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Abstract: This paper investigates a reduction from boundary value problems to initial value problems. 

Shooting and Finite difference methods were used in the numerical solutions of two-point boundary value 

problems. Problems with and without exact solutions were considered. It showed the rate, efficiency and 

efficacy of convergence for two point Boundary Value Problems. The difficulty in providing exact solutions to 

two point boundary value problems via analytical methods necessitated the study. It was observed that the 

shooting method provides a better result than the finite difference method in solving two point boundary value 

problems (ODEs) with Dirichlet boundary conditions. The study further revealed other integrating factors 

adopted. 
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I. Introduction 

Real life situation in engineering can be modelled into differential equations with initial or boundary 

value conditions. While it is easy to provide a solution to well-posed Initial Value Problems (IVPs), not all 

Boundary Value Problems (BVPs) can be solved analytically. This gave rise tonumerical solution which 

includes the shooting and finite difference methods. These methods have gained popular, due to their 

applications in resolving problems in science and engineering. Discussions in this context will be centered on 

two point boundary value problems (TPBVPs). 

 

1.1 Two Point Boundary Value Problems 

The Boundary value Problems (BVPs) is an Ordinary Differential Equation whose values or derivative 

are known usually at the end points (or boundary of some domain of interest). Let f be a continuously 

differentiable function. The Two Point Boundary Value Problem (TPBVP) with dirichlet boundary condition is 

defined by 

𝑥′′ = 𝑓 𝑡, 𝑥, 𝑥′ ,                          𝑥 𝑎 = 𝐴 ,                  𝑥 𝑏 = 𝐵   

Gear [11] discussed the direct numerical solution of the mth order differential system 

𝑥𝑚 = 𝑓  𝑡, 𝑥, 𝑥′, … , 𝑥 𝑚−1                                                                                           (1.1) 

With the tacit assumption that f is continuous in the independent variable t and satisfies a Lipschitz condition of 

order one with respect to x and each of  

𝑥 𝑖 =  
𝑑𝑖𝑥

𝑑𝑡𝑖        𝑖 = 1  1 𝑚 − 1                                                                                    (1.2) 

Rutishauser[21] examined the direct solution of 1.2 and its equivalent first order IVP defined.  

   

𝑥′ = 𝑓  𝑡, 𝑥 ,     𝑥  𝑎 = 𝑥0 

Where 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑚 )𝑇𝑥0 = (𝜂1, 𝜂2, … , 𝜂𝑚 )𝑇                                (1.3) 

and Rutishauser concluded that the choice of approach depends on the particular problem at hand. 

If the conditions in (1.3) are given at more than one point, we have a boundary value problem, which is well 

treated in [15], [17-19]discussed the theory of the direct finite difference method for second order Initial Value 

Problem. 

𝑥′′ = 𝑓  𝑡, 𝑥, 𝑥′ ,    𝑥 𝑎 , 𝑥′ 𝑎   𝑔𝑖𝑣𝑒𝑛                                                                     (1.4) 

The application of the conventional numerical methods demand for the reduction of (1.4) to a set of first order 

IVP 

𝑥′ = 𝑧,                            𝑥 𝑎 =  𝑥0 
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𝑧′ = 𝑓  𝑡, 𝑥, 𝑧 ,               𝑧 𝑎 = 𝑧0                                                                               (1.5)  
For the numerical solution of (1.4) by finite differences, we can either reduce (1.4) to a system of two 

first order equations and then apply standard methods for the first order systems. Although Kayode [16] 

analyzed that the reduction of higher order differential equation to systems of first order equations leads to 

serious computational burden as wastage in computer time. While this is true, methods which solve higher 

differential equations directly without reduction to systems of first order equation most times gives a larger error 

than those methods that include reduction to first order equation. These methods are not without their own 

limitation. 

[11],[13-15]developed explicit Runge-Kutta   Nystrom methods for   the numerical solution of (1.4). 

Dormand [6]  proposed two classes, RKM2 and RKM4 of embedded Runge-Kutta formulas. 

𝑥′′ = 𝑓 𝑡, 𝑥                        𝑥 𝑎 ,   𝑥′ 𝑎   𝑔𝑖𝑣𝑒𝑛                                                          (1.6) 

The efficiency of the various type of Runge-Kutta formulas has greatly improved since the idea of embedding 

was introduced to obtain local truncation errors ([2],[3] and [10]). 

Shampine [22] in the code STEP, made provision to deal the discontinuities. Enright [9] gave an overview of 

numerical methods IPBVPs and it identified strategies and approaches that could significantly improve existing 

method based on some useful codes.  

Enright [8] modified the RK methods of [7]  to handle discontinuities. Some of the codes in existence include. 

i.  Multiple Shooting:- Methods (BVPSOL, [12]) 

ii. Collocation method (PASVA3, [20])  

iii. Finite Difference Method (COLSYS, [5]) 

The listed three categories of methods for BVPs share a common structure using a modified Newton iteration to 

obtain numerical approximation which is determined by a discrete solution x, satisfying the non-linear 

equations. The finite difference method and Collocation method schemes are stressing compared to the shooting 

methods. 

The RKM45 derived by Bogacki and Shampine is significantly more efficient than the Fehlberg and Dormand-

Prince pairs which has been shown to give better result than the Runge-Kutta Method 4 (see[1]). 

RKM45 uses more iterations for certain problems as the step size is selected automatically. But however, the 

RK4 method may produce a better result if the right step size is used to implement it (see[4]). 

 

Theorem 1 
Any linear nth order Ordinary Differential Equation  

𝑎𝑛

𝑑𝑛𝑥

𝑑𝑡𝑛 +  𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1 + ⋯ + 𝑎0𝑥 = 𝑓(𝑡) 

Can be reduced to a linear ordinary differential equation. 

