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I. Introduction. Analysis of general relations 
A large number of papers have been devoted to the study of the properties of the Riemann ζ-function 

[1 − 5]. Here and below z = x + iy, where x and y are real numbers. In [3] the values of the function are shown in 

steps of 0.1 in the interval of interest to us 0 ≤ x ≤ 1, as well as the values of its roots for y < 100. The accuracy 

of the calculations is not indicated, which reduces the value of the data presented. The main unsolved problem is 

the proof of the Riemann hypothesis, which consists in the assertion that all the zeros of the ζ-function in the 

strip 0 ≤ x ≤ 1 are on a line x = 1/2. By now, it has been proved that there are an infinite number of zeros on the 

line x = 1/2, and in addition there are no zeros on the ends of the interval. This paper is devoted to the study of 

characteristic points of the ζ-function, discussion of the reasons for the validity of the Riemann hypothesis and 

its proof. We use for the zeta function a representation valid for x > 0 [5]: 
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The first factor on the left-hand side of (1) can be discarded, since for 0 < x < 1 it does not vanish. Thus, the 

problem reduces to investigating the zeros of the sum of the series, that is, function S(z). Using the exponential 

representation, we obtain 
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The common factor )2exp( yk can be ignored, and to simplify the calculations we use the main value of the 

logarithm, assuming k = 0 that in our case it does not reduce the generality. Then (2) can be written as the 

system of two equations 
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where  
xNNxA /1),(  , )lncos(),(1 NyNyB  , )lnsin(),(2 NyNyB  . We are interested in the 

joint zeros of the functions F1 and F2. It is clear that F1(x, 0) = S(x), F2 (x, 0) = 0. These values can be 

considered as initial conditions in the problem of finding zeros. We carried out direct calculations of the 

quantity F1 (x, 0) = S (x) by (1), which was replaced by a finite segment of the series Sn (x), in the range 0.4 ≤ x 

≤ 0.96. In this case, n was chosen so that the computation error was acceptable. Calculations for x < 0.4 were not 

carried out, because they require a large expenditure of computer time and are not needed for our purposes. The 

results of the calculations are given in table 1.  

 

Table 1 The values of the sum S (x) and the ζ-function ζ (x) for rational x 
x S(x) Error  Number  of 

terms of the 
series 

)21/(1 1 x  
ζ (x) 

0,40 0,58328087 0,003906 1048550 -1,93904960 -1,13101054 

0,45 0,59415255 0,001995 1000000 -2,15477445 -1,28026473 
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0,49 0,60238832 0,001148 1000000 -2,35821139 -1,42055898 

0,50 0,60439864 0,001 1000000 -2,41421356 -1,45914740 

0,51 0,60639269 0,000871 1000000 -2,47252484 -1,49932098 

0,55 0,61411205 0,000734 500000 -2,73193995 -1,67771723 

0,60 0,62365499 0,000473 350000 -3,12981296 -1,95192346 

0,65 0,63300955 0,000249 350000 -3,64218282 -2,30553649 

0,70 0,64214318 0,000132 350000 -4,32629967 -2,77810384 

0,75 0,65108093 0,0000695 350000 -5,28521351 -3,44110174 

0,80 0,65983631 0,0000366 350000 -6,725023959 -4,43741499 

0,85 0,66841681 0,0000196 350000 -9,126629718 -6,10039272 

0,90 0,67682681 0,0000102 350000 -13,93272617 -9,43004268 

0,95 0,68506912 0,0000054 350000 -28,35678887 -19,4263605 

0,96 0,68669761 0,0000048 350000 -35,56968648 -24,4256200 

 

Consider how the functions F1 and F2 change. Expressions (3a), (3b) represent the sum of cosines and 

sinuses, respectively, with decreasing period, bounded by the values of the amplitude A (x, N) and parity 

indicators that change sign depending on the parity of the number N. The amplitude A (x, N) decreases with 

increase in N (at constant x) and with an increase in x (at constant N). In this case, F1 and F2 take positive and 

negative values, depending on whether the sets of which sign predominate (plus or minus). With increasing y, 

the period of the functions B1 and B2 decreases from 2ln/2  to 0ln/2 N , where N0 is the number of terms 

in the series considered in (3a), (3b). Consider how y must vary to ensure periodicity, if Nln  is fixed. For N = 

