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Abstract: A class of survey weighting methods provides consistent estimation of regression coefficients under 

unequal probability sampling. The minimization of the variance of the estimated coefficients within this class is 

considered. A series of approximations leads to a simple modification of the usual design weights. One type of 

application where unequal probabilities of selection arise is in the cross-national comparative surveys. In this 

case, the paper suggests the use of certain kind of within-country weight. This idea is investigated in an 

application to the data from African Social Survey, where a robust regression model is fitted with vote in an 

election as a dependent variable and with various variables of political science interest included as explanatory 

variables. The result shows that the use of the modified weights leads to considerable reduction in standard 

errors compared to design weights.  Since robust regression model is unbiased, consistency then it follows the 

cramar Rao inequality assumption that variance is less in the estimated coefficients thus its most efficiency in 

measuring weights for within country data. 
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I. Introduction 
The rationale for the use of simple survey weights in a least square regression analysis is examined 

with respect to increasingly general specification of the population regression model. The appropriateness of the 

weighted regression estimate depends on which model is chosen. Suppose that a sample survey measures 𝑝 +  1 

variables on each of n individuals, so that the data consist of the 𝑛 ×  1 matrix Y and the 𝑛 × 𝑝 matrix 𝑋then the 

least square estimates of the regression coefficients of Y on X is 

  𝛽 = (𝑋 ′𝑋)−1𝑋′𝑌 

However, the rows of Y and X often are not a simple random sample from the population. Differential 

sampling rates and differential response rates among various strata lead to different probabilities of selection for 

each individual. Kish (1965), discusses the computation of these probabilities for various sampling schemes, the 

differential sampling and response rates lead to the computation of weights for each case which attempts to give 

each sampling scheme the same relative importance in the sample that it has in the population.  

The ordinary least squares estimator is a common choice of researchers, but under an informative 

design, the ordinary least square estimator is biased. The probability weighted estimator is consistent but may 

have a large variance. In a preliminary testing procedures, the paper tests for the importance of weights in 

estimation. If the null hypopaper is accepted, then the use of unweighted estimator is used. The paper 

incorporates the design weights into the estimation procedure.  

In a simple random sample from the population, on unbiased estimator of the population parameter is 

the OLS, and an estimator of its variance is easy to calculate. However, in many surveys, the elements enter the 

sample with unequal probabilities. These weights are used to construct the probability weighted estimator. In 

more complex analyses such as regression the weighted estimator not only requires a more complicated 

calculation, but also often gives a larger variance than the unweighted version of the estimator. 

Preliminary testing (pre-test) procedure are procedures in which a test of a model assumption is used to 

decide between two estimation procedures. Bancroft (1944), Huntsberger (1955) and Mosteller (1948) provide 

details about pre-test procedures. The pre-test procedure is characterized by a test statistic, T, calculated from 

the data set. The test T serves the purpose of determining the estimation method. If T is statistically significant 

at some significance level, chosen a priori, a given procedure will be used to estimate the parameter. Otherwise 

an alternative procedure will be used for calculating the parameter estimator. 
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II. Methodology 
The  outcome  variable  of  interest  𝑦𝑗   is  whether  the  respondent  voted  in  the  last national 

election held in their country. Electoral turnout is in decline in Africa, as elsewhere, and political scientists are 

interested in factors associated with turnout. Low turnout is of particular concern amongst young people and the 

analysed data for those aged 18-24, as in Fieldhouse et al. (2007) 

 

III. Results and discussions 
𝑌𝑗   are  independent,  with  a  distribution  depending  on  a  k × 1 column  vector  𝜃of parameters, such that 

𝐸𝑚  𝜙𝑗 𝑌𝑗 ;𝑥𝑗 ,𝜃  = 0 𝑓𝑜𝑟𝑗 = 1,… . ,𝑁 

 

Where 𝜙𝑗 𝑌𝑗 ; 𝑥𝑗 ,𝜃 is a 𝑘 ×  1 vector estimating function and 𝐸𝑚  .  denotes expectation under the model. 

