AC Finite Binary Automata

S.Shanmugavadivoo ${ }^{1}$, Dr.K.Muthukumaran ${ }^{2}$
${ }^{1}$ Assistant Professor / Department Of Mathematics/ Madurai Kamaraj University College, Aundipatti, Theni Dt,, Tamil Nadu, India.
${ }^{2}$ Associate Professor / Ramanujan Research Center in Mathematics, / Saraswathi Narayanan College, Perungudi, Madurai/Tamil Nadu, India-625022, Corresponding Author: S.Shanmugavadivoo

Abstract

Associative Finite Binary Automaton, Commutative Finite Binary Automaton, AC Finite Binary Automaton have been introduced. Cross Product of Finite Binary Automatons has been defined. If $B_{1}=\left(Q_{1}, \Delta_{1}\right.$, $\left.\Sigma_{1}, \delta_{1}, p_{0}, F_{1}\right)$ and $B_{2}=\left(Q_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, q_{0}, F_{2}\right)$ are any two Finite Binary Automatons, then $B_{1} \times B_{2}$ is also a finite binary automaton. If $B_{1}=\left(Q_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, p_{0}, F_{1}\right)$ and $B_{2}=\left(Q_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, q_{0}, F_{2}\right)$ are any two Associative Finite Binary Automatons, then $B_{1} \times B_{2}$ is also an associative finite binary automaton. If $B_{I}=\left(Q_{1}, \Delta_{1}, \Sigma_{1}, \delta_{l}, p_{0}, F_{1}\right)$ and $B_{2}=\left(Q_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, q_{0}, F_{2}\right)$ are any two commutative Finite Binary Automatons, then $B_{1} \times B_{2}$ is also a commutative finite binary automaton. If $B_{1}=\left(Q_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, p_{0}, F_{1}\right)$ and $B_{2}=\left(Q_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, q_{0}, F_{2}\right)$ are any two AC Finite Binary Automatons, then $B_{1} \times B_{2}$ is also an $A C$ commutative finite binary automaton.

Keywords: Finite Binary Automaton, Associative Finite Binary Automaton, Commutative Finite Binary Automaton, AC Finite Binary Automaton

Date of Submission: 15-02-2018
Date of acceptance: 01-03-2018

I. Introduction

The theory of Automata plays an important role in many fields. It has become a part of computer science. It is very useful in electrical engineering. It provides useful techniques in a wide variety of applications and helps to develop a way of thinking.

II. Finite Automaton

2.1 Finite Automaton: A Finite Automaton is a 5-tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where Q is a finite set of states, Σ is a finite set of inputs, q_{0} in Q is the initial state, $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states and δ is the transition function mapping $\mathrm{Q} \times \Sigma$ to Q .
If Σ^{*} is the set of strings of inputs, then the transition function δ is extended as follows :
For $w \in \Sigma^{*}$ and a $\epsilon \Sigma, \delta^{\prime}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathrm{Q}$ is defined by $\delta^{\prime}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{\prime}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)$.
If no confusion arises δ ' can be replaced by δ.

