each interval) then it is isometric to a direct 

product of the real line and a complete (n-1)-dimensional Riemannian manifold which has nonnegative Ricci 

curvature. 

3. Bishop–Gromov inequality. The volume of a metric ball of radius r in a complete n-dimensional 

Riemannian manifold with positive Ricci curvature has volume at most that of the volume of a ball of the same 

radius r in Euclidean space. 

4. Gromov's compactness theorem. The set of all Riemannian manifolds with positive Ricci curvature and 

diameter at most D is pre-compact in the Gromov-Hausdorff metric. 

 

1.16 Negative Ricci curvature 

1. The isometry group of a compact Riemannian manifold with negative Ricci curvature is discrete. 

2. Any smooth manifold of dimension n ≥ 3 admits a Riemannian metric with negative Ricci 

curvature.
[3]

 (This is not true for surfaces.) 

 

1.17 Positive scalar curvature 

1. The n-dimensional torus does not admit a metric with positive scalar curvature. 

2. If the injectivity radius of a compact n-dimensional Riemannian manifold is ≥ π then the average scalar 

curvature is at most n (n-1). 

 

1.18 Gauss intrinsic invariant theorem 

One of the other extrinsic numerical invariants of a surface is the mean curvature  defined as the sum of the 

principal curvatures. It is given by the formula  . The coefficients of the first and second 

fundamental forms satisfy certain compatibility conditions known as the Gauss-Codazzi equations; they involve 

the Christoffel symbols  associated with the first fundamental form:   
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And  . These equations can also be succinctly expressed and derived in 

the language of connection forms due to Élie Cartan. Pierre Bonnet proved that two quadratic forms satisfying 

the Gauss-Codazzi equations always uniquely determine an embedded surface locally.  For this reason the 

Gauss-Codazzi equations are often called the fundamental equations for embedded surfaces, precisely 

identifying where the intrinsic and extrinsic curvatures come from. They admit generalizations to surfaces 

embedded in more general Riemannian manifolds. 

 

VI. Differential Geometry Of Surfaces 
Surface with various additional structures, most often, a Riemannian metric. Surfaces have been extensively 

studied from various perspectives:  

Extrinsically: Relating to their embedding in Euclidean space  

Intrinsically: Reflecting their properties determined solely by the distance within the surface as measured along 

curves on the surface.  

Carl Friedrich Gauss (1825-1827) showed that curvature was an intrinsic property of a surface, independent of 

its isometric embedding in Euclidean space. Surfaces naturally arise as graphs of functions of a pair of variables, 

and sometimes appear in parametric form or as loci associated to space curves. Lie groups can be used to 

describe surfaces of constant Gaussian curvature; they also provide an essential ingredient in the modern 

approach to intrinsic differential geometry through connections. This is well illustrated by the non-linear Euler-

Lagrange equations in the calculus of variations: although Euler developed the one variable equations to 

understand geodesics, defined independently of an embedding, one of Lagrange's main applications of the two 

variable equations was to minimal surfaces, a concept that can only be defined in terms of an embedding. 

 

1.19 Determination of paths of shortest length between two fixed points on the surface 

The Gaussian curvature at a point on an embedded smooth surface given locally by the equation 

 In E
3
, is defined to be the product of the principal curvatures at the point; the mean curvature is 

defined to be their average. The principal curvatures are the maximum and minimum curvatures of the plane 

curves obtained by intersecting the surface with planes normal to the tangent plane at the point. If the point is (0, 

0, 0) with tangent plane z = 0, then, after a rotation about the z-axis setting the coefficient on xy to zero, F will 

have the Taylor series expansion  

The principal curvatures are k1 and k2 in this case, the Gaussian curvature is given by  and the mean 

curvature by  since K and Km are invariant under isometrics of E
3
, in general  

and where the derivatives at the point are given by  . For 

every oriented embedded surface the Gauss map is the map into the unit sphere sending each point to the 

(outward pointing) unit normal vector to the oriented tangent plane at the point. In coordinates the map sends 

 to . Direct computation shows that: the Gaussian curvature is 

the Jacobian of the Gauss map.  

Example 6.1: The surface of revolution obtained by rotating the curve  about the z-axis 

 

 

6.2 Surfaces of revolution 

A surface of revolution can be obtained by rotating a curve in the plane about the z-axis, assuming the curve 

does not intersect the z-axis. Suppose that the curve is given by with t lies in (a, b), and is 

parameterized by arc length, so that Then the surface of revolution is the point set 
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.The Gaussian curvature and mean curvature are given 

by  

6.3 Quadric surfaces 

Consider the quadric surface defined by , this surface admits a 

parameterization . The Gaussian curvature and mean 

curvature are given by :   

6.4 Ruled surfaces 

A ruled surface is one which can be generated by the motion of a straight line in E
3
. Choosing a directrix on the 

surface, i.e. a smooth unit speed curve  c(t) orthogonal to the straight lines, and then choosing u(t) to be unit 

vectors along the curve in the direction of the lines, the velocity vector  and  u satisfy 

The surface consists of points  as s and t vary. Then, if 

 The Gaussian curvature of the ruled surface vanishes if and only 

if ut and v are proportional, This condition is equivalent to the surface being the envelope of the planes along the 

curve containing the tangent vector v and the orthogonal vector u, i.e. to the surface being developable along the 

curve. More generally a surface in E
3
 has vanishing Gaussian curvature near a point if and only if it is 

developable near that point. (An equivalent condition is given below in terms of the metric.) 