The population level equation, 

 𝜑𝑗(𝑌𝑗; 𝑥𝑗, 𝜃) = 0𝑁
𝑗 =1   

are unbiased estimating equation. Assuming that in some asymptotic framework a solution 𝜃𝑈  to these equation 

eventually exists uniquelly and under additional regularity conditions (Godambe and Thompson, 2009), 𝜃𝑈  

converges in probability to 𝜃. 
A particular instance of such an estimating function is the unit level score function given by 

𝜃𝑗  𝑌𝑗 ; 𝑥𝑗 ,𝜃 = log 𝑓𝑗 (𝑌𝑗 ; 𝑥𝑗 ,𝜃)         

where𝑓𝑗 (𝑌𝑗 ; 𝑥𝑗 ,𝜃)  is  the  probability  density  or  mass  function  for  𝑌𝑗   and  𝜃𝑈    is  the "census" maximum 

likelihood estimator of θ which would apply if all populationvalues of 𝑦𝑗 , 𝑥𝑗were observed. 

 

 

For  illustration,  if  a  binary  variable  𝑦𝑗 ,  ,  taking  values  0  and  1,  obeys  a  logistic regression coefficients, 

it will result to 

log
𝑓𝑗 (1;𝑥𝑗 ,𝜃)

𝑓𝑗 (0;𝑥𝑗 ,𝜃)
= 𝑥𝑗𝜃          

𝜙𝑗  𝑌𝑗 ;𝑥𝑗 ,𝜃 = 𝑌𝑗 − 𝑓𝑗 (1;𝑥𝑗 ,𝜃)𝑥𝑗
𝑇 

Where Tdenotes the transpose.   Now, suppose that the 𝑦𝑗 , 𝑥𝑗  are  only  observed for units 𝑗in a sample drawn by 

a probability sampling scheme from 𝑈 and let 𝐼𝑗  , 𝑗 = 1, . . . . . . . . .𝑁 be the sample indicators, where𝐼𝑗 = 1 if unit 

j is sampled and 𝐼𝑗 = 0 if not.  This research will be interested in the weighted estimator𝜃 𝑤   which solves the 

sample estimating equations. 

 𝑊𝑗𝐼𝑗𝜙𝑗 (𝑌𝑗; 𝑥𝑗, 𝜃) = 0𝑁
𝑗=1         

where 𝑤𝑗 is a survey weight corresponding to condition 1.1 for the consistency of θu, these estimating equations 

are unbiased under the joint distribution induced by the design and the model𝜃 𝑤 is consistent for θ if  

𝐸𝑚𝐸𝑝 𝑊𝑗 𝐼𝑗𝜙𝑗 𝑌𝑗 ; 𝑥𝑗 ,𝜃  = 0 𝑓𝑜𝑟𝑗 = 1,… ,𝑁     

Where 𝐸𝑝 (.) denotes expectation with respect to the sampling scheme. Two basic cases when condition 1.7 

holds are 

 1. The 𝑤𝑗 are constant, so that 𝜃 𝑤   is the unweighted estimator, and sampling is non-informative, that is 

𝐼𝑗𝑎𝑛𝑑𝑌𝑗 are independent (conditional on 𝑥𝑗  ) for eachj. This arises, in particular, when sample inclusion depends 

just on a set of design variables which are included in the vector 𝑥𝑗  . Fuller (2009) reviews tests of this non-

informative condition, including a test proposed by DuMouchel and Duncan (1983). 

 2. 𝑤𝑗 = 𝑑𝑗 the design  (Horvitz-Thompson)  weight  given  by  𝑑𝑗 =   𝜋𝑗
−1,  where 𝜋𝑗 = 𝐸𝑝 𝐼𝑗  is the 

inclussion probability of unit j.  In each of these cases, the proof of 1.7 assumes model 1 holds. For example, to 

demonstrate that 1.7 holds in case 2 we write  

𝐸𝑚𝐸𝑝 𝑑𝑗 𝐼𝑗𝜃𝑗  = 𝐸𝑚 (𝐸𝑝 𝑑𝑗 𝐼𝑗𝜃𝑗   Where  

𝜙𝑗 = 𝜙𝑗  𝑌𝑗 ; 𝑥𝑗 ,𝜃 , and 𝐸𝑝  𝑑𝑗 𝐼𝑗  = 1 

Following a similar argument, (1.7) holds for the class of cases, generating (ii), defined by; 

3. 𝑤𝑗 = 𝑑𝑗𝑞𝑗  Where𝑞𝑗 = 𝑞 𝑥𝑗   and 𝑞(. )  is an arbitrary function. 