III. Finite Binary Automaton

3.1 Finite Binary Automaton: A Finite Binary Automaton B is a 6-tuple ($\left.\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$, where Q is a finite set of states, * is a mapping from $\mathrm{Q} \times \mathrm{Q}$ to Q, Σ is a finite set of integers, q_{0} in Q is the initial state and $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states and δ is the transition function mapping from $\mathrm{Q} \times \Sigma$ to Q defined by $\delta(\mathrm{q}, \mathrm{n})=\mathrm{q}^{\mathrm{n}}$.
If Σ^{*} is the set of strings of inputs, then the transition function δ is extended as follows :
For $\mathrm{m} \in \Sigma^{*}$ and $\mathrm{n} \in \Sigma, \delta^{\prime}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathrm{Q}$ is defined by $\delta^{\prime}(\mathrm{q}, \mathrm{mn})=\delta\left(\delta^{\prime}(\mathrm{q}, \mathrm{m}), \mathrm{n}\right)$.
If no confusion arises δ ' can be replaced by δ.
3.2 Associative Finite Binary Automaton: A Finite Binary Automaton $B=\left(\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is said to be an associative finite binary automaton if $\mathrm{p} *(\mathrm{q} * \mathrm{r})=(\mathrm{p} * \mathrm{q}) * \mathrm{r}$, for all $\mathrm{p}, \mathrm{q}, \mathrm{r}$ in Q .
3.3 Commutative Finite Binary Automaton: A Finite Binary Automaton $B=\left(\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is said to be a commutative finite binary automaton if $\mathrm{p} * \mathrm{q}=\mathrm{q} * \mathrm{p}$, for all p, q in Q .
3.3 AC Finite Binary Automaton: A Finite Binary Automaton $\mathrm{B}=\left(\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is said to be an AC Finite Binary Automaton if it is both associative and commutative
3.4 Cross Product of Finite Binary Automatons: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}\right.$, F_{2}) be any two Finite Binary Automatons. Then we define $\mathrm{B}_{1} \times \mathrm{B}_{2}=\left(\mathrm{Q}, *, \Sigma, \delta, \mathrm{r}_{0}, \mathrm{~F}\right)$, where $\mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$, * is a mapping from $\mathrm{Q} \times \mathrm{Q}$ to Q defined by for $\mathrm{p}, \mathrm{q} \in \mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$, where $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right), \mathrm{p} * \mathrm{q}=\left(\mathrm{p}_{1} \Delta_{1} \mathrm{q}_{1}\right.$, $\left.\mathrm{p}_{2} \Delta_{2} \mathrm{q}_{2}\right) \quad \Sigma=\Sigma_{1} \times \Sigma_{2}, \mathrm{r}_{0}=\mathrm{p}_{\mathrm{o}} \times \mathrm{q}_{\mathrm{o}}$ in Q is the initial state and $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2} \subseteq \mathrm{Q}$ is the set of final states and δ is the transition function mapping from $\mathrm{Q} \times \Sigma$ to Q defined by $\delta((\mathrm{p}, \mathrm{q}), \mathrm{n})=,\left(\mathrm{p}^{\mathrm{n}}, \mathrm{q}^{\mathrm{n}}\right)$.

Proposition 3.4.1: If $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ are any two Finite Binary Automatons, then $\mathrm{B}_{1} \times \mathrm{B}_{2}$ is also a finite binary automaton.

Proof: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two Finite Binary Automatons.
Consider $\mathrm{B}_{1} \times \mathrm{B}_{2}$
Then by definition $\mathrm{B}_{1} \times \mathrm{B}_{2}=\left(\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{r}_{0}, \mathrm{~F}\right)$,
where $\mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$,

* is a mapping from $\mathrm{Q} \times \mathrm{Q}$ to Q defined by for $\mathrm{p}, \mathrm{q} \in \mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$, where $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)$,
$\mathrm{p} * \mathrm{q}=\left(\mathrm{p}_{1} \Delta_{1} \mathrm{q}_{1}, \mathrm{p}_{2} \Delta_{2} \mathrm{q}_{2}\right)$
$\Sigma=\Sigma_{1} \times \Sigma_{2}$,
$\mathrm{r}_{0}=\mathrm{p}_{\mathrm{o}} \times \mathrm{q}_{\mathrm{o}}$ in Q is the initial state
$\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2} \subseteq \mathrm{Q}$ is the set of final states
δ is the transition function mapping from $\mathrm{Q} \times \Sigma$ to Q defined by $\delta((\mathrm{p}, \mathrm{q}), \mathrm{n})=,\left(\mathrm{p}^{\mathrm{n}}, \mathrm{q}^{\mathrm{n}}\right)$.
Therefore, $\mathrm{B}_{1} \times \mathrm{B}_{2}$ is also a finite binary automaton.
Proposition 3.4.2 : Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two Associative Finite Binary Automatons. Then $\mathrm{B}_{1} \times \mathrm{B}_{2}$ is also an associative finite binary automaton.

Proof: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two Associative Finite Binary Automatons.

Consider $\mathrm{B}_{1} \times \mathrm{B}_{2}$
By the Proposition 3.4.1 $\quad \mathrm{B}_{1} \times \mathrm{B}_{2}$ is also a finite binary automaton.
Let $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$, where $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mathrm{r}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
\begin{aligned}
\mathrm{p} *(\mathrm{q} * \mathrm{r}) & =\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) *\left(\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) *\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)\right) \\
& =\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) *\left(\mathrm{q}_{1} \Delta_{1} \mathrm{r}_{1}, \mathrm{q}_{2} \Delta_{2} \mathrm{r}_{2}\right) \\
= & \left(\mathrm{p}_{1} \Delta_{1}\left(\mathrm{q}_{1} \Delta_{1} \mathrm{r}_{1}\right), \mathrm{p}_{2} \Delta_{2}\left(\mathrm{q}_{2} \Delta_{2} \mathrm{r}_{2}\right)\right) \\
= & \left(\left(\mathrm{p}_{1} \Delta_{1} \mathrm{q}_{1}\right) \Delta_{1} \mathrm{r}_{1},\left(\mathrm{p}_{2} \Delta_{2} \mathrm{q}_{2}\right) \Delta_{2} \mathrm{r}_{2}\right) \\
= & \left(\left(\mathrm{p}_{1} \Delta_{1} \mathrm{q}_{1}\right),\left(\mathrm{p}_{2} \Delta_{2} \mathrm{q}_{2}\right)\right) *\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \\
= & \left(\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) *\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)\right) *\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \\
= & (\mathrm{p} * \mathrm{q}) * \mathrm{r}
\end{aligned}
$$

Hence $\mathrm{B}_{1} \times \mathrm{B}_{2}$ is an associative finite binary automaton.