Remarks:   

 The unit sphere in E
3
 has constant Gaussian curvature +1. 

 The Euclidean plane and the cylinder both have constant Gaussian curvature 0. 

 The surfaces of revolution with φtt = φ have constant Gaussian curvature –1.  

 

6.5 Local metric structure 

A chart for the upper hemisphere of the 2-sphere obtained by projecting onto the x-y-plane. Coordinate changes 

between different local charts must be smooth For any surface embedded in Euclidean space of dimension 3 or 

higher, it is possible to measure the length of a curve on the surface, the angle between two curves and the area 

of a region on the surface. This structure is encoded infinitesimally in a Riemannian metric on the surface 

through line elements and area elements.  

 

     
 

Classically in the nineteenth and early twentieth century’s only surfaces embedded in R
3
 were considered and 

the metric was given as a 2×2 positive definite matrix varying smoothly from point to point in a local 

parameterization of the surface. The idea of local parameterization and change of coordinate was later 

formalized through the current abstract notion of a manifold, a topological space where the smooth structure is 

given by local charts on the manifold, exactly as the planet Earth is mapped by atlases today. Changes of 

coordinates between different charts of the same region are required to be smooth. Just as contour lines on real-

life maps encode changes in elevation, taking into account local distortions of the Earth's surface to calculate 

true distances, so the Riemannian metric describes distances and areas "in the small" in each local chart. In each 
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local chart a Riemannian metric is given by smoothly assigning a 2×2 positive definite matrix to each point; 

when a different chart is taken, the matrix is transformed according to the Jacobian matrix of the coordinate 

change. The manifold then has the structure of a 2-dimensional Riemannian manifold. 

 

6.6 Line and area elements 

Taking a local chart, for example by projecting onto the x-y plane (z = 0), the line element ds and the area 

element dA can be written in terms of local coordinates as  and 

 the expression  is called the first fundamental form.  

The matrix  is required to be positive-definite and to depend smoothly on x and y. In a 

similar way line and area elements can be associated to any abstract Riemannian 2-manifold in a local chart. 

 

6.7 Second fundamental form  
 

Take a point (x, y) on the surface in a local chart. The Euclidean distance from a nearby point 

 to the tangent plane at (x, y), i.e. the length of the perpendicular dropped from the nearby 

point to the tangent plane, has the form   plus third and higher order corrections. 

The above expression, a symmetric bilinear form at each point, is the second fundamental form. It is described 

by a 2 × 2 symmetric matrix  which depends smoothly on x and y. The Gaussian curvature 

can be calculated as the ratio of the determinants of the second and first fundamental forms:  

 
 

VII. Conclusion 
Differential geometry is normally considered as a speculation of the Riemannian geometry. The 

historical backdrop of improvement of Finsler geometry can be partitioned into four periods. The primary period 

of the historical backdrop of advancement of Finster geometry started in 1924, when three geometricians J.H. 

Taylor, J.L. Synge and L. Berwald at the same time began work in this field. Berwald is the main man who has 

presented the idea of association in the hypothesis of Finsler spaces. He is the maker of Finsler geometry and, 

besides, the author. He has built up a hypothesis with specific reference to the hypothesis of bend in which the 
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Ricci lesa does not hold great. J.H. taylor gave the name 'Finsler space' to the complex outfitted with this 

summed up metric. The second time frame started in 1934, when E. Cartan distributed his proposition on Finsler 

geometry. He demonstrated that it was to be sure conceivable to characterize association coefficients and 

subsequently covariant subordinates with the end goal that the Ricci lemma is fulfilled. On this premise Cartan 

built up the hypothesis of curvature tensor and torsion. Every single consequent examination considering the 

geometry of Finsler spaces were ruled by this approach. A few mathematicians, for example, E.T. Davies , 

Golab , H. Hombu , O. Varga , V.V. Wagner have considered Finsler g•ometry along Cartan's approach. They 

have communicated the conclusion that the hypothesis has achieved its last shape. This hypothesis makes 

certain gadgets, which fundamentally includes the thought of a space whose components are not the purposes of 

the basic complex, but rather the line-components of the last mentioned, which shapes a (2n-1) — dimensional 

assortment. This encourages what Cartan called 'Euclidean association' which by method for specific proposes 

might be gotten extraordinarily from the crucial metric capacity. 
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