 

Theorem 2 

Any differential equation of order n, 

𝑥(𝑛) = 𝑓  𝑡, 𝑥, 𝑥′′, … , 𝑥 𝑛−1  ,     𝑥  𝑎 , 𝑥′′ 𝑎 , … , 𝑥 𝑛−1  𝑎    𝑔𝑖𝑣𝑒𝑛  

May be written as a set of n first order IVP by defining a new family of known functions 

𝑥(𝑖−1) =  𝑥𝑖, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛            𝑥𝑖 𝑎    𝑔𝑖𝑣𝑒𝑛 

The n-dimensional system of 1
st
 order coupled differential equations is then 

𝑥′1 = 𝑥2,            𝑥1 𝑎    𝑔𝑖𝑣𝑒𝑛 

𝑥′2 = 𝑥3,            𝑥2 𝑎    𝑔𝑖𝑣𝑒𝑛 

⋮                                  ⋮  
 

𝑥′𝑛−1 = 𝑥𝑛,            𝑥𝑛−1 𝑎    𝑔𝑖𝑣𝑒𝑛 

 

𝑥′𝑛 = 𝑓  𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛  

More compactly in vector form notation 

x′ = f t, x        where   x = (x1, x2, … , xn) 

 

Corollary1: the second order IVP define by  

x′′ = f t, x, x′ ,            x a , x′(a)   given 

may be written as a set of two first order IVP in the form 

x′1 = x2,            x1 a    given 

x′2 = f (t, x1, x2),            x2 a    given 
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1.2Ode Solver  

 ODE23: 

Integrating the IVP using embedded Runge-Kutta method 2 and 3, we simply use ode23 inbuilt function on 

matlab. This method is also called the Bogacki-Shampine method and its butcher array/tableau is given by 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Existence of Solution to BVPs 
Problem of existence and uniqueness of a solution is more subtle than initial value problems. x(a) = A 

and x(b) = B as conditions guarantee that a solution to the problem exists and should be checked before any  

numerical scheme is  applied. Otherwise, a list of meaningless output may guarantee, the existence and 

uniqueness of the solution of the BVP which is much more difficult than IVPs. 

However, if the BVP is linear, we shall give the theorem that guarantees its uniqueness and existence. 

 

Theorem 3 

Assume that 𝑓(𝑡, 𝑥, 𝑥 ′) is continuous on the region  

{𝑅 = 𝑓 𝑡, 𝑥, 𝑥 ′ :  𝑎 ≤ 𝑡 ≤ 𝑏,   − ∞ ≤ 𝑥 ≤ ∞,   − ∞ ≤ 𝑥 ′ ≤ ∞} and that 
𝜕𝑓

𝜕𝑥
= 𝑓 𝑡, 𝑥, 𝑥′ 𝑎𝑛𝑑 

𝜕𝑓

𝜕𝑥
=  𝑓

𝑥
 𝑡, 𝑥, 𝑥′ are continuous on R. 

If there exist a constant 𝑀 > 0, for which the partial derivative 𝑓
𝑥
and 𝑓 𝑥 ′satisfy 

i. 𝑓
𝑥
 𝑡, 𝑥, 𝑥′ > 0             ∀  𝑡, 𝑥, 𝑥′  𝜖 𝑅  

ii. | 𝑓
𝑥′ 𝑡, 𝑥, 𝑥′  |  ≤ 𝑀       ∀  𝑡, 𝑥, 𝑥′  𝜖𝑅 

Then the BVP x" = 𝑓 𝑡, 𝑥, 𝑥 ′ with x(a)  = A   and   x(b) = B has a unique solution 

x = x(t) for  a ≤ t ≤b 

Corollary 2: with the assumption that the BVP is linear i.e 

𝑓  𝑡, 𝑥, 𝑥 ′ = 𝑝 𝑡 𝑥 ′ + 𝑞 𝑡 𝑥 + 𝑟 𝑡 and that the function f and its partial derivatives that 
𝜕𝑓

𝜕𝑥
= 𝑞 𝑡   𝑎𝑛𝑑  

𝜕𝑓

𝜕𝑥′
= 𝑝 𝑡 are continuous on R if there exist a constant M for which 𝑝 𝑡  and 𝑞 𝑡  satisfy 

𝑞 𝑡 > 0 ∀ 𝑡 ∈  𝑎, 𝑏  and 

𝑝  𝑡 ≤ 𝑀 =  max
𝑎≤𝑡≤𝑏

{ 𝑝 𝑡  } 

Then the linear BVP has a unique solution.  

Note that we may use the lotkin relation to determine the range for constant M (see [23]). 

 

1.4 Writing BVP in Form of a Set of IVPs 

The theorem below guides us on how to write a two point boundary value problems as a set of two 2
nd

 order 

IVPs and we go further to establish the existence of a unique solution to a linear two point boundary value 

problems. 

 

Theorem 4 

The BVP defines by the linear 2
nd

 order differential equation  

𝑥′′ = 𝑝  𝑡 𝑥′ + 𝑞 𝑡 𝑥 + 𝑟 𝑡                             𝑎 ≤ 𝑡 ≤ 𝑏 

𝑥 𝑎 = 𝐴                  𝑥 𝑏 = 𝐵                   A, B are constant  

It can be written as a set of IVP define by 2
nd

 order differential equation  

𝑢′′ =  𝑝 𝑡 𝑢′ + 𝑞 𝑡 𝑢 + 𝑟 𝑡        𝑓𝑜𝑟 𝑎 ≤ 𝑡 ≤ 𝑏 with the initial condition 
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𝑢 𝑎 = 𝐴 𝑎𝑛𝑑 𝑢′ 𝑎 = 0and 

𝑣′′ = 𝑝 𝑡 𝑣′ + 𝑞(𝑡)𝑣for 𝑎 ≤ 𝑡 ≤ 𝑏 with the initial condition  

𝑣 𝑎 = 0 and 𝑣′ 𝑎 = 1 

And if 𝑣 𝑏 ≠ 0, then the BVP has a unique solution of the form 

𝑥 𝑡 = 𝑢 𝑡 + 
𝐵 − 𝑢 𝑏 

𝑣 𝑏 
𝑣 𝑡  

Proof 
The linear combination of the solution to each of the 2

nd
 order equation 

x t = u t + cv t                                                                                                           (∗) 
is a solution. 

x′′ = p
(t)

x′ + q
(t)

x +  r(t) as seen by the computation  

x′′ t = u′′ t + cv′′ t  

 = p t u′ t + q t u t + r t + cp t v′ t + Cq t v(t) 

 = p t  u′ t + Cv′ t  + q  t  u  t + cv t  + r (t) 

x′′ t = p  t x′ t + q t x t + r(t)  
The solution (*) takes the boundary values. 

x a = u a + cv a = A + 0 = A 

x b = u b + cv b  

Imposing the boundary condition x b = B  gives 

c =
B−u(b)

v(b)
  

Therefore, v b ≠ 0, the unique solution (*) is  

x t = u t +
B − u b 

v b 
v t  

Corollary 3: theBVPdefines by the linear 2
nd

 order difference equation. 

x′′ = p t x′ + q  t  x + r t           a ≤ t ≤ b 

𝑥 a = A           x b = B   
Can be written as a set of two set of IVP define by 2

nd
 order differential equations. 

u′′ = p t u′ + q t u + r t  for a ≤ t ≤ bwith the initial condition. 

u b = B and u′ b = 0  And  

v′′ = p t v′ + q t v for a ≤ t ≤ b with the initial condition 

𝑣 b = 0 and v′ b = 1 

 

Remark: if q t > 0this rules out the troublesome solutionv t = 0, so that (*) is of the form of the required 

solution. 