Proposition 3.4.3: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two commutative Finite Binary Automatons. Then $\mathrm{B}_{1} \times \mathrm{B}_{2}$ is also a commutative finite binary automaton.

Proof: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two Commutative Finite Binary Automatons.

Consider $\mathrm{B}_{1} \times \mathrm{B}_{2}$
Let $\mathrm{p}, \mathrm{q} \in \mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$, where $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right), \mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)$

$$
\begin{aligned}
\mathrm{p} * \mathrm{q} & =\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) *\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \\
& =\left(\left(\mathrm{p}_{1} \Delta_{1} \mathrm{q}_{1}\right),\left(\mathrm{p}_{2} \Delta_{2} \mathrm{q}_{2}\right)\right) \\
& =\left(\left(\mathrm{q}_{1} \Delta_{1} \mathrm{p}_{1}\right),\left(\mathrm{q}_{2} \Delta_{2} \mathrm{p}_{2}\right)\right) \text { (since } \mathrm{B}_{1} \text { and } \mathrm{B}_{2} \text { are commutative) } \\
& =\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) *\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) \\
& =\mathrm{q} * \mathrm{p}
\end{aligned}
$$

$B_{1} \times B_{2}$ is also a commutative finite binary automaton.
Proposition 3.4.4: Let $\mathrm{B}_{1}=\left(\mathrm{Q}_{1}, \Delta_{1}, \Sigma_{1}, \delta_{1}, \mathrm{p}_{0}, \mathrm{~F}_{1}\right)$ and $\mathrm{B}_{2}=\left(\mathrm{Q}_{2}, \Delta_{2}, \Sigma_{2}, \delta_{2}, \mathrm{q}_{0}, \mathrm{~F}_{2}\right)$ be any two AC Finite Binary Automatons. Then $B_{1} \times B_{2}$ is also an $A C$ finite binary automaton.

Proof: It is clear from Propositions 3.4.1, 3.4.2, 3.4.3
Proposition 3.4.5 : Let $\mathrm{B}=\left(\mathrm{Q}, \Delta_{1}, \Sigma, \delta, \mathrm{p}_{0}, \mathrm{~F}\right)$ be an AC Finite Binary Automaton. Then $\delta((\mathrm{a} * \mathrm{~b}), \mathrm{n})=\delta(\mathrm{a}, \mathrm{n})$ * $\delta(\mathrm{b}, \mathrm{n})$, for any $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$ and $\mathrm{n} \in \Sigma$.

Proof: Let $\mathrm{B}=\left(\mathrm{Q},{ }^{*}, \Sigma, \delta, \mathrm{p}_{0}, \mathrm{~F}\right)$ be an AC Finite Binary Automaton.
Let $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$ and let $\mathrm{n} \in \Sigma$.

$$
\begin{aligned}
\delta((a * b), n) & =(a * b)^{n} \\
& =(a * b) *(a * b) * \ldots \ldots *(a * b) \\
& =a^{n} * b^{n} \quad(\text { since } * \text { is associate and commutative) } \\
& =\delta(a, n) * \delta(b, n)
\end{aligned}
$$

IV. Conclusion

Automata theory is a developing area which helps the computer and electrical engineering. Finite binary automata is also useful in these fields. Researcher can develop these ideas and produce good results.

References

[1]. S.Shanmugavadivoo And Dr. M.Kamaraj, "Finite Binary Automata" "International Journal Of Mathematical Archive", 7(4),2016, Pages 217-223.
[2]. John E. Hopcroft, Jeffery D.Ullman, Introduction To Automata Theory, Languages, And Computation, Narosa Publising House,
[3]. Zvi Kohavi, Switching And Finite Automata Theory, Tata Mcgraw-Hill Publising Co. Lid.
[4]. John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London,1967.
[5]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.

[^0]
[^0]: S.Shanmugavadivoo. " Ac Finite Binary Automaton." IOSR Journal of Mathematics (IOSR-JM) 14.1 (2018): pp 19-21.

