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Abstract: This paper seeks to determine the static and dynamic buckling load of a nonlinear elastic model 

structure having cubic – quintic nonlinearity. The associated static problem is first solved by adopting phase 

plane analysis to obtain the exact result followed by asymptotic and perturbation approach to obtain the 

approximate solution of the problem. Next, the dynamic problem after words is solved by employing phase plane 

technique to obtain the exact solution and later, by employing asymptotic and perturbation approach to obtain 

the approximate solution. In all the cases considered, the dynamic buckling load 𝜆𝐷  is mathematically related to 

the static buckling load 𝜆𝑆 . The adoption of asymptotic and perturbation procedure is made possible by the 

presence of small non-dimensional parameter on which asymptotic expansions are made possible.  
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I. Introduction 

In this paper, we shall investigate the buckling (both static and dynamic) of an elastic model structure 

with cubic – quintic nonlinearity and with the single aim of determining its static and dynamic buckling loads, 

where, in the dynamic case, the structure is trapped by a step load. 

Several investigators have previously studied elastic model structures with diverse degrees of 

nonlinearities and such investigations include those by [1], [2], [3], [4] and [5], among others. However, relative 

to the aforementioned investigations, the subject under discourse appears to present some formidable 

complexity judging from the degree and extent of the inherent nonlinearity characterizing the structure. 

We shall tackle the problem, first, by resorting to phase plane analysis, and next, by applying 

asymptotic and perturbation techniques. The exact method (phase plane analysis) is suitable here because the 

step loading situation (in the dynamic case) presents an autonomous nonlinear and nonhomogeneous ordinary 

differential equation which can be solved without any much difficulty. 

However, the approximate method (i.e the asymptotic and perturbation techniques) are equally 

necessary because we cannot use phase plane method in most equations characterizing physically – realistic 

engineering structures, even for a loading history that is as simple as step load. Thus, for such materials and for 

loading that are explicitly non – autonomous in time, asymptotic and perturbation methods are the next 

alternative for any analytical studies of such structures. 

Buckling (and dynamic buckle in particular) presents formidable instabilities associated with 

engineering structures under compressive loading. While a sufficiently huge quantum of investigation has been 

done on static loading (under static compressive loads), the same cannot be said of dynamic loading. The search 

however continues. Relatively – recent studies on dynamic buckling include investigations by [6], [7],[8],[9], 

[10] and [11] among others. 

We must however remarkthat [12] investigated the buckling and post buckling analysis of extensible 

beam – column by using the differential quadrature method while [13] studied a simple method to determine the 

critical buckling loads for axially inhomogeneous beams with elastic constraint. A similar investigation was 

undertaken by [14] when he investigated the stability analysis of non – uniform rectangular beams using 

homotopy perturbation method. In the same token, [15] studied exact solution and dynamic buckling analysis of 

a beam – column system having the elliptic type loading, while [16] gave a review of recent research on 

vibration energy harvesting via bistable systems. Pertinent here is the study by [17] who investigated 
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piezoelectric buckled beams for random vibration energy harvesting, while [18] explored mechanical instability 

of thin elastic rods. 

 

II. Formulaion Of The Problem 
In its simplest form, the required non-dimensional differential equation satisfied by the displacement ξ(t) of an 

elastic model structure with cubic – quintic nonlinearity trapped by an arbitrary time dependent load 𝜆𝑓(𝑡) is  

ξ +  1 −  𝜆𝑓(𝑡) 𝜉 +  𝛼𝜉3 −  𝛽𝜉5 =  𝜆𝜉 𝑓 𝑡 , 𝑡 > 0                                          (1)  

𝜉 0 =  𝜉  0 ,     ( )  ≡  
𝑑 …  

𝑑𝑡
                                                                              (2) 

where, λ is the nondimensional load amplitude satisfying the inequality 0 <  𝜆 < 1, 𝜉  is the amplitude of 

imperfection and also satisfying the inequality 0 < 𝜉 << 1, 𝑓 𝑡  is the explicitly time dependent load function 

of time t, and for our case, 𝑓 𝑡  is a step load satisfying 

𝑓 𝑡 =   
1,   𝑡 > 0 
0,    𝑡 < 0

                                                                                               (3) 

whileα and β are constants to be suitably chosen so as to ensure imperfection – sensitivity of the structure.  

As in equation (1), the governing equation of motion has a cubic – quintic nonlinearity and our main task is to 

determine analytically, the static buckling load𝜆𝑆  (in the static loading case) and the dynamic buckling load 𝜆𝐷  

in the case where the structure is trapped by a step load. 

 

III. Solution Of The Problem 
(a) PHASE PLANE SOLUTION OF THE ASSOCIATED STATIC PROBLEM 

The associated static problem is obtained from (1) by ignoring the inertia term and by setting 𝑓 𝑡 ≡ 1. This 

yields 

 1 −  𝜆 𝜉 +  𝛼𝜉3 −  𝛽𝜉5 =  𝜆𝜉                                                                           (4𝑎) 
As in [1 –2] and [4], the condition for static buckling is the maximization 

𝑑𝜆

𝑑𝜉
 = 0                                                                                                                 (4𝑏) 

The static buckling load 𝜆𝑆  is here defined as the largest value of the load parameter for the solution of (4a) to 

remain bounded. Thus carrying out (4b) using (4a), we get 

 1 −  𝜆𝑆 + 3𝛼𝜉𝑆
2 −  5𝛽𝜉𝑆

4 =  0                                                                                 5  
where𝜉𝑆  is the value of ξ at static buckling. Equation (5) is quartic which we solve to get 

𝜉𝑆
2 =  − 

−3𝛼 ±   9𝛼2 − 20𝛽 1 −  𝜆𝑆 

10𝛽
                                                                           (6) 