1.5 Convergence of the Method    

We define error as the difference between the numerical solution wi and theoretical solution 𝑥𝑖i.e. 

eh ti =  xh ti − wh ti =  xi − wi 

Definition1.1 

The numerical method defines by a mesh operator ehis called convergent in the maximum norm when  

limh→o||eh||
∞

= 0.   

If ||eh ||∞ = 0 hp with some number p≥1, then we say that the convergence is of order p. 

  

II. Material and Method 
2.1 Shooting Method  

The shooting method is a method for solving a BVP by reducing it to the solution of an Initial Value Problem 

(IVP) beginning the solution at one end of the BVP and shoot to the other end with an Initial Value solver until 

the boundary condition at the other end converges to its correct value. 

We define the two point boundary value problem of a second order ordinary differential equation as follows: 

𝑥′′(𝑡)  =  𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))               (2.1) 
𝑥 𝑡0 = 𝑥0         𝑥(𝑡1)  =  𝑥1        
Let 𝑥(𝑡, ∝) denote the solution of the IVP defined by 

𝑥′′(𝑡)  = 𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))        (2.2) 
𝑥 𝑡0 = 𝑥0𝑥 ′ 𝑡0 = ∝  

We define the function 𝑓(∝) as the difference between 𝑥(𝑡, ∝) and the specified boundary value 𝑥1. 

𝑓 ∝ =  𝑥  𝑡, ∝ − 𝑥1   
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If 𝑓 has a root ∝, then obviously, the solution 𝑥(𝑡, ∝) of the corresponding (2.2) is also a solution of  (2.1) 

On the other hand, if the (2.1) has a solution 𝑥(𝑡), then 𝑥(𝑡) is also a unique solution of the (2.2) of the IVP 

where ∝ = 𝑥′(𝑡0) thus ∝is a root of 𝑓. We may use the Newton’s method to find the roots. 

We have Shooting method for linear and non-linear problems. And also shooting method for Dirichlet and non-

Dirichlet problems. 

However, the general procedure for implementing the linear shooting method is as follows 

1. Linearize he problem and reduce the BVP to an IVP. 

2. Discretize the problem into desired number of points. 

3. Solve the IVP with an integrator. We may choose to use Explicit Eulers method, Trapezoidal Method, 

Runge-Kutta method etc. 

4. Iterate to find the solution. 

i.e. for a problem with boundary condition 𝑥0 =  0 and 𝑥1 = 1. The only boundary condition at 𝑡 = 0 is 

𝑥1 0 =0, then we need to guess the value of 𝑥0(0) and then use a predictor-corrector algonthm to shoot to 

the ther end of the domain and see if this guess satisfies the boundary 𝑥2 1 =  1 

 

2.2 Finite Difference Method on Linear Problems 

Consider a second order linear equation  

𝑑2𝑥

𝑑𝑡2
+ 𝑝 𝑡 

𝑑𝑥

𝑑𝑡
+ 𝑞 𝑡 𝑥 = 𝑟 𝑡         𝑎 ≤ 𝑡 ≤ 𝑏 𝑥 𝑎 = 𝐴       𝑥 𝑏 =  𝐵 

the general procedure for implementing the finite method is as follows : 

1. We divide the interval [𝑎 𝑏] into N+1 equal intervals, each of length 𝑕,  

we may do this with N + 1 = 
𝑏−𝑎

𝑕
 and 𝑡𝑖 =  𝑡0 + 𝑖𝑕, We denote 𝑎 by 𝑡0, 𝑏 by 𝑡𝑁+1 

2. We replace the differential equation by an appropriate finite difference equation by replacing the 

derivatives by central difference quotient i.e 
1

𝑕2  𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1 +
1

2𝑕
 𝑝 𝑡𝑖  𝑥𝑖+1 − 𝑥𝑖−1  + 𝑞 𝑡𝑖 𝑥𝑖 = 𝑟(𝑡𝑖)  (2.3) 

On multiplying through by 𝑕2
 and collecting like terms together, we obtain  

𝑎𝑖𝑥𝑖−1 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝑕2𝑟(𝑡𝑖)        (2.4) 

Where, 𝑎𝑖 = 1 − 
𝑕

2
𝑝(𝑡𝑖) , 𝑏𝑖 =  −2 + 𝑕2𝑞(𝑡

𝑖
) , 𝑐𝑖 = 1 +

𝑕

2
𝑝(𝑡𝑖)𝑥0 = 𝐴       𝑥𝑁+1 = 𝐵 

3. Insert the boundary conditions. We have, 

𝑎1𝐴 + 𝑏1𝑥1 + 𝑐1𝑥2 = 𝑕2𝑟(𝑡1) 

𝑎2𝑥1 + 𝑏2𝑥2 + 𝑐2𝑥3 = 𝑕2𝑟(𝑡2) 

𝑎𝑁−1𝑥𝑁−2 +  𝑏𝑁−1𝑥𝑁−1 + 𝑐𝑁−1𝑥𝑁 = 𝑕2𝑟(𝑡𝑁−1)  (2.5) 

𝑎𝑁𝑥𝑁−1 +  𝑏𝑁𝑥𝑁 + 𝑐𝑁𝐵 = 𝑕2𝑟(𝑡𝑁) 

 

 

4. solve the obtained linear system of equation obtained in 3 above 

𝐻𝑥 = 𝑆         (2.6) 

Where     𝑥 =  

𝑥1

⋮
𝑥𝑁

  𝑆 =   
𝑆1

⋮
𝑆𝑁

 =  𝑕2  
𝑟(𝑡1)

⋮
𝑟(𝑡𝑁)

 −  
𝑎1𝐴
⋮

𝑐𝑁𝐵
  

and 𝐻 =

 

 
 
 
 

𝑏1

𝑎2

0

𝑐1

    𝑏2

    𝑎3

0
𝑐2

𝑏3

    0 ⋯
0

 𝑐3 …

0
0
0

0
0
0

0
0
0

∶
∙
∶
∙
∶
∙

∶
∙
∶
∙

∶
∙
∶
∙

0
0

0
0

0
0

0
0

            𝑎𝑁−1

     0

𝑐𝑁−1

𝑎𝑁

𝑐𝑁−1

𝑏𝑁  

 
 
 
 

 

H is a tri-diagonal matrix whose elements are known. 