The class of weighted estimators defined by such weights is the one of primary interest in this paper and within 

which we consider minimizing the variance of linear combinations of the elements of 𝜃 𝑤 is 

𝑉𝑎𝑟𝑚𝑝 (θ̂w)=𝐽(𝜃)−1𝑉𝑎𝑟𝑚𝑝 ( 𝑊𝑗𝐼𝑗𝜃𝑗)𝐽 𝜃 −1𝑁
𝑗=1       

Where𝐽(𝜃)=𝐸𝑚 ( 𝑤𝑗
𝑁
𝑗=1 𝐼𝑗

𝑑𝜃𝑗

𝑑𝜃
) and, when 𝑤𝑗=𝑑𝑗𝑞𝑥𝑗 , we can write, 

𝐽(𝜃)=  𝑞𝑗
𝑁
𝑗=1 𝐸𝑚 (

𝑑𝜃𝑗

𝑑𝜃
) 
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We would like to choose 𝑞𝑗  so that the variance in (1.8) is minimized.  For practical purposes, we consider it 

sufficient to minimize an approximation to this variance, since  any  weighted  estimator  in  the  class  defined  

by  𝑤𝑗 = 𝑑𝑗𝑞𝑗 is  consistent.   We shall  make  a  series  of  approximations  to  enable  us  to  specify  𝑞𝑗 as 

employed by Fuller (2009) of assuming Poisson sampling. Under this approximation, we may rewrite (1.8) as 

 

𝑉𝑎𝑟𝑚𝑝 (𝜃 𝑤) ≈ 𝐽(𝜃)−1  𝑉𝑎𝑟𝑚𝑝 (𝑑𝑗
𝑁
𝑗=1 𝑞𝑗𝜙𝑗  ]𝐽(𝜃)−1                                                                                     

Furthermore, we have 

𝑉𝑎𝑟𝑚𝑝  𝑑𝑗𝑞𝑗 𝐼𝑗𝜃𝑗  = 𝐸𝑚  𝑉𝑎𝑟𝑝 𝑑𝑗𝑞𝑗 𝐼𝑗𝜃𝑗   + 𝑉𝑎𝑟𝑚  𝐸𝑝 𝑑𝑗𝑞𝑗 𝐼𝑗𝜃𝑗  = 𝐸𝑚   𝑑𝑗 − 1 𝑞𝑗
2𝜃𝑗𝜃𝑗

𝑇 + 𝑉𝑎𝑟𝑚  𝑞𝑗𝜃𝑗 

= 𝐸𝑚 (𝑑𝑗𝑞𝑗
2𝜃𝑗𝜃𝑗

𝑇) 

 

Hence, when  𝑤𝑗 = 𝑑𝑗𝑞(𝑥𝑗 )the asymptotic covariance matrix can be expressed as 

 

𝑉𝑎𝑟𝑚𝑝(𝜃 𝑤)≈[ 𝑞𝑗
𝑁
𝑗=1 𝐸𝑚 (

𝑑𝜃𝑗

𝑑𝜃
)]−1  𝑞𝑗

2𝑁
𝑗=1 𝐸𝑚 (𝑑𝑗 𝜃𝑗 𝜃𝑗

𝑇) [ 𝑞𝑗
𝑁
𝑗=1 𝐸𝑚 (

𝑑𝜃𝑗

𝑑𝜃
)]−1 

 

 

As a second simplification, we assume that𝜙𝑗 (𝑌𝑗; 𝑥𝑗, 𝜃) is a score function so that 