We shall however choose the negative sign in the square root and get 

𝜉𝑆
2 =  

3𝛼 + 2 5 1 −  𝜆𝑆 
1

2𝛽
1

2

10𝛽
 1 +  

9

20 1 −  𝜆𝑆 
 
𝛼2

𝛽
  

1

2

                                                   (7) 

Further simplification of (7) yields 

𝜉𝑆
2 =  

3𝛼 + 2 5 1 −  𝜆𝑆 
1

2𝛽
1

2

10𝛽
𝑟1                                                                                     (8𝑎) 

where, 

𝑟1 =   1 +  
9

20 1 −  𝜆𝑆 
 
𝛼2

𝛽
  

1

2

   (8𝑏) 

∴   𝜉𝑆 =  
 1 −  𝜆𝑆 

1

4𝑟1
1

2𝑟2

  5 
1

2𝛽
1

4

                                                                                (9𝑎) 

where, 

𝑟2 =   1 +  
3

2 5 1 −  𝜆𝑆 
1

2𝑟1

 
𝛼

𝛽
1

2

  

1

2

                                                         (9𝑏)  

To determine the static buckling load 𝜆𝑆 , we have to determine (4a) at static buckling stage, i.e 

𝜉𝑆  1 −  𝜆𝑆 + 𝜉𝑆
2 𝛼 −  𝛽𝜉2  =  𝜆𝑆𝜉                                                          (10𝑎) 

This simplifies to 

 1 −  𝜆𝑆 
1

4𝑟1𝑆
1

2𝑟2𝑆

  5 
1

2𝛽
1

4

  1 −  𝜆𝑆 +   
 1 −  𝜆𝑆 

1

2𝑟1𝑆
1

2𝑟2𝑆
2

 5𝛽
1

2

  𝛼 −
 1 −  𝜆𝑆 

1

2𝑟1𝑆
1

2𝑟2𝑆
2

 5𝛽
1

2

  =  𝜆𝑆𝜉    (10𝑏) 
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where, 

𝑟1𝑆 =  𝑟1 𝜆𝑆 ,            𝑟2𝑆 =  𝑟2 𝜆𝑆                                                                   (10𝑐) 

Further simplification of (10b) yields 

 1 −  𝜆𝑆 
5

4𝑟1𝑆
1

2𝑟2𝑆

  5 
1

2𝛽
1

4

 1 +  
𝑟1𝑆𝑟2𝑆

 5 1 −  𝜆𝑆 
1

2

 
𝛼

𝛽
1

2

  1 −  
 1 −  𝜆𝑆 

1

2𝑟1𝑆𝑟2𝑆

 5
 
𝛽

1

2

𝛼
   =  𝜆𝑆𝜉     (10𝑑) 

Final simplification of (10d) yields 

 1 −  𝜆𝑆 
5

4 =  
  5 

1

2𝛽
1

4𝜆𝑆𝜉 

𝑟1𝑆
1

2𝑟2𝑆

 
 
 
 
 

1 +  

𝑟1𝑆𝑟2𝑆
2  

𝛼

𝛽
1
2

 

 5 1 −  𝜆𝑆 
1

2

 
 
 

 
 

1 −

 1 −  𝜆𝑆 
1

2𝑟1𝑆𝑟2𝑆
2  

𝛽
1
2

𝛼
 

 5

 
 
 

 
 

 
 
 
 
 
−1

       (10𝑒) 

We note that (10e) gives an implicit equation for determining the static buckling load 𝜆𝑆 . 

 

(b) PHASE PLANE SOLUTION OF THE ASSOCIATED DYNAMIC PROBLEM 

Here, we set 𝑓 𝑡 ≡ 1 so that (1) becomes  

ξ +  1 −  𝜆 𝜉 +  𝛼𝜉3 −  𝛽𝜉5 =  𝜆𝜉                                                                               (11𝑎) 

𝜉 0 =  𝜉  0 = 0                                                                                                             (11𝑏) 

On multiplying (11a) by 𝜉 , we get 

𝜉 ξ +  1 −  𝜆 𝜉𝜉 +  𝛼𝜉3𝜉 −  𝛽𝜉5𝜉 =  𝜆𝜉 𝜉                                                                   (12𝑎)  
This implies 

1

2

𝑑

𝑑𝑡
 𝜉 2 + 

1

2
 1 −  𝜆 

𝑑

𝑑𝑡
 𝜉2 +

1

4
 𝛼

𝑑

𝑑𝑡
 𝜉4 −  

𝛽

5

𝑑

𝑑𝑡
 𝜉6 = 𝜆𝜉 

𝑑𝜉

𝑑𝑡
                 (12𝑏) 

Now, the condition for buckling in the dynamic case is the maximization [1] 
𝑑𝜆

𝑑𝜉𝑎
= 0                                                                                                                         (13) 

where, 𝜉𝑎  is the maximum of the displacement . If we integrate (12b), we get 
1

2
𝜉 2 +  

1

2
 1 −  𝜆 𝜉2 +

1

4
 𝛼𝜉4 −  

𝛽

5
 𝜉6 = 𝜆𝜉 𝜉                                                (14) 

At maximum value of 𝜉, i.e at 𝜉𝑎 , we note that 𝜉 𝑎
2 = 0. Thus, we get 

1

2
 1 −  𝜆 𝜉𝑎

2 +  
𝛼

4
𝜉𝑎

4 −  
𝛽

5
𝜉𝑎

6 =  𝜆𝜉 𝜉𝑎  

This implies 

 1 −  𝜆 𝜉𝑎 +  
𝛼

2
𝜉𝑎

3 −
2𝛽

5
𝜉𝑎

5  = 2𝜆𝜉    (15) 

To determine the dynamic buckling load 𝜆𝐷 , we use the condition (13) which yields 