5. Tri-diagonal Solver  by the use of Crout Algorithm for LU 

Suppose we adopt the LU decomposition approach in providing solution to (2.6)  

𝐻𝑥 = 𝑆, let  𝐻 = 𝐿𝑈 , So that𝐿𝑈𝑥 = 𝑆 , 𝑈𝑥 =  𝐿−1𝑆 

Where 𝐿−1 is the inverse of a lower triangular matrix, which is easily computed as described in chapter two and 

𝑥 is obtained by forward or backward substitutions. 
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𝑏1

𝑎2

0

𝑐1

    𝑏2

    𝑎3

0 ⋯

𝑐2

𝑏3

0

0

0

0

0

0
∶

∙

∶

∙

∶

∙

∶

∙

∶

∙
0

0

0

0

0

0

𝑏𝑁−1

𝑎𝑁

𝑐𝑁−1

𝑐𝑁  

 
 
 
 

=  

 

 
 
 
 

1

𝑎′2
0

0

1

𝑎′3

    0 ⋯

0

1

0

0

0

0

0

0
∶

∙

∶

∙

∶

∙

∶ ∶

∙ ∙
0 0

0 0

0

0

1 0

𝑎′𝑁 1 

 
 
 
 

 

 
 
 
 

𝑏′1 𝑐1

0 𝑏′2
0 0

0 … 0

𝑐2 0

𝑏′3 0

0

0

0
∶ ∶

∙ ∙

∶

∙

∶

∙

∶

∙
0 0

0 0

𝑏′𝑁−1

0

𝑐𝑁−1

𝑏′𝑁  

 
 
 
 

 

In other words, only two diagonals held to be change from the matrix multiplication and the order of the direct 

LU decomposition. It easy to derive 

𝑏′1 = 𝑏1,                                                    𝑎′1 =
𝑎1

𝑏1

 

𝑏′𝑖 = 𝑏𝑖 − 𝑎′𝑖𝑐𝑖−1from 𝑎′𝑖𝑐𝑖−1 + 𝑏′𝑖 = 𝑏𝑖 

𝑎′𝑖+1 =
𝑎𝑖+1

𝑏𝑖

from 𝑎′𝑖+1𝑏′𝑖−1 = 𝑎𝑖+1 

The decomposition is called the Crout factorization we can have the following Pseudo-code 

For 𝑖 = 2, 𝑁, 𝑎𝑖𝑖 =  𝑎𝑖  𝑏𝑖−1 , 𝑏𝑖𝑖 = 𝑏𝑖 − 𝑎𝑖𝑐𝑖−1 

End. 

Once we have the LU factorization, we can easily derive the formula for forward and backward substitution for 

solving 𝐻𝑥 = 𝑆 

The forward substitution  

𝑥1 =  𝑑1 For 𝑖 =  2, 𝑁                   𝑥𝑖 =  𝑑𝑖 − 𝑎𝑖𝑥𝑖−1 

 End  

 The backward substitution  

𝑗
𝑁

=  
𝑥𝑁

𝑏𝑁
For 𝑖 = 𝑁 − 1, 1𝑗𝑖 =  

𝑥𝑖− 𝑐𝑖𝑥𝑖+1

𝑏𝑖
 

End. 

The entire process of the solving the tri-diagonal system of equations described above is called the Chasing 

method. 

Note We may normalize the interval [𝑎, 𝑏] i.e. to [0, 1] by using 𝑡 =  𝑏 − 𝑎 𝑢 + 𝑎 before implementing the step 

2 in the above. 

 

III. Analysis and Results 
3.1  Problem 1  

3.1.1   Shooting Method Solution to Problem 1 Using Trapezoidal Method as Integrator  
Consider the linear problem 

𝑑2𝑥

𝑑𝑡2 −  1 −
𝑡

5
 𝑥 = 𝑡          1 ≤ 𝑡 ≤ 3           𝑥 1 =  2                               𝑥 3 =  −1 

Let 𝑥 =  𝑥1             𝑥′1 =  𝑥2            𝑥′2 =  𝑥′′1 = 𝑡 +  1 − 
𝑡

5
 𝑥𝑖  

Thus we have system of two equations with two unknown 𝑥1 and 𝑥2 

𝑥′1 =  𝑥2,     𝑥′2 = 𝑡 +  1 −  
𝑡

5
 𝑥1             𝑥1 = 2𝑥2 = 𝑥′1 = ?         where 𝑡 is known  

We guess for 𝑥′2 using the slope 𝑥′(1)𝑥2 =  𝑥′1 = 𝑥 ′ 1 =  
𝑥(3)− 𝑥(1)

3−1
=

−1−2

3−1
= −1.5 

Integrating using Trapezoidal method defined by  

𝑥1,𝑛+1 =  𝑥1,𝑛 +
𝑕

2
(𝑓

1,𝑛
+  𝑓

1,𝑛+1
)  

Firstly, we compute using Explicit Euler’s method to resolve the implicitness encountered using Trapezoidal 

method. 

The explicit Euler’s method is given by 

𝑥1,𝑛+1
∗ =  𝑥1,𝑛 + 𝑕𝑓

1,𝑛
 

          = 𝑥1,𝑛 + 𝑕𝑥 ′
1,𝑛         since 𝑓 = 𝑥 ′ , 𝑎𝑛𝑑 𝑥1

′ = 𝑥2 

          = 𝑥1,𝑛 + 𝑕𝑥2,𝑛          (3.1) 

𝑥2,𝑛+1
∗ =  𝑥2,𝑛 + 𝑕𝑓

2,𝑛
          = 𝑥2,𝑛 + 𝑕𝑥′

2,𝑛      where 𝑓 = 𝑥 ′  

          = 𝑥2,𝑛 + 𝑕(𝑡𝑛 + (1 −
𝑡𝑛

5
)𝑥1,𝑛)        (3.2) 

The Trapezoidal Method is described by 

𝑥1,𝑛+1 = 𝑥1,𝑛 +  
𝑕

2
(𝑓

1,𝑛
+ 𝑓

1,𝑛+1
) = 𝑥1,𝑛 +  

𝑕

2
 𝑥2,𝑛 + 𝑥2,𝑛+1

∗       (3.3) 
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 𝑥2,𝑛+1 = 𝑥2,𝑛 +  
𝑕

2
(𝑓

2,𝑛
+ 𝑓

2,𝑛+1
) = 𝑥2,𝑛 +  

𝑕

2
 𝑥′2,𝑛 + 𝑥2,𝑛+1

′      

Substituting for 𝑥2,𝑛
′  and 𝑥2,𝑛+1

′ we have, 

𝑥2,𝑛+1 = 𝑥2,𝑛 +  
𝑕

2
 𝑡𝑛 + 𝑥1,𝑛 + 𝑡𝑛+1 + 𝑥1,𝑛+1 −  

𝑡𝑛𝑥1,𝑛+𝑡𝑛+1𝑥1,𝑛+1

5
     (3.4) 

For 𝑛 =  0 we substitute 𝑥1,0 = 𝑥 𝑡0 = 𝑥 1 = 2,   𝑕 = 0.2, 

 𝑡0 = 1                         𝑥2,0 = ∝1=  −1.5 in equ (3.1), (3.2), (3.3), (3.4).  

