A note on norm attaining operators

Fatima O.Alnoor

Corresponding Author: Fatima O.Alnoor

Abstract: We show the norm attaining quadraicallyhyponormal weighted shift is subnormal. Also, We show that there is a Banach space X such that the set of norm attaining operators from X to any infinite dimensional space $L_1(\mu)$ is not dense.

Date of Submission: 09-02-2018	Date of acceptance: 24-02-2018

I. Introduction

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} . An operator $A \in \mathcal{L}(H)$ is said to be normal if $A^*A = AA^*$ hyponormal if $A^*A \ge AA^*$ and subnormalif $A = N|_{\mathcal{H}}$, where N is normal on some Hilbert space $K \supseteq \mathcal{H}$. An operator $A \in \mathcal{L}(\mathcal{H})$ is said to be paranormal if $||A^2x|| \ge ||Ax||^2$ for all unit vector $x \in H$. An operator $A \in \mathcal{L}(\mathcal{H})$ is called norm attaining if there is an $x \in \mathcal{H}$ with ||x|| = 1 and ||Ax|| = ||A||.

The Bishop -Phelps theorem, the origin of the so-called "perturbed optimization principles," asserts that the set of norm-attaining functionals on a Banach space is norm dense in the set of all bounded functionals. Given Banach spaces X and Y, let us consider the Banach space L(X, Y). of bounded linearoperators from X into Y and let us denote by NA(X, Y). the set of norm-attaining operators; that is, $A \in NA(X, Y)$. if for some element x in the unit sphere X. such that ||Ax|| = ||A||. In mentioned paper by E.Bishop and R.Phelpsauther raised the problem if NA(X, Y). is norm dense in L(X, Y).

II. Results

We start from a basic criterion for norm attaining operators:

Lemma 1. If $A \in \mathcal{L}(\mathcal{H})$ is a norm attaining operator if and only if $||A||^2 \in \sigma_p(A^*A)$; where $\sigma_p(S)$ denote the point spectrum of $S \in \mathcal{L}(\mathcal{H})$.

Proof. Observe that ||Ax|| = ||A|| ||x|| if and only if $\langle (A^*A - ||A||^2)x, x \rangle \rangle = 0$ Since $A^*A - ||A||^2$ is hermitian, we can see that $\langle (A^*A - ||A||^2)x, x \rangle \rangle = 0$ if and only if $A^*Ax - ||A||^2x$ or equivalently, $x \in Ker(A^*A - ||A||^2I)$. Thus *A* is a norm attaining operator if and only if $||A||^2 \in \sigma_p(A^*A)$.

Let $\{\beta_n\}_{n=0}^{\infty}$ be a bounded sequence of positive real numbers, and $\det A_{\beta}: \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ be the associated unilateral weighted shift, defined by $A_{\beta}g_n = \beta_n g_{n+1}$ (all $n \ge 0$), where $\{g_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^2(\mathbb{Z}_+)$ (where \mathbb{Z}_+ is the set of non-negative integers). It is well-known that A_{β} is hyponormal if and only if $\beta_n < \beta_{n+1}$ for all $n \ge 0$.

Theorem 2. A_{β} is norm attaining if and only if $||A_{\beta}|| = \beta_i$ for some *i*.

Proof. Since $A_{\beta}^* A_{\beta} = diag\{\beta_0^2, \beta_1^2, ...\}$, we have $\sigma_p(A_{\beta}^* A_{\beta}) = \{\beta_0^2, \beta_1^2, ...\}$. The desired result now follows from Lemma 1.

In addition to its usefulness to produce examples of hyponormal weighted

shifts T for which $A_{\beta} + \lambda A_{\beta}^2$ is not hyponormal (for some complex number λ), For, if $\beta_0 < \beta_1 < \beta_2 = \beta_3 \dots$, one knows that the associated A_{β} can't be subnormal, so one could use the freedom in β_0 and β_1 to build such an example. However, such anattempt is doomed to fail, as the following

theorem shows. First, we need a definition.

Definition 3: Let A_{β} be a Hilbert space operator. We call A_{β} quadraticall hyponormal if $A_{\beta} + \lambda A_{\beta}^2$ is hyponormal for every complex number λ .

Theorem4: Let A_{β} be a subnormal weighted shift with weight sequence $\{\beta_n\}_{n=0}^{\infty}$ if $\beta_n = \beta_{n+1} = \cdots$ for some $n \ge 0$ then

$$\beta_1 = \beta_2 = \beta_3 = \cdots$$

Corollary 5:. Let A_{β} be a norm attaining hyponormal weighted shift. Then $\beta_n = \beta_{n+1} = \dots$ for some $n \ge 0$.

Proof. By Theorem 4, we have that $||A_{\beta}|| = \beta_n = \max_i \beta_i$ for some $n \ge 0$. But since A_{β} is hyponormal, the corresponding weight sequence is monotonically increasing. Thus, $\beta_n = \beta_{n+1} = \cdots$

Theorem 6: If A_{β} is 2-hyponormal and $\beta_n = \beta_{n+1}$ for some *n*, then $\beta_1 = \beta_2 = \beta_3 = \cdots, A_{\beta}$ is subnormal.