 1 −  𝜆𝐷 + 
3𝛼

2
𝜉𝐷

2 − 2𝛽𝜉𝐷
4 = 0                                                                          (16) 

where, 𝜉𝐷  is the value of 𝜉𝑎  at dynamic buckling.This yields 

2𝛽𝜉𝐷
4 −  

3𝛼

2
𝜉𝐷

2 −   1 −  𝜆𝐷 = 0                                                                               (17) 

The solution of (17) is 

𝜉𝐷
2 =  

3𝛼

2
±  

9𝛼2

4
+ 2𝛽 1 −  𝜆𝐷 

4𝛽
 18  

If we take the positive square root sign, we get 

𝜉𝐷
2 =  

3𝛼

2
+ 2 2𝛽

1

2 1 −  𝜆𝐷 
1

2𝑟3

4𝛽
 19𝑎  

where, 

𝑟3 =   1 + 
9

132 1 −  𝜆𝐷 
 
𝛼2

𝛽
                                                                                  (19𝑏) 

Simplifying 𝜉𝐷
2  further, we get 
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𝜉𝐷
2 =  

 2

2
𝛽−

1

2 1 −  𝜆𝐷 
1

2𝑟3

 
 
 
 
 

1 +  

3  
𝛼

𝛽
1
2

 

4 2 1 −  𝜆𝐷 
1

2𝑟3

 
 
 
 
 

                                           (20) 

∴   𝜉𝐷 =  
 2

2
𝛽−

1

2 1 −  𝜆𝐷 
1

2𝑟3  1 +  
3

4 3 1 −  𝜆𝐷 
1

2𝑟3

 
𝛼

𝛽
1

2

   

1

2

                (21) 

Further simplification of (21) yields 

𝜉𝐷 =   
 2

2

 1 −  𝜆𝐷 
1

2𝑟3

𝛽
1

2

 

1

2

𝑟4                                                                              (22𝑎) 

where, 

𝑟4 =   1 +  
3

4 2 1 −  𝜆𝐷 
1

2𝑟3

 
𝛼

𝛽
1

2

  

1

2

                                                                (22𝑏) 

To determine the dynamic buckling load, 𝜆𝐷  we determine (15) at 𝜉𝑎 =  𝜉𝐷  to get 

𝜉𝐷   1 −  𝜆𝐷 + 𝜉𝐷
2  
𝛼

2
−  

2𝛽

5
𝜉𝐷

2  = 2𝜆𝐷𝜉 (23) 

This gives 

2𝜆𝐷𝜉 =   
 2

2

 1 −  𝜆𝐷 
1

2𝑟3

𝛽
1

2

 

1

2

𝑟4   1 −  𝜆𝐷 +  
 1 −  𝜆𝐷 

1

2𝑟3𝑟4
2

 2𝛽
1

2

 
𝛼

2
−  

2𝛽

5
𝜉𝐷

2      (24) 

Final simplification of (24) yields 

2𝜆𝐷𝜉 =  
 1 −  𝜆𝐷 

5

4𝑟3

1

2𝑟4

  2𝛽
1

2 

1

2

 1 +
𝑟3𝑟4

2

2 2 1 −  𝜆𝐷 
1

2

 
𝛼

𝛽
1

2

  1 −  
4

5
𝜉𝐷

2                         (25) 

For all the analysis so far, it is certain that we must choose 𝛼 > 0, 𝛽 > 0. 

From (10e) and (25), we can relate the static buckling load 𝜆𝑆  to the dynamic buckling load 𝜆𝐷  by  

 
1 −  𝜆𝐷
1 −  𝜆𝑆

 

5

4

=   
2 2

 5
 

1

2

 
𝑟1𝑆
𝑟3

 

1

2
 
𝑟2𝑆

𝑟4
 
𝜆𝐷
𝜆𝑆

 
 
 
 
 
 
 
 
 
 

1 +

𝑟1𝑆𝑟2𝑆
2  

𝛼

𝛽
1
2

 

 5 1− 𝜆𝐷  
1
2

 
 
 

 
 

1 −  

 1− 𝜆𝐷  
1
2𝑟1𝑆𝑟2𝑆 

𝛽
1
2

𝛼
 

 5

 
 
 

 
 

1 +  
𝑟3𝑟4

2

2 2
 1 −  𝜆𝐷 

1

2  
𝛼

𝛽
1
2

  1 −  
4

5
𝜉𝐷

2 

 
 
 
 
 
 
 
 
 
 

     (26) 

Based on the fact that the analysis leading to the results of (10e), (25) and (26) has not encountered any form of 

approximation, we may regard these results as exact solutions obtained from phase plane consideration. Such a 

method may not, in most cases, lend itself to easy application when actual engineering structures are 

encountered in practice. Thus, for this other type of materials (engineering materials),we can only seek for 

approximate results obtained from approximate methods such as asymptotic and perturbation methods. To 

buttress the applicability of these alternative methods we shall use them here and obtain approximate results 

with a view to comparing the exact and approximate solutions obtained. 