Repeating the procedure for 𝑛 = 1,2, … ,9 using the guessed value of 𝑥2,0 =  𝑥′1 =  𝑥′ 1 = ∝1= −1.5 gives 

the result summarized in the third column of table 1 and we observe that  𝑥2,10 =  𝑥(𝑡
10

) =  𝑥1 3 =  4.811 

which does not satisfy the boundary condition at the other end. 

For this reason, we choose another guessed value of  𝑥2,0 =   𝑥′1 = 𝑥′ 1 =∝1=  −3.0  and repeat the iteration 

procedure above for 𝑛 = 0,1,2, … ,9 and this gives the result summarized in the fourth column of table 1 and we 

observe that we obtained 𝑥2,10 =   𝑥 𝑡10 =   𝑥2 3 = 0.4853 which does not also satisfy the boundary 

condition at the other end. 

Thus, we interpolate to obtain 

𝑥′ 1 =  𝑥′
1 1 +  

∝2−∝1

𝑥2 3 − 𝑥1(3)
 𝑥 3 − 𝑥1 3  =  −1.5 +  

−3.0 − (−1.5)

0.4853 − 4.811
 −1.0 − 4.811  = −3.5 

Once again, we repeat the iteration procedure for 𝑛 =  0,1,2, . . . ,9 using the  interpolated value of 𝑥2,0  =

 𝑥′1  =  𝑥 ′ 1 =  −3.5 as guessed value and the result summarized in the fifth column of table 1, we observed 

that 𝑥2,10  =  𝑥(𝑡
10

)  =  𝑥 3 =  −1.000  and this satisfies the boundary condition at the other end as required. 

 

Table 1:Shooting method solution to problem 1 using Trapezoidal Method as integrator 
𝑛 𝑡𝑛  𝑥 ′ 1 = ∝1= −1.5 𝑥 ′ 1 = ∝2= −3.0 𝑥 ′ 1 =  −3.5  

𝑥1,𝑛  𝑥2,𝑛  𝑥1,𝑛  𝑥2,𝑛  𝑥1,𝑛  𝑥2,𝑛  

0 1 2.000 -1.500 2.000 -3.000 2.000 -3.500 

1 1.2 1.1752 -0.987 1.452 -2.510 1.560 -3.001 

2 1.4 1.1062 -0.552 0.974 -2.896 0.852 -2.561 

3 1.6 1.1218 -0.110 0.437 -2.855 -0.380 -2.174 

4 1.8 1.625 0.594 0.328 -1.252 -0.104 -1.876 

5 2.0 1.803 1.186 0.118 -0.844 -0.443 -1.521 

6 2.2 2.105 1.832 -0.007 -0.417 -0.712 -1.167 

7 2.4 2.542 2.542 -0.045 0.040 -1.908 -0.794 

8 2.6 3.128 3.324 0.013 0.539 -1.026 -0.391 

9 2.8 3.880 4.185 0.175 1.087 -1.060 0.054 

10 3.0 4.8110 5.1280 0.4530 1.6930 -1.0001 0.5470 

 

3.1.2 Shooting Method Solution to Problem 1 Using Embedded Rk23 Methodas Integrator  

Supposing we decided to Integrate the IVP using Embedded Runge-Kutta Method 2 and 3 (ode23 on 

MATLAB). It’s also called the Bogacki-Shampine method and its butcher is given by ODE23 under 1.3 above. 

We shall adopt the use of MATLAB inbuilt function ode23 for faster computation. 

Firstly, we create an m-file function defined by 

Function dx=dxsys(t,x) 

dx=[x(2); t(1)+(1-t(1)/5)*x(1)]; 

On the command window; we type the following command 

>> #1
st
 shooting(1

st
 guessed value x′(1) = −1.5) 

>> [t, x] = ode23(@dxsys, [1,3], [2,-1.5]); 

>> x1 = x(length(x)) 

X1 = 4.7859 

>>p1ot(t, x) 

>>ho1d 

>>text(3,-1,’*’) 

>>#2nd shooting(2
nd

 guessed value, x′ 1 =  −3.0 

>>[t,x] = ode23(@dxsys,[1,3],[2 -3.0]); 

>>x2 = x(length(x)) 

x2 = 0.4354 

>>plot(x, y) 

>>hold 

Interpolated value 
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𝑥′(1)  =  𝑥1
′ (1)  +

∝2−∝1

𝑥2 3 − 𝑥1 3 
 𝑥 3 − 𝑥1 3   

           =  −1.5 +
−3.0 − (−1.5)

0.4354 − 4.7850
 −1.0 − 4.7859  

 = −3.495 

>> #3
rd

 shooting (interpolated value x′ 1 = −3.495) 

>> [t, x] = ode23(@dxsys,[1,3],[2.-3.5]) 

>> x3 = x(length(x))  

X3 = -1.0001 

>>plot(t,x) 

>>hold 

>>text (3,1,’*’) 

The following was produced 

 