𝐸𝑚  𝜃𝑗𝜃𝑗
𝑇 = −𝐸𝑚  

𝑑𝜃 𝑗

𝑑𝜃
 = 𝐻𝑗 , say, and also that we have a generalized linear model so that 

𝜃 =  𝛽is the vector of regression coefficients and 𝜃𝑗  𝑌𝑗 ; 𝑥𝑗 ,𝛽 =⋋𝑗 (𝑌𝑗 ; 𝑥𝑗 ,𝛽)𝑥𝑗
𝑇  

where𝜆𝑗 (.) is a scalar function. Then we may write 

 

𝐻𝑗 = 𝑇𝑗
2𝑥𝑗

𝑇𝑥𝑗  , where 𝑇𝑗
2=𝐸𝑚 ⋋𝑗

2 ,       ⋋𝑖=⋋𝑖 (𝑌𝑗 ;𝑥𝑗𝛽)   and  

 

 

𝑉𝑎𝑟𝑚𝑝 (𝛽 w) ≈ [ 𝑞𝑗
𝑁
𝑗=1 𝑇𝑗

2𝑥𝑗
𝑇𝑥𝑗 ]−1  𝑞𝑗

2𝑁
𝑗=1 𝑣𝑗 𝑥𝑗

𝑇𝑥𝑗 [ 𝑞𝑗𝑇𝑗
2𝑁

𝑗=1 𝑥𝑗 ]−1 

 

Where𝑉𝑗 = 𝐸𝑚  ⋋𝑗⋋𝑗
2 .  By analogy to the Gauss- Markov Theorem, the choice of 𝑞𝑗 which minimizes the 

variance given by (1.9) of any linear combination of the elements of𝛽 𝑤   is 

𝑞𝑗
𝑜𝑝𝑡

= 𝑞𝑜𝑝𝑡 (𝑥𝑗 )α𝑇𝑗
2/𝑉𝑗=𝐸𝑚 (𝑑𝑗 ⋋𝑗

2/𝑥𝑗 )     

This generalizes an argument used by Fuller (2009) for the special case of heteroscedastic normal error linear 

regression with 𝑘 = 1. We make the conditioning of 𝑥𝑗  explicit on the right hand side of (1.10) to be clear that 

𝑞𝑜𝑝𝑡 depends𝑥𝑗  . The quantity on the right hand side of (1.10) is not observed, but is estimable from auxiliary 

regressions of  𝜆𝑗
2  and  𝑑𝑗𝜆𝑗

2on 𝑥𝑗  ,  where  ⋋ 𝑗 =⋋𝑗  𝑌𝑗 ; 𝑥𝑗𝛽  and  λ is  a  consistent  estimator  of  β. These 

regressions and estimation of β could, for example, employ design weighted estimation. We do not pursue this 

idea further in this paper, however. Rather, we make  the  further  approximation  that  𝑑𝑗    is  uncorrelated  with  

𝜆𝑗
2 (given 𝑥𝑗   ) so  that expression (1.10) simplifies to 

𝑞𝑗
𝑜𝑝𝑡

𝛼
1

𝐸𝑚 (𝑑𝑗 /𝑥𝑗 )
          

The form of weighting in (1.11) is similar to semi parametric approach of pfeffermann and Sverchkov (1999), 

although they propose to take  

𝑞𝑗𝛼
1

𝐸𝑚𝑝 (𝑑𝑗 𝑥𝑗 , 𝐼𝑗 = 1)
 

Expression  (1.11)  can  be  yet  further  simplified  by  replacing  𝐸𝑚 𝑑𝑗 𝑥𝑗  by  the conditional expectation of 

𝑑𝑗   given a subset of the explanatory variable making up 𝑥𝑗  . In practice, there is often just a single explanatory 

factor which is the determinant. Sources of variation in the 𝜋𝑗  . In our cross sectional application, this is the 

country factor, i.e. acategorical variable with categories corresponding to countries. In this case, we may 

simplify set 𝑞𝑗   to be equal within the categories of this factor and for a given category, to be reciprocal of the 

design weighted mean of 𝑑𝑗   for sample units in the category.  In the more general setting𝐸𝑚 𝑑𝑗 𝑥𝑗   in (1.11) 

may be estimted by design weighted regression. 