 

IV. Asymptotic And Perturbation Methods 
(a) ASYMPTOTIC METHODS FOR OBTAINING THE STATIC BUCKLING LOAD, 𝝀𝑺. 

Here, we recast equation (4) as 

 1 −  𝜆 𝜉 +  𝛼 𝜉3 − 𝛽𝜉5  = 𝜆𝜉                                                                                    (27) 
Let 

𝜉 =   𝜉𝑖𝜉 
𝑖                                                                                                              (28)

∞

𝑖=1

 

On substituting (28) into (27) and equating the coefficients of 𝜉 , we get 

𝜪 𝜉  :   1 −  𝜆 𝜉1 =  𝜆                                                                                            (29) 
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𝜪 𝜉 2 :   1 −  𝜆 𝜉2 = 0                                                                                           (30) 

𝜪 𝜉 3 :   1 −  𝜆 𝜉3 =  −𝛼𝜉1
3                                                                                     (31) 

𝜪 𝜉 4 :   1 −  𝜆 𝜉4 =  3𝛼𝜉1
2𝜉2                                                                              (32) 

𝜪 𝜉 5 :   1 −  𝜆 𝜉5 =  𝛽𝜉1
5 − 3𝜉1

2𝜉3                                                                    (33) 

From (29), we get 

𝜉1 = 𝐵 =  
𝜆

1 −  𝜆
                                                                                                     (34) 

From (30), we get 

𝜉2 = 0                                                                                                                       (35) 

From (31), we get 

𝜉3 =
−𝛼𝜉1

3

1 −  𝜆
=  

−𝛼𝐵3

1 −  𝜆
                                                                                           (36) 

On substituting for 𝜉2 in (32), we get 𝜉4 = 0. 

We substitute for 𝜉1 and 𝜉3 in (33), and get 

𝜉5 =
1

1 −  𝜆
 𝛽𝜉1

5 − 3𝛼𝜉1
2𝜉3 =  

𝐵5𝛽

1 −  𝜆
 1 +

3

1 −  𝜆

𝛼

𝛽
                              (37) 

So far, we get 

𝜉 =  𝑐1𝜉 + 𝑐3𝜉 
3 +   𝑐5𝜉 

5 + ⋯                                                                              (38𝑎) 
where, 

𝑐1 = 2𝐵,      𝑐3 =  
𝛼𝐵3

1 −  𝜆
,       𝑐5 =  

𝐵5𝛽𝛺1

 1 −  𝜆 2
                                                    (38𝑏) 

𝛺1 =    1 −  𝜆 + 3  
𝛼

𝛽
                                                                                         (38𝑐) 

As in [4], the static buckling load is obtained by first reversing the series (38a) to get 

𝜉  =   𝑑1𝜉 + 𝑑3𝜉
3 +   𝑑5𝜉

5 + ⋯                                                                                 (39) 

By substituting in (39) for 𝜉 and equating the coefficients of powers of 𝜉 , we get 

𝑑1 =  
1

𝑐1

=  
1

𝐵
 ,         𝑑3 =  

−𝑐3

𝑐1
4 =  

𝛼

𝜆
                                                                            (40𝑎) 

𝑑5 =  
3𝑐3

2 −  𝑐1𝑐5

𝑐1
7 =  

−𝑐1𝑐5  1 −  
3𝑐3

2

𝑐1𝑐5
 

𝑐1
7  =

−𝛽𝛺1𝛺2

𝜆 1 −  𝜆 
,    𝛺2 =   1 −

3

𝛺1

 
𝛼2

𝛽
       (40𝑏) 

The static buckling load condition (4) is now easily executed from (39) to get 

𝑑1 + 3𝑑3𝜉𝑆
2 +   5𝑑5𝜉𝑆

4 = 0                                                                                               (41) 

where𝜉𝑆  is the value of 𝜉 at static buckling. On solving (41), we get 

𝜉𝑆
2 =

−3𝑑3  ±    3𝑑3 
2 − 20𝑑1𝑑5

10𝑑5

                                                                               (42𝑎) 

After substituting in (42a) for the relevant terms, we get 

𝜉𝑆
2 = −

 
 
 
 −3  

𝛼

𝜆𝑆
  ±   

9𝛼2

𝜆𝑆
2 +

20𝛽𝛺1𝛺2

𝜆𝑆
2

10𝛽𝛺1𝛺2

𝜆𝑆 1− 𝜆𝑆  
 
 
 

                                                                   (42𝑏) 

By choosing the negative root sign and simplifying further, we get 

𝜉𝑆
2 =  

 1 −  𝜆𝑆 𝛺3

10𝛺1𝛺2

 
𝛼

𝛽
                                                                                                  (42𝑐) 

where, 

𝛺3 =  3 +   9 + 20  
𝛽

𝛼2
 𝛺1𝛺2                                                                                    (42𝑑)  

and where 𝛺1 and 𝛺2 are here evaluated at 𝜆 =  𝜆𝑆. 

∴       𝜉𝑆 =   
 1 −  𝜆𝑆 𝛺3

10𝛺1𝛺2

 
𝛼

𝛽
  

1

2

                                                                                   (42) 

where, we have here taken the positive square root sign. To determine the static buckling load in this case, we 

now evaluate (39) at buckling and get 

𝜉 =  𝜉𝑆 𝑑1 + 𝜉𝑆
2 𝑑3 +  𝑑5𝜉𝑆

2                                                                          (43) 

Simplifying this, we get  
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𝜉 =  
 1 −  𝜆𝑆 

3

2  
𝛼

𝛽
 

1

2
𝛺3

1

2

 10 𝛺1𝛺2 
1

2𝜆𝑆

 1 +  
𝛺3  

𝛼2

𝛽
 

10𝛺1𝛺2

 1 −  
𝛺3

10
                                                      (44) 

Here, we have taken 𝛼 > 0, 𝛽 > 0, and all values of λ are taken as at 𝜆 =  𝜆𝑆. 