Table 2:Shooting method solution to solve problem 1 (linear) using embedded RK23 (ode23) method as 

integrator 
x1(l) = α1 = -1.5 x'(l) =α2= -3.0 x'(l) = -3.4950 

tn 

X
1,n X

2,n tn 
X

1,n X
2,n tn x1,n x2,n 

1.0000 2.0000 -1.5000 1.0000 2.0000 -3.0000 1.0000 2.0000 -3.4950 

1.0462 1.9335 -1.3806 1.0533 1.8437 -2.8638 1.0458 1.8427 -3.3782 

1.2462 1.7083 -0.8718 1.2533 1.3190 -2.3906 1.2458 1.2145 -2.9141 

1.4462  1.5846 -0.3631 1.4533 0.8843 -1.9600 1.4458 0.6730 -2.5075 

1.6462 1.5640 0.1624 1.6533 0.5333 -1.5522 1.6458 0.2088 -2.1380 

1.8143 1.6300 0.6282 1.8533 0.2629 -1.1506 1.8458 -0.1836 -1.7876 

2.0143 1.8141 1.2222 2.0533 0.0734 -0.7401 2.0458 -0.5066 -1.4411 

2.2143 2.1223 1.8707 2.1838 -0.0050 -0.4614 2.2458 -0.7596 -1.0848 

2.4143 2.5665 2.5838 2.3142 -0.0464 -0.1701 2.4458 -0.9392 -0.7064 

2.6143 3.1604 3.3696 2.4221 -0.0512 0.0825 2.6458 -1.0400 -0.2950 

2.8143 3.9194 4.2343 2.5284 -0.0287 0.3432 2.8458 -1.0545 0.1590 

3.0000 4.7859 5.1109 2.6101 0.0078 0.5528 3.0000 -1 .0007 0.5436 

   2.6919 0.0619 0.7709    

   2.7959 0.1570 1.0612    

   2.9344 0.3321 1.4721    

   3.0000 0.4354 1.6770    

 

Figure 1: Graph showing shooting method solution to problem 1 
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Comparing the two tables, we observe that the both method provides good and acceptable solution. The  

difference between the approximation provided by Trapezoidal Method and Bogacki-Shampine Method (ode23) 

is subtle (-1.0001 is closer to -1.0000 than -1.0007). It is easier to write and implement a solution using 

Bogacki-.Shampine Method on MATLAB since it has inbuilt function called ode23. Ode23 gives less smooth 

figures than ode45. 

However, for a linear problem, using Bogacki-Shampine Method may be consider as a waste of resources since 

Trapezoidal Method gives us a better result with an acceptable error tolerance. In solving a non-linear problem, 

the use of ode23 and ode45 cannot be over-emphasized. 

The consequence of having 𝑥 =  𝑐1𝑥1 + 𝑐2  𝑥2as a solution enable us to be able to calculate the value of 𝑥 by 

taking the proper combination of the values obtained from the earlier calculations. 

At the left end of table 1          𝑡 =  1,   𝑥 =  𝑐1 2 + 𝑐2 2 = 2  
At the right end of table 1      𝑡 =  3,   𝑥 =  𝑐1 4.811 + 𝑐2 0.453 = −1.0  

Solving simultaneously yield 𝑐1 =  −0.3334, c2= 1.3334 

Which implies that 𝑥 =  −0.3334 1.803 +  1.3334 0.118 =  −0.443 
as shown on the table 1. 

 

3.1.3  Finite Difference Method Solution to Problem 1 
Consider the linear problem 
𝑑2𝑥

𝑑𝑡2 −  1 −
𝑡

5
 𝑥 = 𝑡  𝑥 1 =  2                             𝑥 3 =  1 

Using h=0.2, We discretize [1,3] into 𝑁 + 1 =  
3−1

0.2
= 10𝑝𝑜𝑖𝑛𝑡𝑠  

This implies 𝑖 = 0, … 10, 

𝑥0 = 𝑥 𝑡0 = 𝑥 1 = 2 𝑎𝑛𝑑 𝑥10 = 𝑥 𝑡10 = 𝑥 3 = −1 

Is given while we compute for x1 𝑡𝑜 𝑥9 

Replacing the derivative by the central difference quotient yield  
𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1

𝑕2 −  1 −
𝑡𝑖

5
 𝑥𝑖 = 𝑡𝑖 

Multiplying through by𝑕2, we have 

𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1 − 𝑕2  1 −
𝑡𝑖

5
 𝑥𝑖 = 𝑕2𝑡𝑖 

Substituting 𝑕 =  0.2, we obtained 

𝑥𝑖−1 −  2.04 − 0.008𝑡𝑖 𝑥𝑖 + 𝑥𝑖+1 = 0.04𝑡𝑖        (3.5) 

 Where 𝑖 =  1, … , 9 with boundary condition written asx0 = 2            𝑥10 =  −1  
Inserting the boundary condition reduces (4.5) to a system of equation in the matrix form 

 

 
 
 
 
 
 

−2.0304 

1

0
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0
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1
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1

0

0

0

0 

0

0
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1
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1

0

0

0 

0

0

0

0

1

−2.0208

1

0

0

0

0

0

0

0

1

−2.0192

1

0 

0

0

0

0

0

0

1

−2.0176 

 
 
 
 
 
 

 

 
 
 
 
 
 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9 

 
 
 
 
 
 

=  

 

 
 
 
 
 
 

−1.952

0.056

0.064

0.072

0.08

0.088

0.096

0.104

1.112  

 
 
 
 
 
 

 

 

 

 

 

 

 

  

 

We use the LU algorithm described in chapter three to solve the system of equation above by first decomposing 

H into L and U. 

We simply do this using the Matlab program 

>>H= [-2.0304 1 0 0 0 0 0 0 0;1-2.0288 1 0 0 0 0 0 0; 1-2.031210... -2.01 76] 

>>[LUP] = 1u(H) 

>>S=[-1.952 0.0056 0.0064 0.0072 0.008 0.088 0.096 0.104 1.112] 

X 

H 
   S 
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>>d=p*S 

>>g= L\d 

>>x = u\g 

>> 𝑥 =

 

 
 
 
 
 
 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9 

 
 
 
 
 
 

=  

 

 
 
 
 
 
 

1.3506
0.7903
0.3087

−0.0993
−0.4379
−0.7069
−0.9035
−1.0230
−1.0579 

 
 
 
 
 
 

 

 

Table 3: Comparison of the Solutions to Problem 1 
T Finite difference method solution (𝑥) Shooting method solution (𝑥)  

1.0 2.000 2.000 

1.2 1.351 1.348 

1.4 0.792 0.787 

1.6 0.311 0.305 

1.8 -0.097 -0.104 

2.0 -0.436 -0.443 

2.2 -0.705 -0.712 

2.4 -0.903 -0.908 

2.6 -1.022 -1.026 

2.8 -1.058 -1.060 

3.0 -1.000 -1.000 

 

Clearly from the above table, the result from the shooting method are more accurate than that of the finite 

difference method. This may not be clearly seen since problem 1 has no analytical solution to compare with. 

However, it is pertinent to note that the accuracy of the shooting method is also dependent upon the integrator 

used. This is shown in the solution to problem 2. 