Although the norm attaining operators are dense in $\mathcal{L}(\mathcal{H})$, we can-not expect that every hyponormaloperator is a normattaining operator.

Corollary7: Let $\beta \equiv {\{\beta_n\}_{n=0}^{\infty}}$ be a strictly increasing bounded sequence. Then A_{β} is hyponormal (and hence paranormal), but not normattaining.

III. Lorentz Spaces

Let us start by recalling the definition of Lorentz sequence spaces and preduals a family of classical Banach spaces .

By *admissible sequence* w we shall mean a decreasing sequence w = (w(n))of positive numbers such that w(1) = 1 and $w \in c_0 \setminus \ell_1$, the Banach space of all sequences of scalars b = (b(n))for which

$$||b|| = \frac{\sup}{\pi} \left(\sum_{j=1}^{\infty} |b(\pi(n))|^p w(n) \right)^{1/p},$$

where π ranges over all permutations of the integers ,denote by $d_*(w, p)$ is called Lorentz sequence if p = 1 it is known [8,15]that d(w, 1) has predual $d_*(w, 1)$

which is defined by

$$d_{*}(w) = \left\{ b \in c_{0} : \lim_{n \to \infty} \frac{\sum_{j=1}^{n} b^{*}(j)}{\sum_{j=1}^{n} w(j)} = 0 \right\},$$

where b^* is the decreasing rearrangement of $\{|b(n)|\}$ The norm of

 $d_*(w)$ is given by

$$\|b\| = \sup_{n} \frac{\sum_{j=1}^{n} b^{*}(j)}{\sum_{j=1}^{n} w(j)}$$

Thus $||b|| \le 1$ if and only if

$$\sum_{k \in J} |b(k)| \le \sum_{j=1}^n w(j)$$

For any $n \in N$ and any set $J \subset N$ with n elements

 $d_*(w)$ predual of the Lorentz sequencespace d(w, 1), and $d_*(w)$ is space with symmetric basis $\{e_n\}$ that shares some the properties of c_0 . Also the space $d_*\left(\frac{1}{n}\right)$ was used by [GO] to get an example of a space X such that the closure of the $NA(X, \ell_p)$ is the set of compact operators for any $1 and so the set of norm attaining operators is not dense, since the space <math>d_*\left(\frac{1}{n}\right)$ is a subset of ℓ_p .

We do have :

Theorem 8:*Let* $w \notin \ell_1$ be a decreasing sequence of positive real numbers and μ

any positive measure. The following assertions hold:

i)
$$\overline{NA(d_*(w, 1)L_1(\mu))} = K(d_*(w, 1)L_1(\mu))$$

ii) If μ is purely atomic, the set of norm attaining operators from $d_*(w, 1)$ to $L_1(\mu)$ is dense.

iii) If μ is not purely atomic and σ -finite, then

$$\overline{NA(d_*(w,1)L_1(\mu))} = L(d_*(w,1)L_1(\mu)) \Leftrightarrow w \notin \ell_1$$

Theorem 9: Assume that $w \in \ell_2 \setminus \ell_1$. For the complex Lorentz sequence space d(w, 1) and its canonical predual $d_*(w, 1)$, then $NA(d_*(w, 1), d(w, 1))$ is not dense in $L(d_*(w, 1), d(w, 1))$.

Reference

- [1] Jerry Johnson and John Wolfe, Norm attaining operators, Studia Math. 65 (1979), no. 1, 7–19.
- [2] M. D. Acosta, Denseness of norm attaining mappings, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 9-30.
- [3] Acosta, M.D. (1999). Norm attaining operators into $L_1(\mu)$, Function Spaces, Contemporary Math., 232, 1–11.
- [4] Aguirre, F.J. (1998). Norm attaining operators into strictly convex Banach spaces. J. Math. Anal. Appl., 222, 431–437.
- [5] R.E. Curto, Quadratic ally hypo normal weighted shifts, Integral Equations Operator Theory, 13 (1990), 49-66.

[6] J. Stampi, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367-379

- [7] RAULE.CURTO and ILBONG JUNG, Quadratic ally hypo normalweighted shifts with two equal weights ,mathematics subject classification 47-04,47A57 (1991).
- [8] [189] P. Fan, A note on hypo normal weighted shifts, Proc. Amer. Math. Soc. 92(1984), 271-272
- [9] Y. B. Choi, A propagation of quadratic ally hypo normal weighted shifts, Bull.Korean Math. Soc. 37 (2000), no. 2, 347-352
- [10] A. Athaval, On joint hypo normality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423
- [11] Jun Ik Lee, ON THE NORM ATTAINING OPERATORS, 2012 Mathematics Subject Classification, 485-591

Fatima O.Alnoor "A note on norm attaining operators "IOSR Journal of Mathematics (IOSR-JM) 14. 1 (2018): PP 78-80.