 

(b) ASYMPTOTIC SOLUTION OF THE DYNAMIC PROBLEM (11a, b) 

Here, we recast (11a, b) in full as 

 

ξ +  1 −  𝜆 𝜉 +  𝛼𝜉3 −  𝛽𝜉5 =  𝜆𝜉                                                                               (45𝑎) 

𝜉 0 =  𝜉  0 = 0                                                                                                              (45𝑏) 
Let 

𝑡 =   1 −  𝜆 
1

2 1 +  𝜇2𝜉 
2 +  𝜇3𝜉 

3 +  𝜇4𝜉 
4 + ⋯ 

1

2𝑡                                          (46) 

∴    
𝑑𝜉

𝑑𝑡
=  

𝑑𝜉

𝑑𝑡 

𝑑𝑡 

𝑑𝑡
=   1 −  𝜆 

1

2 1 +  𝜇2𝜉 
2 +  𝜇3𝜉 

3 +  𝜇4𝜉 
4 + ⋯ 

1

2
𝑑𝜉

𝑑𝑡 
               (47𝑎) 

𝑑2𝜉

𝑑𝑡2
=   1 − 𝜆  1 + 𝜇2𝜉 

2 + 𝜇3𝜉 
3 +  𝜇4𝜉 

4 + ⋯ 
𝑑2𝜉

𝑑𝑡 2
                                      (47𝑏) 

We now substitute (46) – (47b) into (45a, b) and use the asymptotic series 

𝜉 =   𝐴 𝑖 
∞

𝑖=1

 𝑡  𝜉 𝑖                                                                                                       (48) 

The following are the sequence of equations obtained. 

𝜪 𝜉  :  
𝑑2𝐴(1)

𝑑𝑡 2
+  𝐴(1) = 𝐵 =   

𝜆

1 −  𝜆
                                                                (49) 

𝜪 𝜉 2 :  
𝑑2𝐴(2)

𝑑𝑡 2
+  𝐴(2) = 0                                                                                   (50) 

𝜪 𝜉 3 :  
𝑑2𝐴(3)

𝑑𝑡 2
+ 𝐴(3) =  

−𝛼 𝐴(1) 
3

1 −  𝜆
−  𝜇2

𝑑2𝐴(1)

𝑑𝑡 2
                                       (51) 

𝜪 𝜉 4 :  
𝑑2𝐴(4)

𝑑𝑡 2
+  𝐴(4) =  

−3𝛼 𝐴(1) 
2
𝐴(2)

1 −  𝜆
−  𝜇2

𝑑2𝐴 2 

𝑑𝑡 2
− 𝜇3

𝑑2𝐴 1 

𝑑𝑡 2
                 (52) 

𝜪 𝜉 5 :  
𝑑2𝐴(5)

𝑑𝑡 2
+  𝐴(5)

=  
−3𝛼

1 −  𝜆
  𝐴(1) 

2
𝐴(3) + 𝐴(1)𝐴(2)2

 + 
𝛽 𝐴(1) 

5

1 −  𝜆
 −  𝜇2

𝑑2𝐴 3 

𝑑𝑡 2
− 𝜇3

𝑑2𝐴 2 

𝑑𝑡 2

+  𝜇4

𝑑2𝐴 1 

𝑑𝑡 2
                                                                                                                                                  (53) 

etc. 

The associated initial conditions are  

𝐴 𝑖  0 = 0,     
𝑑𝐴 𝑖 

𝑑𝑡 
 0 = 0,      𝑖 = 1, 2, 3,…                                                          (54) 

On solving (49), we get (using I = 1 in (54)) 

𝐴 1  𝑡  = 𝐵 cos 𝑡 − 1                                                                                                 (55) 

From (50), for 𝑖 = 2 in (54), we get 

𝐴 2  𝑡  = 0                                                                                                                    (56) 

We next substitute into (51) and to ensure a uniformly valid solution in 𝑡 , we equate to zero the coefficient of 

cos 𝑡  and get 

𝜇2 =  
15𝛼𝐵2

4 1 −  𝜆 
                                                                                                         (57) 

The remaining equation in the substitution into (51) is 

𝑑2𝐴(3)

𝑑𝑡 2
+  𝐴(3) =  

−𝛼𝐵3

 1 −  𝜆 
 −

5

2
−  

𝐵𝑐𝑜𝑠 2𝑡 

2
+  

𝑐𝑜𝑠 3𝑡 

4
                                     (58𝑎) 

𝐴 3  0 = 0,     
𝑑𝐴 3 

𝑑𝑡 
 0 = 0                                                                                (58𝑏) 

On solving (58a, b), we get 
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𝐴 3  𝑡  =  𝑎3 cos 𝑡 + 
𝛼𝐵3

 1 −  𝜆 
 
5

2
−  

𝑐𝑜𝑠 2𝑡 

2
+  

𝑐𝑜𝑠 3𝑡 

32
                                  (59𝑎) 

where, 

𝑎3 =  
−65𝛼𝐵3

32 1 −  𝜆 
                                                                                                      (59𝑏) 

On substituting (55) and (56) into (52), we observe that to ensure a uniformly valid solution in 𝑡 , we must 

choose 𝜇3 = 0. On solving the remaining equation in (52), we get 

𝐴 4  𝑡  = 0                                                                                                                     
The following simplifications are necessary in the substitutions which soon follow: 

 𝐴(1) 
2
𝐴(3) =   

29𝛼𝐵5

8 1 −  𝜆 

+   
7𝑎3

4
−  

2875𝐵3

640
 𝐵2 cos 𝑡 

+  𝐵2  −𝑎3 + 
15𝛼𝐵3

32 1 −  𝜆 
 cos 2𝑡 

+  𝐵2  
𝑎3

4
+  

35𝛼𝐵3

64 1 −  𝜆 
 cos 3𝑡 

−
5𝛼𝐵5

32 1 −  𝜆 
cos 4𝑡 + 

𝛼𝐵5

128 1 −  𝜆 
cos 5𝑡                                                                   (60) 

 𝐴(1) 
5

=  𝐵5(cos 𝑡 − 1)5 =  𝐵5 cos5 𝑡  − 5 cos4 𝑡 + 10 cos3 𝑡 − 10 cos2 𝑡 + 5 cos 𝑡 − 1       (61𝑎) 