2, the period is Δy = 2π / ln2 = 9.06; for N = 10
6
 it is Δy = 2π / 6ln10 = 0.455. Let us now consider how the 

period and the distance between the zeros of the functions B1 (B2) vary for a fixed y (the number of terms of the 

series is finite). At y = 0,1 ... 0,2 zeros are absent, since 0ln Ny . At y = 0.3 there is one zero, since 

0ln Ny  only slightly exceeds  . For y = 1, the function B2 has five zeros, namely: for N0 = 1, 23, 535, 12391, 

286751 (the first value is exact and the others are approximate), which is caused by a very slow change in the 

logarithm function with increasing N. The zeros of the function B1 at the value of y = 1 are shifted by π / 2 

relative to the zeros of B2 and fall on the maxima and minima of the function B2. The function B1 has 4 zero 

values: for N0 = 5, 111, 2576, 59610 (the values are approximated). These regularities are also valid for the 

functions F1 and F2, namely, for small values of y, long-period components predominate, and the distance 

between the zeros of these functions is significant, and for large y the short-period components play a major 

role, and the distance between the zeros becomes small. 

 

II. The study of the characteristic points of the ζ-function 

The behavior of the functions F1 and F2 was studied in the range 0.4 ≤ x ≤ 0.96 for different values of y 

from 0.1 to 10
6
. For each fixed x, the function F1 (x, y) varies periodically with increasing y. For y = 0, it is S (x) 

(see table 1), then it increases, reaches a positive maximum, decreases, passes through zero, reaches a minimum, 

increases again, passes through 0, reaches a maximum, etc. The function F2 (x, y) also varies periodically. For y 

= 0, it is 0, then decreases, reaches a minimum, then increases, passes through 0, reaches a maximum, decreases, 

passes through 0, and so on. For each fixed y, as x increases from 0.4 to 0.96, the functions F1 (x, y) and F2 (x, y) 

change monotonically over the entire range of x or one of them has a weak maximum (minimum) and the other 

changes monotonically over the entire range with the change sufficiently slow (smooth). It is not possible to 

give all these data in view of the large volume, so we list the characteristic cases representing a complete group 

of possibilities. Both functions F1 (x, y) and F2 (x, y) are positive and simultaneously decrease or one function 

decreases and the other increases or one has a weak maximum (minimum) and the other decreases; both 

functions are negative and simultaneously increase (their absolute values decrease); one of the functions is 

positive and the other is negative: both functions increase or the negative increases and the positive decreases or 

the positive has a weak minimum and the negative increases; both functions or one of them change sign, 

changing monotonically or one of them has a weak minimum (maximum) and the other monotonically increases 

(decreases). The cases listed repeat periodically with increasing y. The analysis shows that the functions F1 (x, 

y), F2 (x, y) for a given y can intersect no more than once with increasing x and only at the joint (common) zero. 

The joint zeros correspond to those values of y in a sufficiently small neighborhood of which both functions 

change sign in the same or opposite directions (and the monotonic behavior remains with increasing x), and the 

sign change occurs near (in the neighborhood) value of x at which there is a joint zero, i.e. in our case, near 1/2. 

We note that a change in the sign of only one of the functions can be observed when this function is approached 

to zero or at a significant distance from the common zero in the variable y. In the remaining cases listed above, 

the values of the functions F1 (x, y) and F2 (x, y) are considerably different over the entire range of variation of 

x. The position of the characteristic points (maxima, minima and zeros) of the functions F1 and F2 was studied, 

when y increases, for x in the range from 0.4 to 0.96. The results show that the values of y, corresponding to the 
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characteristic points of the functions, vary monotonically over the entire range of variation of x or have a weak 

maximum (minimum) with a change that is within narrow limits. Therefore, it is always possible to establish a 

correspondence between points, choosing a step sufficiently small, for example, Δx = 0.01 ... 0.05. Difficulties 

can arise at very large values of y due to a decrease in the period of the change of functions, but here too, acting 

sequentially and choosing a step small enough, it is always possible to determine the displacement of the 

corresponding point. In table 2, as an example, the results of calculating the positions of some maxima of the 

functions F1 and F2 are shown when x varies from 0.4 to 0.96 (maxima with different behavior are chosen). 