 

 

PROBLEM 2  

3.2.1  Shooting Method on Problem 2 Using Classical Rk4 as Integrator 

𝑥′′ =  −
2

𝑡
𝑥′ +

2

𝑡2
𝑥 +  

sin⁡(𝑙𝑛𝑡)

𝑡2
        𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 2, 𝑥 1 =  1  and          𝑥 2 = 2 

Has an exact solution  𝑥 =  𝑐1𝑡 + 
𝑐2

𝑡2 − 
3

10
sin 𝑙𝑛𝑡 −  

1

10
cos 𝑙𝑛𝑡 , 

Where    𝑐2 =  
1

70
 8 − 12 sin 𝑙𝑛2 − 4 cos(𝑙𝑛2) 𝑎𝑛𝑑 𝑐1 =  

11

10
− 𝑐2 

We reduce the BVP to an IVP and then write the second-order differential equation obtained as two first-order 

differential equation as follows: 

Applying the linear shooting method described by theorem 4 requires approximating the solutions to the initial-

value problems 

𝑢′′ =  − 
2

𝑡
𝑢′ +  

2

𝑡2
𝑢 +  

sin⁡(𝑙𝑛𝑡)

𝑡2
       𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 2, 𝑢 1 =  1      𝑎𝑛𝑑 𝑢′ 1 = 0(3.6a) 

And   𝑣′′ =  − 
2

𝑡
𝑣′ +  

2

𝑡2
𝑣            𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 2, 𝑣 1 =  0   𝑎𝑛𝑑   𝑣′ 1 = 1(3.6b) 

 

The first second-order equation i.e. (3.6a) is written as a system of two first order differential equations as 

follows: 

Let 𝑢 =  𝑢1     𝑢′ =  𝑢′
1 = 𝑢2𝑢

′′ =  𝑢′ ′1 = 𝑢′2 
to give 

𝑢′
1 = 𝑢2 

𝑢′
2 = − 

2

𝑡
𝑢

2
+

2

𝑡2
𝑢1 +  

sin⁡(𝑙𝑛𝑡)

𝑡2
  (3.7a) 

𝑢1 1 = 1   𝑎𝑛𝑑       𝑢2 1 = 0   
 

 

 

The 2
nd

 order equation i.e. (3.6b) is written as a system of two first- order differential equations as follows: 

Let 𝑣 =  𝑣1𝑣
′ =  𝑣′1 =  𝑣2𝑣′′ =  𝑣′′1 =  𝑣′2  
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So that  

𝑣′1 =  𝑣2 

𝑣′2 =  − 
2

𝑡
𝑣2 +  

2

𝑡2
𝑣1     (3.7b)  

𝑣1 1 = 0   𝑎𝑛𝑑𝑣2 1 = 1 

 

 

Discretizing the problem 

Supposing we chose 𝑕 =  0.1 

0.1 =  
2 − 1

𝑁
 

𝑁 =  
1

0.1
= 10 

And we have 𝑁 +  1 = 11 points 

𝑖 = 0,1,2, … 𝑁, 
𝑥 𝑡0 = 𝑥 1 = 2,                  𝑡𝑛 = 𝑎 + 𝑛𝑕 

𝑡0 = 1,            𝑡1 = 1 + 0.2,             𝑡2 = 1 + 2 0.2 , … ,         𝑡𝑁 = 𝑎 + 𝑁𝑕 

𝑖 = 0,                            𝑖 = 1,                     𝑖 = 2, …                           𝑖 = 𝑁              
 

Integrating using classical RKM of order 4, 

We will use classical RKM of order 4 within Maple to solve both 3.7a and 3.7b 

To solve 3.7a, enter the following command 

>sys1:=D(u1)(t)=u2(t), D(u2)(t) = -2*u2(t)/t+2*u1(t)/t^2+sin(ln(t))/t^2 ; 

>init1 :=u1(1)=1,u2(1)=0  

We denote the solution to 3.7a by g1. The Runge-Kuttta method of order4 is invoked with the command 

>gl:=dsolve({sysl,init1},numeric, 

method=classical[rk4l,{u1(t),u2(t)},stepsize=0.1); 

To solve 3.7b, enter the following command 

> sys2: D(vl)(t)=v2(t), D(v2)(t)=-2*v2(t)/ t+2*vl (t)/ t^2 

> init2: =v1(1)=0, v2(1)=1; 

We denote the solution to 3.7b by g2. The Runge-Kutta method of order4 is invoked with the command 

>g2:=dsolve({sys2,init2),numeric,method=classical[rk4],{vl(t),v2(t)}, 

Stepsize=0.1); 

To combine solution to 3.7a and 3.7b 

We form 𝑥(𝑡)  =  𝑢(𝑡)  +
2−𝑢(2)

𝑣(2)
 𝑣(𝑡) using the following maple code. 

>c:=(2-rhs(gl(2)[2]))/rhs(g2(2)[2]); 

>for i from 1 to 10 do 

>x:=1+0.1*i; 

>w[i]:=rhs(gl(x)[2])+c*rhs(g2(x)[2]); 

>end. 

This gives the results presented in the fifth column of table 4. The value as 𝑢1.𝑖 approximates 𝑢(𝑡𝑖), the value of 

𝑣1.𝑖 approximates 𝑣 𝑡𝑖 and 𝑤𝑖. Note that 

𝑤𝑖 =  𝑢1.𝑖 + 𝑐∗𝑣1.𝑖 where 𝑐∗ =  
2−1.46472815

0.58332538
= 0.9176213968 

 

Table 4: Shooting method solution to problem 2 using classical RK 4 as  integrator 
𝑖 𝑡𝑖  𝑢1.𝑖  𝑣1.𝑖  𝑤1.𝑖  

0 1.0 1.00000000 0.00000000 1.00000000 

1 1.1 1.00896058 0.09117986 1.09262916 

2 1.2 1.03245472 0.16851175 1.18708471 

3 1.3 1.06674375 0.23608704 1.28338227 

4 1.4 1.10928795 0.29659067 1.38144589 

5 1.5 1.15830000 0.35184379 1.48115939 

6 1.6 1.21248372 0.40311695 1.58239245 

7 1.7 1.27087454 0.45131840 1.68501396 

8 1.8 1.33273851 0.49711137 1.78889854 

9 1.9 1.39750618 0.54098928 2.89392951 

10 2.0 1.46472815 0.58332538 2.00000000 

Read section 3.2.3 for comments on tabulated result. 
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When do we Say the Shooting Method Fails? 