Further expansion of (61a) gives 

 𝐴(1) 
5

=  𝐵5  −
27

8
+

105cos 𝑡 

8
− 3 cos 2𝑡 +  

45cos3 𝑡 

16
−  

5cos4 𝑡 

8
+

cos 5𝑡 

16
            (61𝑏) 

We now substitute (61a, b) into (53) and get 

𝑑2𝐴(5)

𝑑𝑡 2
+  𝐴(5) =  −𝜇2  −𝑎3𝑐𝑜𝑠𝑡 + 

𝛼𝐵3

1 −  𝜆
 2𝑐𝑜𝑠2𝑡 −

 9𝑐𝑜𝑠3𝑡 

32
  +  𝜇4𝐵𝑐𝑜𝑠𝑡 

−  
3𝛼

1 −  𝜆
 

29𝛼𝐵5

8 1 −  𝜆 
 +   

7𝑎3

4
−  

2875𝐵3

640
 𝑐𝑜𝑠𝑡 +  𝐵2  

15𝛼𝐵3

32 1 −  𝜆 
− 𝑎3 𝑐𝑜𝑠2𝑡 

+  𝐵2  
𝑎3

4
+

15𝛼𝐵3

32 1 −  𝜆 
 𝑐𝑜𝑠3𝑡 −  

5𝛼𝐵5

32 1 −  𝜆 
cos 4𝑡 +  

𝛼𝐵5

128 1 −  𝜆 
cos 5𝑡  

+  
𝛽𝐵5

1 −  𝜆
 −

27

8
+

105cos 𝑡 

8
− 3 cos 2𝑡 + 

45cos3 𝑡 

16
−  

5cos4 𝑡 

8
+

cos 5𝑡 

16
     (62) 

To ensure a uniformly valid solution in 𝑡 , we equate to zero in (62), the coefficient of  cos 𝑡 and get 

𝜇4 =  −
1

𝐵
 

3𝛼

1 −  𝜆
 

7𝑎3𝐵
2

4
−  

2875𝐵5

640
 +  

105𝛽𝐵5

8 1 −  𝜆 
+ 𝜇2𝑎3                               (63) 

The remaining equation in (62) is  

𝑑2𝐴(5)

𝑑𝑡 2
+ 𝐴(5) = 𝑞1 + 𝑞2𝑐𝑜𝑠2𝑡 +  𝑞3𝑐𝑜𝑠3𝑡 + 𝑞4𝑐𝑜𝑠4𝑡 +  𝑞5𝑐𝑜𝑠5𝑡                      (64𝑎) 

𝐴 5  0 = 0,     
𝑑𝐴 5 

𝑑𝑡 
 0 = 0                                                                                         (64𝑏) 

where, 

𝑞1 =  
87𝛼2𝐵5

8 1 −  𝜆 2
−  

27𝛽𝐵5

8 1 −  𝜆 
=  𝑞1 0                                                                          (64𝑐) 

𝑞2 =   
3𝛽𝐵5

 1 −  𝜆 
−  

3𝛼𝜇2𝐵
3

1 −  𝜆
−  

3𝛼𝐵2

1 −  𝜆
 𝑎3 −  

15𝛼𝐵2

32 1 −  𝜆 
                                           (64𝑑)  

𝑞3 =   
9𝛼𝜇2𝐵

3

32 1 −  𝜆 
−

3𝛼𝐵2

1 −  𝜆
 
𝑎3

4
+   

35𝛼𝐵3

64 1 −  𝜆 
 +  

45𝛽𝐵5

16 1 −  𝜆 
                          (64𝑒) 

𝑞4 =  
15𝛼2𝐵5

32 1 −  𝜆 2
−  

5𝛽𝐵5

8 1 −  𝜆 
=  𝑞4 0                                                                    (64𝑓) 

𝑞5 =  
𝛽𝐵5

16 1 −  𝜆 
−

3𝛼2𝐵5

128 1 −  𝜆 2
=  𝑞5 0                                                                (64𝑔) 

where, 
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𝑞2 0 =  
3𝛽𝐵5

 1 −  𝜆 
−  

15𝛼2𝐵5

 1 −  𝜆 2
                                                                                   (64) 

𝑞3 0 =  
45𝛽𝐵5

16 1 −  𝜆 
+  

15𝛼2𝐵5

16 1 −  𝜆 2
                                                                        (64𝑖)  

On solving (64a, b), using (64c – i), we obtain 

𝐴(5) =  𝑎5𝑐𝑜𝑠𝑡 +  𝑞1 −
𝑞2𝑐𝑜𝑠2𝑡 

3
−  

𝑞3𝑐𝑜𝑠3𝑡 

8
−  

𝑞4𝑐𝑜𝑠4𝑡 

15
−  

𝑞5𝑐𝑜𝑠5𝑡 

24
               (65𝑎) 

where, 

𝑎5 =  −𝑞1 + 
𝑞2

3
+
𝑞3

8
+ 

𝑞4

15
+ 

𝑞5

24
 =  

904𝛽𝐵5

197 1 −  𝜆 
−

16105𝛼2𝐵5

1024 1 −  𝜆 2
               (65𝑏) 

Thus far, we can write 

𝜉 =  𝐴(1)𝜉 + 𝐴(3)𝜉 3 + 𝐴(5)𝜉 5 + ⋯                                                                            (66)  
We next determine the maximum displacement 𝜉𝑎  subsequent upon which we shall apply the maximization (13) 

to determine the dynamic buckling load,𝜆𝐷 . The usual condition for maximum is 
𝑑𝜉

𝑑𝑡 
= 0 and this gives the least 

value of 𝑡  at maximum displacement as 

𝑡 𝑎 =  𝜋                                                                                                                                 (67) 