Turning to standard error estimation and assuming that the finite population correction can be ignored, the 

asymptotic covariance matrix of 𝜃 𝑤  may be estimated consistently (Fuller, 2009) by 𝐽 −1𝑉 𝐽 −1 , where 𝐽 =

 𝑤𝑗 𝐼𝑗
𝑑𝜋 𝑗

𝑑𝜃

𝑁
𝑗=1 evaluated to 𝜃 =  𝜃 𝑤   and 𝑉 is a consistent estimator of the covariance matrix of the Horvitz- 

Thompson estimator. 
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 𝑑𝑗
𝑁
𝑗=1 𝐼𝑗𝑢𝑗   ,   Where 𝑢𝑗= 𝑑𝑗

−1𝑤𝑗𝛱𝑗  𝑦𝑗 , 𝑥𝑗 , , 𝜃 w is treated as a fixed vector of variables. 

Thus, standard errors can be produced using a standard approach for fixed survey weights, ignoring the fact that 

the weights have been modified. In all of this paper it has been assumed that the model in (1) is correct. 

Godambe and Thompson (1986) argue that 𝜃𝑢  defined by (2) may still be of interest even if the model fails. 

They note that 𝜃 𝑤   is still design-Consistent for𝜃𝑢   even under the model misspecification when design weights 

are used and they also demonstrate a minimum variance property of design weighting under the constraint that 

𝜃𝑢  is estimated consistently. However, if model (1) fails, then 𝜃𝑢 , is not the only finite population parameter 

which can be defined and may be of interest. An arbitrary finite population parameter can be defined as the 

value of the parameter θ which indexes that version of the model which  represents  a  good  fit  to  the  finite  

population  values  𝑦𝑗 ; 𝑥𝑗 ; 𝑗 ∈  U  according to a specified criterion, whatever the truth of the model. The 

criterion for 𝜃𝑢  is that (2)holds. To consider an alternative finite population parameter, suppose the weights are 

of the form𝑤𝑗 = 𝑑𝑗𝑞𝑗 .  Then 𝜃 𝑤  is consistent for the solution of 

 𝑞𝑗
𝑁
𝑗=1 𝛱𝑗 (𝑦𝑗 ; 𝑥𝑗 ,𝜃)=0         

Assumed to exist uniquely, and this will not in general be the same as 𝜃𝑢 .Nevertheless, it is finite 

population parameter with (1.10) as the criterion and it is defined even if the model (1) fails. We suggest that 

whether the solution of (2) or (1.10) is of scientific interest depends on the application. 

The modified weighting approach introduced will be used to analyse data from a particular cross-

national survey. The basic setting where regression analysis is applied is data from several countries and where 

country is an explanatory variable in the model that is binary indicators of the different countries from part of 𝑥𝑖 , 
such analyses have various purposes. One is to enable a quasi experimental evaluation ofthe relative impacts of 

different policies which are adopted in different countries, for example to compare the effects of different 

national tobacco control policies on smoker behaviour. Another is to enable a replication of some phenomenon 

of interest such as an election in the application in this paper. Cross national analysis may have broad 

comparative purposes, enabling the comparison of regression relationships across different national setting. 

Sampling designs for cross national surveys are often subject to considerable variation in inclusion 

probabilities between countries since their principal aim is often comparative, it is common to set a minimum 

sample size or effective sample size in each country in order to achieve adequate precision of each national 

estimate. Population sizes of countries have a tremendous thousand foldrange; whereas sample sizes tend to be 

made more constant in order to obtain similar errors for national means. As a consequence, sampling fractions 

can vary greatly between countries and the country factor maybe viewed as an important design variable.This 

source of variation in sampling fractions between countries may also arise national surveys between sub national 

groups such as regions or jurisdictions with policy differences. 