Table 3 gives the results of the study of the alternation of zeros of functions (maxima and minima are not 

specified so as not to increase the volume of the table) for x = 0.49, 0.50, 0.51, which allows us to understand 

the existing regularities and draw conclusions. In table 3, the values of y for the same zeros for x = 0.75 are also 

given for comparison.  

 

Table 2 The change in the positions of the maxima of the functions F1 and F2 depending on x 
x 0,4 0,45 0,49 0,5 0,51 0,55 

y11 11,952 11,9495 11,948 11,947 11,94696 11,944 

F1(y11) 2,81603 2,70660 2,62483 2,60504 2,58551 2,50951 

y12 100000,0979 100000,0955 100000,093 100000,092 100000,091 100000,088 

F1(y12) 19,50806 14,16015 11,18868 10,58045 10,01742 8,14856 

y22 100000,291 100000,296 100000,300 100000,301 100000,302 100000,307 

F2(y22) 18,54156 13,37520 10,49040 9,89778 9,34836 7,51734 

x 0,6 0,65 0,7 0,75 0,8 0,85 

y11 11,9469 11,9472 11,948 11,9493 11,951 11,953 

F1(y11) 2,42069 2,33705 2,25862 2,18506 2,11607 2,05135 

y12 100000,082 100000,074 100000,064 100000,0523 100000,0375 100000,02 

F1(y12) 6,47099 5,29306 4,45088 3,83727 3,38077 3,03402 

y22 100000,314 100000,322 100000,330 100000,3403 100000,351 100000,364 

F2(y22) 5,85785 4,67857 3,82338 3,19004 2,71101 2,34109 

x 0,9 0,95 0,96    

y11 11,955 11,958 11,9581    

F1(y11) 1,99062 1,93364 1,92267    

y12 99999,9995 99999,976 99999,972    

F1(y12) 2,76489 2,55134 2,51386    

y22 100000,377 100000,392 100000,395    

F2(y22) 2,04968 1,81573 1,77445    

 

Note. The values of y11 correspond to the second maximum of F1; y12 and y22 correspond to the maxima of F1 

and F2, respectively, for large values of y. 

 

Table 3 The change in the position of the zeros of the functions F1 and F2, depending on x 
F1, F2 x=0,49 x=0,5 x=0,51 x=0,75 

y y y y 

F2=0 0 0 0 0 

F1=0 

F2=0 

8,2413 

5,4094 

8,2482 

5,4066 

8,2553 

5,4037 

8,4735 

5,3371 

F1=0 

F2=0 

10,0799 

9,1129 

10,0722 

9,1118 

10,0645 

9,1107 

9,83 

9,0867 

F1=0 

 

 
F2=0 

 

13,9805 

 

 
12,0339 

14,0563 

 

 
12,0351 

zero is missing (the 

preceding minimum 

is positive)  
    12,0363 

 

zero is missing 

 

 
12,0692 

F1=0 

F2=0 

14,2140 

14,1340 
14,1383 

14,1346 

zero is missing  

14,1352 

zero is missing  

14,1547 

F1=0 

F2=0 

17,3244 

15,8890 

17,3295 

15,8869 

17,3348 

15,8848 

17,5031 

15,8273 

F1=0 

F2=0 

18,7353 

18,0771 

18,7311 

18,07795 

18,7268 

18,0788 

18,5798 

18,1016 

F1=0 

F2=0 

zero is missing 

19,9574 

- 

19,9614 

- 

19,9654 

- 

20,0984 

F1=0 
F2=0 

21,0025 
21,0266 

21,02196 

21,02180 

21,0437 
21,0169 

zero is missing  
20,8616 

F1=0 

F2=0 

21,4860 

22,9751 

21,4650 

22,9748 

21,4416 

22,9744 

zero is missing  

22,9648 

F1=0 
F2=0 

24,4143 
zero is missing 

24,4293 
- 

24,4452 
- 

zero is missing  
- 

F1=0 

F2=0 

25,0237 

25,0032 
25,01121 

25,01087 

24,9978 

25,0187 

zero is missing 

zero is missing 

… … … … … 
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   *F1=0  
F2=0 

98,8295 
98,8701 

98,8311 

98,8322 

98,8327 
zero is missing 

98,7941 
zero is missing 

… … … … … 

F1=0 

F2=0 

99999,6797 

99999,7042 
99999,7009 

99999,7009 

zero is missing  

99999,6975 

zero is missing 

zero is missing 

F1=0 

F2=0 

100000,3466 

100000,0596 

100000,3504 

100000,0569 

100000,3544 

100000,0540 

100000,6009 

99999,9222 

… … … … … 

F1=0 
F2=0 

999997,9784 
999997,9605 

999997,9682 

999997,9683 

999997,9540 
999997,9778 

zero is missing  
zero is missing 

 