By evaluating (66) at this maximum value, we get 

𝜉𝑎 =  𝑒1𝜉 + 𝑒3𝜉 
3 + 𝑒5𝜉 

5 + ⋯                                                                                  (68) 

where, 

𝑒1 = 2𝐵,      𝑒3 =  
33𝛼𝐵3

8 1 −  𝜆 
,      𝑒5 =  

1275𝛼2𝐵5

16 1 −  𝜆 2
𝜑1                                         (69𝑎)  

where, 

𝜑1 =   1 −  
494 1 − 𝜆 

381
 
𝛽

𝛼2
                                                                         (69𝑏) 

We next reverse the series (69a) as  

𝜉 =  𝑓1 𝜉𝑎 + 𝑓3𝜉𝑎
3 +  𝑓5𝜉𝑎

5 + ⋯                                                                           (70) 

By substituting for  𝜉𝑎  from (68) in (70) and equating the coefficients of 𝜉 , we get 

𝑓1 =  
1

𝑒1

,       𝑓3 =  −
𝑒3

𝑒1
4 ,          𝑓5 =  

3𝑒3
2 −  𝑒1𝑒2

𝑒1
7                                               (71𝑎) 

This gives 

𝑓1 =  
1

2𝐵
,            𝑓3 =  −

33𝛼

128𝜆
,               𝑓5 =  

−127𝛼2

1024𝜆 1 − 𝜆 
𝜑1𝜑2               (71𝑏) 

where, 

𝜑2 =   1 −
326𝜆6

64 1 − 𝜆 8
                                                                                        (71𝑐) 

The maximization (13) to determine the dynamic buckling load 𝜆𝐷  is better achieved using (70) to obtain 

𝑓1 + 3𝑓3𝜉𝑎𝐷
2 + 5𝑓5𝜉𝑎𝐷

4 = 0                                                                                  (72) 

where,  𝜉𝑎𝐷  is the value of  𝜉𝑎  at dynamic buckling and where 𝑓𝑖 ,    𝑖 = 1, 3, 5, in (72) are determined at 𝜆 = 𝜆𝐷 . 

On solving (72), we get 

𝜉𝑎𝐷
2 =  

−3𝑓3  ±  9𝑓3
2 − 20𝑓1𝑓5

10𝑓5

                                                                           (73) 

By taking the negative root sign and simplifying (73) a number of times, we get, for 𝛼 > 0,𝛽 > 0 

𝜉𝑎𝐷
2 =  

10,197

20,320𝜑1𝜑2

 
1 + 𝜑3

𝛼𝛽
                                                                               (74) 

where, 

𝜑3 =   1 +  
520,665

2,509,056
  

𝜑1𝜑2𝛽
2

𝜆𝐷
2   

1

2

                                                             (75) 

Thus, we have 

 𝜉𝑎𝐷 =   
10,197

20,320𝜑1𝜑2

 
1 + 𝜑3

𝛼𝛽
                                                                          (76) 

To determine the dynamic buckling load 𝜆𝐷 , we have to determine (70) at dynamic buckling stage, and get 

𝜉 =   𝜉𝑎𝐷  𝑓1 + 𝜉𝑎𝐷
2  𝑓3 +  𝑓5𝜉𝑎𝐷

2                                                                              (77) 
This gives, using the positive square root sign, 



Asymptotic Investigation Of The Buckling Of A Cubic–Quintic Nonlinear Elastic Model Structure .. 

DOI: 10.9790/5728-1401021630                                      www.iosrjournals.org                                        24 | Page 

2𝜉 =   
10,197

20,320𝜑1𝜑2

 
1 + 𝜑3

𝛼𝛽
  

1 − 𝜆𝐷
𝜆𝐷

   1 −  
2𝜆𝐷𝜉𝑎𝐷

2

 1 − 𝜆𝐷 
 

33𝛼

128𝜆𝐷
+ 

127𝛼2 𝜑1𝜑2 𝜉𝑎𝐷
2

1024𝜆𝐷 1 − 𝜆𝐷 
                          (78) 

Equation (78) is an implicit expression for determining the dynamic buckling load 𝜆𝐷 . We remark that all 

functions of 𝜆 in (78) are to be evaluated at 𝜆 = 𝜆𝐷 . Using (78) and (44), we can relate the dynamic buckling 

load 𝜆𝐷  to its static equivalent 𝜆𝑆  as shown below. 

2 =  

 
10,197

20,320𝜑1𝜑2
 

1+𝜑3

𝛼𝛽
  

1−𝜆𝐷

𝜆𝐷
   1 −  

2𝜆𝐷𝜉𝑎𝐷
2

 1−𝜆𝐷  
 

33𝛼

128𝜆𝐷
+  

127𝛼2 𝜑1𝜑2 𝜉𝑎𝐷
2

1024𝜆𝐷  1−𝜆𝐷  
  

 1− 𝜆𝑆 
3
2 

𝛼

𝛽
 

1
2𝛺3

1
2

 10 𝛺1𝛺2 
1
2𝜆𝑆

 1 +  
𝛺3 

𝛼2

𝛽
 

10𝛺1𝛺2
 1 −  

𝛺3

10
  

    (79) 

 

V. Analysis Of Result 
The results (10e), (25) and (26) were derived using phase plane analysis and to the extent that no 

approximations were encountered in their derivation, they could be said to be exact results. However, the results 

(44), (75) and (79) were derived using asymptotic and perturbation procedures. The analysis is such that in both 

exact and approximate results, we were able to relate the dynamic buckling load to its static equivalent showing 

that if, say, the dynamic load is already known, then the static buckling load canin principle, be easily calculated 

without the labour of carrying out the tedious calculation all over for the other buckling load. Using the above 

results, simple programming codes written in Q – Basic, are used to generate the tables given in Table 1 to 

Table 6 and the resultant graphical plots in Figure 1 to Figure 9.The results obtained from asymptotic and 

perturbation methods are strictly asymptotic in nature and are valid as the small parameter 𝜉  becomes strictly 

less than unity. 