Sampling design of cross national surveys of relevance to this paper is that the design variables leading 

to unequal inclusion probabilities within countries will often differ between countries, since quite different kinds 

of sampling frames and field practices can be employed. As a consequence it will often be impractical as well as 

potentially scientifically inappropriate to include this design variables as explanatory variable in a pooled 

regression analysis of data across countries. It is still feasible that these design variables maybe associated with 

the outcome variable within the corresponding countries, after controlling for these explanatory variables which 

are included. Hence sample selection bias could occur if within country variable are excluded from the model. 

Some adjustment, such as weighting, may therefore oftenbe needed. 

To  apply  the  weight  modification  method  introduced  above,  the  weight  𝑑𝑗𝑞𝑗 ,  where𝑑𝑗   is  the  

design  weight  and  𝑞𝑗   is  the  function  of  the  country  factor  assumed  to  beincluded  as  an  explanatory  

variable.  In equation 9, let  𝑞𝑗 =
1

𝑑𝑐(𝑗)
 where dc denotes the design weighted mean of the design weights within 

country 𝐶and 𝐶𝑗 the country to which unit j belongs.   

The  𝑑𝑤𝑗 = 𝑑𝑗𝑞𝑗 =
𝑑𝑗

𝑑𝑐(𝑗 )
as the within country weight and 𝐵𝑗 = 𝑑𝑐(𝑗 )as the between country weight. 

The results of fitting the robust regression model, are presented in Table 1. Pseudo- maximum  

likelihood  estimation  is  employed,  solving  (3.0.6)  with  𝜙𝑗    defined  by (3.0.5),  where  the  𝑤𝑗   are  either  

constant  (unweighted  estimation)  or  are  design weights. The unweighted estimates are broadly similar to 

those in Fieldhouse et al. (2007), Table 4, although there are some differences, as may be expected since: 

 

IV. Conclusion 
To have internal consistency, the weights need to be the same for each response variable.   Weights of 

the form  𝑑𝑗 ,𝑑𝐵𝑗 ,𝑑𝑤𝑗  depends on the response variable.   For internal consistency is very important and weights 

that do not depend on y are preferred. One possibility for obtaining internal consistency is to obtain one set of 

shrinkage weights that is then used for all variables. Chambers and Rao and Singh proposed using ridge 

regression methods to shrink the weights. Where these methods depend only on the 𝑥variables and not on 𝑦. 
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Holt and Smith emphasize robustness as one of the virtues of single stage and multistage sampling. 

Robustness is of course the big concern in any model-based weighting scheme, particularly when nonresponse 

or under coverage occur since then one cannot check that the model holds for nonrespondents. The accuracy of 

any population estimate from this method, such as the estimated percentage of people who think that the 

government should improve the economy, health services and education depends entirely on the model 

underlying the weights scheme. If that model does not hold individuals outside the sample, then the population 

estimates have unknown quality. The tree of weights in Gelman’s Figure 2 is a wonderful tool for studying the 

weights that result from various models. Figure 2 makes it clear that the big difference in the weight variability 

occurs in the examples studied when education categories are added to the weighting model. Other trees could 

be drawn when the factors for weighting are considered in a different order, or when robust regression methods 

are used to estimate the parameters. 

Standard statistical methods for regression analysis remain valid when sample units have been selected 

according to the values of𝑥. Such sample selection is common with survey data, as illustrated by the cross-

national application in this paper, where 𝑥 includes country identifiers and sample inclusion probabilities vary 

considerably by country. The problem is that, even though 𝑥  may be dominant source of variation in the 

inclusion probabilities, there may be some residual variation which is associated with 𝑦 and thus could lead to 

bias if standard methods are employed. The option of applying full design weighting may be heavy-handed 

when the residual variation and resulting bias are likely to be small, especially given the potential serious 

inflation of standard errors. In this paper the more modest optionof applying modified weights which still 

correct for bias arising from such residual variation but which avoid such serious inflation of standard errors. 

The modification of the weights may also protect against the model fitting being dominated by a small number 

of large countries. 
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