Note. The zeros of each function are arranged in order of increasing y; the values of y are given with 

rounding. Bold-face type denotes joint (common) zeros. In the line with the * sign, there is a weak maximum y 

= 98.8402 at x = 0.6 (step Δx = 0.05). 

Now we consider the behavior of the solutions of system (3a), (3b), i.e. joint zeros of the functions F1 

and F2. First, we prove that the functions F1 and F2 have infinitely many zeros for each x. We choose an 

arbitrary rational x from the interval 0.4 ... 0.96. The functions F1 and F2 are periodic, and their characteristic 

points are repeated with increasing y, while the period decreases (see above). We divide the infinite interval 0 

< y < ∞ into segments containing one negative and one positive value of the function F1 (respectively F2), which 

follow one another. Between them, the function F1 (F2) takes a zero value. The value of the segments decreases 

when y → ∞, and there are infinitely many such segments, which proves the assertion. Since F1 and F2 are 

continuous functions in x and y, this conclusion is valid for any x in the interval 0 < x < 1. For x = 1/2, some of 

the zeros of F1 and F2 coincide, forming a set of solutions of system (3a), (3b). To better understand what is 

happening, we use a graphical representation on the plane. Let x is the radius of the circle, and | y | is the angle 

reckoned from zero in the positive direction. Then the zeros of the functions F1 and F2 will correspond to points 

on the circle of a given radius, and there will be infinitely many of them. For x = 1/2, the common zeros of F1 

and F2 correspond to "double" points on the circle. If x ≠ 1/2, namely, x = 1/2 ± α, where 0 < α < 1/2, then the 

double points split. The above analysis (see table 3) shows that in this case two points are appeared: one 

corresponds to zero F1, and the second to zero F2, and the splitting occurs in opposite directions (in the value of 

y) from the double point. The magnitude of the splitting depends on | x - 1/2 |, and the signs alternate by turns 

depending on y. With the removal of x from the value 1/2, the points are increasingly divided (table 3). In some 

cases, one of the zeros may be absent, i.e. as a result of the splitting, only one point appears, corresponding to 

zero of one of the functions, which depends on the ratio of the shift of the function caused by the change of x 

and the minimum value of the function preceding the double point. In this case, the preceding minimum for a 

given x ≠ 1/2 is positive or, more generally, the signs of the neighboring minimum and maximum are the same 

(the positive minimum is between two positive maxima or the negative maximum is between two negative 

minima). If for some x1 ≠ 1/2 this "anomaly" is observed for the first time, then for all x > x1 it remains. The 

number of anomalies increases with increasing x (and y). Since in our calculations the infinite series was 

replaced by a finite segment of the series, then the results of table 3 can be influenced by the following factors: 

the approximation error, the different rate of change, the different rate of convergence of the functions F1 and F2 

near zero, and also the path through which we approach zero (from the one side or from different sides with 

maintenance of the sign). But these errors are small compared to the useful effect and do not affect the analysis 

results in principle, therefore the double points are reliably identified by the coincidence of two digits after the 

comma in the value of y corresponding to the double point. As can be seen from table 3, the difference between 

the zeros after the splitting is significantly greater than the error. We show that there are infinitely many double 

points on the line x = 1/2. The proof is carried out as in the previous case. Note that for the appearance of a 

double point, it is necessary that F1 and F2 change synchronously in the same or opposite directions. Such cases, 

as our analysis showed, are repeated periodically with increasing y from 0 to ∞. The period of repetition of 

double points depends on the range of values of y and the initial conditions, i.e. of the values F1 (x, 0) and F2 (x, 

0). We divide the interval 0 < y < ∞ into segments, so that each function has a pair of positive and negative 

values closest to each other, and the functions vary synchronously, i.e. with approximately the same sensitivity 

factor in y. The length of the segments will decrease when y → ∞, and there will be infinitely many such 

segments, which proves the assertion. It is clear that for a finite y the number of double points is always less 

than the number of zeros of each of the functions F1, F2, since their appearance is associated with more strong 

constraints. We have the following upper bound estimate: the number of double points is less than 