 

VI. Conclusion 
While phase plane technique was easily available to analyse the problem and the results obtained 

proved excellent and easy to use, the perturbation and asymptotic approaches on the other hand could be tedious 

and in some cases cumbersome in most applications. However, most equations of motions charactererising 

actual real – life engineering structures are ridden with excessive spatial nonlinearities to the extent that phase 

plane method cannot possibly encompass. In such cases, asymptotic and perturbation methods are likely to hold 

sway. Thus, any real – life engineering structures with cubic – quintic nonlinearity may be easily analyzed by 

using perturbation and asymptotic procedures with the aim that the small parameter 𝜉  be extremely less than 

unity. 
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Table 1: Relationship between the imperfection parameter ξ  and the static buckling load λs for the case of phase 

plane method. 
IMPERFECTION 

PARAMETER 𝛏  
STATIC BUCKLING 

LOAD λS 

0.01 0.551108 

0.02 0.491879 

0.03 0.455144 

0.04 0.428261 

0.05 0.407003 

0.06 0.389409 

0.07 0.374403 

0.08 0.361323 

0.09 0.349736 

 

Table 2. Relationship Between The Imperfection Parameter ξ  And The Dynamic Buckling LoadλDFor The Case 

Of Phase Plane Method. 
IMPERFECTION 

PARAMETER 𝛏  
DYNAMIC BUCKLING 

LOAD λD 

0.01 0.464539 

0.02 0.393835 

0.03 0.351511 

0.04 0.321366 

0.05 0.298069 

0.06 0.279174 

0.07 0.263349 

0.08 0.249789 

0.09 0.237966 

 

Table 3. Relationship Between The Static Buckling LoadλSAnd The Dynamic Buckling Load λDFor The Case 

Of Phase Plane Method. 
STATIC BUCKLING LOAD 

λS 

DYNAMIC BUCKLING LOAD 

λD 

0.1 0.050845 

0.15 0.081813 

0.2 0.117159 

0.25 0.152179 

0.3 0.190639 

0.35 0.230778 

0.4 0.272314 

0.45 0.315031 

0.5 0.358778 

0.55 0.403469 

0.6 0.449098 

0.65 0.475758 
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0.7 0.543681 

0.75 0.593331 

0.8 0.645553 

0.85 0.701925 

0.9 0.765648 

0.95 0.844905 

 

Table 4: Relationship Between the Imperfection Parameter ξ And the Static Buckling LoadλS for the Case Of 

Asymptotic Method. 
IMPERFECTION 

PARAMETER 𝛏  
STATIC BUCKLING LOAD λS 

0.01 0.936227 

0.02 0.894295 

0.03 0.861736 

0.04 0.834695 

0.05 0.811379 

0.06 0.790786 

0.07 0.772287 

0.08 0.755459 

0.09 0.740004 

 

Table 5.Relationship Between The Imperfection Parameter ξ  And The Dynamic Buckling LoadλDFor The Case 

Of Asymptotic Method. 
IMPERFECTION PARAMETER 𝛏  DYNAMIC BUCKLING LOAD λD 

0.01 0.678867 

0.02 0.659641 

0.03 0.636488 

0.04 0.611767 

0.05 0.558079 

0.06 0.566591 

0.07 0.547347 

0.08 0.529969 

0.09 0.513981 

 

Table 6.Relationship Between The Static Buckling Load And The Dynamic Buckling Load For The Case 

Of Asymptotic Method. 
STATIC BUCKLING LOAD 

λS 

DYNAMIC BUCKLING LOAD 

λD 

0.1 0.071238 

0.15 0.071163 

0.2 0.071127 

0.25 0.071106 

0.3 0.071092 

0.35 0.071083 

0.4 0.071076 

0.45 0.071071 

0.5 0.071068 

0.55 0.071065 
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0.6 0.071063 

0.65 0.071061 

0.7 0.071059 

0.75 0.071058 

0.8 0.071057 

0.85 0.071056 

0.9 0.071056 

0.95 0.071055 
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Figure 1. Graphical PlotOf Table 1.(Using Eqn. (10e)). 

 

 
Figure 2. Graphical Plot Of Table 2.(Using Eqn. (25)) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

D
Y

N
A

M
IC

 B
U

C
K

LI
N

G
 L

O
A

D

IMPERFECTION PARAMETER

(𝜉

λD



Asymptotic Investigation Of The Buckling Of A Cubic–Quintic Nonlinear Elastic Model Structure .. 

DOI: 10.9790/5728-1401021630                                      www.iosrjournals.org                                        28 | Page 

 
Figure 3. Graphical PlotOf Table 3. (Using Eqn. (26)) 

 

 
Figure 4. Graphical PlotOf Table 4.(Using Eqn. (44)). 

 

 
Figure 5.Graphical Plot Comparing The Static Buckling Loads Using Phase Plane Method And Asymptotic 

Method For Various Values Of The Imperfection Parameter (Using Eqn. (10e) Andeqn. (44)). 
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Figure 6. Graph Plot Of Table 5, (Using Eqn. (78)). 

 

 
Figure 7. Graphical PlotComparing The Dynamic Buckling Loads Using Phase Plane Method And Asymptotic 

Method For Various Values Of The Imperfection Parameter, Using Eqn. (25) And Eqn. (78). 
 

 
Figure 8.Graphical Plot Of Table 6, Using Eqn. (79). 
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Figure 9.Comparing the Dynamic Buckling Loads Using Phase Plane Method And Asymptotic Method For 

Various Values Of the Static Loads, Using Eqn. (26) and Eqn. (79). 
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