On implementing the shooting method, there can be round-off error problems hidden in the technique. If 𝑢(𝑡) 

rapidly increases as t goes from a to b, then 

𝑢1.𝑖  ≈ 𝑢(𝑏) will be large. Should B be small in magnitude compared to 𝑢1.𝑁, the term  

(𝐵 − 𝑢1.𝑁)/𝑣1,𝑁 will be approximately −𝑢1.𝑁/𝑣1.𝑁, so the approximations 

𝑥 𝑡𝑖 ≈ 𝑤𝑖 ≈ 𝑢1.𝑖 −  
𝐵 − 𝑢1.𝑁

𝑣1.𝑁

 𝑣1.𝑖 ≈ 𝑢1.𝑖 −  
𝑢1.𝑁

𝑣1.𝑁

 𝑣1.𝑖  

Allow the possibility of a loss of significant digits due to cancellation. This is considered a failure of the 

shooting method in providing solution to the problem. 

 

Remedying the Shooting Method Failure  

Since 𝑢1.𝑖, is an approximation to 𝑢(𝑡𝑖), the behavior of 𝑢 can be easily monitored and 𝑢1.𝑖 increases rapidly 

from a to b, the shooting method can be employed in the other direction. That is, solving instead of the Initial 

Value Problem 

𝑢′′ = 𝑝 𝑡 𝑢′ + 𝑞 𝑡 𝑢 + 𝑟(𝑡)            for 𝑎 ≤ 𝑡 ≤ 𝑏 where  

𝑢 𝑏 =  𝐵 𝑎𝑛𝑑 𝑢′ 𝑏 = 0and  

𝑣′′ =  𝑝 𝑡 𝑣′ + 𝑞(𝑡)𝑣  for 𝑎 ≤ 𝑡 ≤ 𝑏 where  

𝑣 𝑏 =  0   𝑎𝑛𝑑   𝑣′ 𝑏 = 1 

If the reverse shooting technique still gives cancellation of significant digits and if increased precision does not 

yield greater accuracy, other techniques may be employed. 

3.2.2  Finite Difference Method Solution to Problem 2 
Consider the linear problem 2 

𝑥′′ =  − 
2

𝑡
𝑥′ +  

2

𝑡2
𝑥 +  

sin⁡(𝑙𝑛𝑡)

𝑡2
            𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 2, x(1) = 1 and x(2) = 2 

 

 

3.2.3 COMMENTS ON SOLUTION TO PROBLEM 2  

Table 6:  Comparing Finite Difference Method and Shooting Method Solution to Problem 2 
 

𝑖 
 

𝑡𝑖  

Analytic solution   Shooting method solution  Finite difference method solution   

𝑥 𝑡𝑖  𝑤1,𝑖   𝑥(𝑡𝑖 − 𝑤1,𝑖 | 𝑤𝑖  𝑥(𝑡𝑖 − 𝑤𝑖 | 

0  1.0 1.00000000 1.00000000  1.00000000  

1 1.1 1.09262930 1.09262916 1.34 × 10−7 1.09260052 2.88 × 10−5 

2 1.2 1.18708484 1.18708471 1.39 × 10−7 1.18704313 4.17 × 10−5 

3 1.3 1.28338236 1.28338227 9.78 × 10−8 1.28333687 4.55 × 10−5 

4 1.4 1.38144595 1.38144589 6.02 × 10−8 1.38140205 4.39 × 10−5 

5 1.5 1.48115942 1.48115939 3.06 × 10−8 1.48112026 3.92 × 10−5 

6 1.6 1.58239246 1.58239245 1.08 × 10−8 1.58235990 3.26 × 10−5 

7 1.7 1.68501396 1.68501397 1.43 × 10−8 1.68498902 2.49 × 10−5 

8 1.8 1.78889853 1.78889854 1.05 × 10−8 1.78888175 1.68 × 10−5 

9 1.9 1.89392951 1.89392954 3.41 × 10−8 1.89392110 8.41 × 10−6 

10 2.0 2.00000000 2.00000000  2.00000000  

 

Note that the results from the finite difference method are considerable less accurate than those 

obtained using the shooting method. This is because the shooting method used involves a Runge-Kutta 

technique with error of order 𝑂(𝑕4) whereas the difference method used here has error of order 𝑂(𝑕2). 

To obtain a difference method with greater accuracy, we can proceed in a number of ways. Using fifth-order 

Taylor series for approximating 𝑥′′(𝑡𝑖) and 𝑥′(𝑡𝑖) result in an error term involving h4. 

i.e.  

Central difference approximation for 4
th

 order, 1
st
 derivative,  

 
𝑑𝑥

𝑑𝑡
 
𝑖

=  
−𝑥𝑖+2 + 8𝑥𝑖+1 − 8𝑥𝑖−1 + 𝑥𝑖−2

12𝑕
+  𝑂(𝑕4) 

Central difference approximation for4
th

 order,  2
nd

 derivative 

 
𝑑2𝑥

𝑑𝑡2
 
𝑖

=  
−𝑥𝑖+2 + 16𝑥𝑖+1 − 30𝑥𝑖 + 16𝑥𝑖−1 − 𝑥𝑖−2

12𝑕2 +  𝑂(𝑕4) 

 

Using this approximation leads to difficulty at 𝑖 = 0 𝑎𝑛𝑑 𝑖 = 𝑁. Moreover, the resulting solution of 

equations is not in tri-diagonal form and the solution to the system requires many more calculations. Instead of 

obtaining a difference method with a higher-order error term in this manner, it is generally more satisfactory to 

consider a reduction in the step size. 
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IV. Conclusion 
The shooting and finite difference methods provide solutions to BVP which has no exact or unique 

solution. The accuracy of the shooting method is dependent upon the integrator adopted. When a preferable step 

size is used, the shooting method which utilized the Trapezoidal Method and the Runge-kutta Method as 

integrators provide us with a better approximation compared to the solution obtain when an embedded Runge-

kutta method is used as an integrator. 

However, the embedded Runge-kutta provide us with an approximation to solution that has a good 

error tolerance i.e convergence is guaranteed. It is easier to write and execute a solution to BVP using the 

embedded Runge-kutta formula on most computer software since the step size is automatically computed and 

there exist an in-built function for it on most numerical software (MATLAB and MAPLE). Although this 

iteration may take longer computational time and the memory size of the computer as when compared with the 

classical Runge-kutta method. 

Generally, the shooting method gives cancellation of significant digits and if increased precision does 

not yield greater accuracy, we employ the finite difference method which utilizes higher order central difference 

scheme with a reduction in the step size. This also have its own limitation as it leads to heavy computation. 
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