2/ln 0Ny . What can be said about the reasons for the appearance of double points? They are due to the 

symmetry properties of the functions. As can be seen from (3a), (3b), F1 is an even function and F2 is an odd 

function of y, therefore the set of zeros of these functions is invariant with respect to the substitution of y by 

y , which corresponds to the reflection symmetry about the x axis (for fixed x, that is, in the one-dimensional 

case, this symmetry can be likened to symmetry with respect to time inversion). The second type of symmetry is 
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the central symmetry with respect to the point x = 1/2, i.e. to the center of the strip, which determines the 

invariance of the set of zeros with respect to the substitution x → x1 (with the simultaneous replacement of y 

by y ). For x = 1/2, both types of symmetry coincide, so double points appear for some values of y. If x1 ≠ 

1/2, then the second type of symmetry disappears, and the double point splits. 

 

III. The proof of the Riemann hypothesis and discussion of results 

To prove the Riemann hypothesis, we use the functional relation for the ζ-function [5]. We write it in 

the form 

)1()()()( zzDzzC   ,         (4) 

where C(z), D (z) are functions of z. It follows from (4) that if 00 2/1 iyz   is the zero of the ζ-function, 

then 00 2/11 iyz   is also a zero of this function, which agrees with the symmetry of the functions F1, F2 

(see above). Here it is assumed that C(z0) does not become infinite, and D(z0) does not vanish; these conditions 

are satisfied in our case. Suppose now that there is a zero of function for yiz ~)2/1(~   , where 

0 < <1/2. Then it follows from (4) that zero is also yiz ~)2/1(~1   (if the condition specified above 

is satisfied for z~ ). But since the functions F1 and F2 with increasing x for the same value of y (axial symmetry 

remains for any x) vary monotonically and can intersect only once, the second double point cannot arise (see the 

analysis above) that proves the validity of the Riemann hypothesis. Otherwise, we could argue that equations 

(3a), (3b) always have two joint solutions (for the same y), as soon as they have one solution. And this is 

impossible. In other words, for x ≠ 1/2 two types of symmetry required for the appearance of a double point 

cannot be realized simultaneously: the axial symmetry (reflection symmetry) and the central symmetry. To 

better understand the meaning of the Riemann hypothesis, we use the following analogy. There is an atomic 

system. It is required to study its spectrum in the strip 0 < x < 1, i.e. to determine the levels of the stationary 

energy of the system. As we know, this problem reduces to the solution of the wave equation (the Schrödinger 

equation). Suppose that the wave function of the system ψ is approximated (for fixed x) by the weighted sum of 

the basis functions B1, B2 and has the form (3a), (3b). These basis functions belong to two "non-combining" sets, 

so ψ = F1 corresponds to the cosine-like state of the system, and ψ = F2 to the sine-like state. Therefore, the 

problem of finding energy levels (eigenvalues) reduces to a system of two equations separately for two non-

combining sets. In general, the solutions for these sets are different; however, the functions can have common 

knots (zeros). Their position is completely determined by the symmetry properties of functions F1, F2, i.e. 

admissible transformations necessary for the appearance of common zeros. In our case, as noted above, this is 

the reflection symmetry and the central symmetry. For x = 1/2, we have a "degenerate" state, since both types of 

symmetry coincide. If x ≠ 1/2, degeneracy is removed, since only the symmetry of reflection remains. 

 

IV. Conclusion 
In conclusion, let us consider how the number of common zeros (double points) p depends on y. The 

upper bound estimate is obtained above. To obtain the lower bound estimate, calculate the average period of 

appearance of such zeros in the interval 0 < y < 100 for x = 1/2. It is approximately equal to 3.09, i.е. it is close 

to π. Taking into account the results of the previous analysis, we can write down the following lower bound 

estimate for the number of common zeros (double points): 

]/)[(1 0 yyp  ,            (5) 

where y0 = 14,13 corresponds to the first common zero; [∙] is the integer part of a number; y = 10
2
k, k = 1, 2, 3 

.... It is easy to verify that the estimate (5) is satisfied for y = 100; in addition, it agrees with the estimates for 

large values of y obtained by more complicated methods [5].  
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