AC Finite Binary Automata

S.Shanmugavadivoo¹, Dr.K.Muthukumaran²

¹ Assistant Professor / Department Of Mathematics/ Madurai Kamaraj University College, Aundipatti, Theni Dt,, Tamil Nadu, India.
²Associate Professor / Ramanujan Research Center in Mathematics, / Saraswathi Narayanan College, Perungudi, Madurai/Tamil Nadu, India-625022,
Correct on ding Authors 5. Sharawaga dinga

Corresponding Author: S.Shanmugavadivoo

Abstract: Associative Finite Binary Automaton, Commutative Finite Binary Automaton, AC Finite Binary Automaton have been introduced. Cross Product of Finite Binary Automatons has been defined. If $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ are any two Finite Binary Automatons, then $B_1 \times B_2$ is also a finite binary automaton. If $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ are any two Finite binary automatons, then $B_1 \times B_2$ is also an associative finite binary automaton. If $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ are any two commutative finite binary Automatons, then $B_1 \times B_2$ is also an associative finite Binary Automatons, then $B_1 \times B_2$ is also a finite binary automaton. If $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ are any two commutative Finite Binary Automatons, then $B_1 \times B_2$ is also a finite binary Automatons, then $B_1 \times B_2$ is also an ASSOCIATIVE Finite Binary Automatons, then $B_1 \times B_2$ is also a finite binary Automatons, then $B_1 \times B_2$ is also an ASSOCIATIVE Finite Binary Automatons, then $B_1 \times B_2$ is also a commutative finite binary Automatons, then $B_1 \times B_2$ is also a commutative finite binary Automatons, then $B_1 \times B_2$ is also an AC commutative finite binary automaton.

Keywords: Finite Binary Automaton, Associative Finite Binary Automaton, Commutative Finite Binary Automaton, AC Finite Binary Automaton

Date of Submission: 15-02-2018	Date of acceptance: 01-03-2018

I. Introduction

The theory of Automata plays an important role in many fields. It has become a part of computer science. It is very useful in electrical engineering. It provides useful techniques in a wide variety of applications and helps to develop a way of thinking.

II. Finite Automaton

2.1 Finite Automaton: A Finite Automaton is a 5-tuple (Q, Σ , δ , q_0 , F), where Q is a finite set of states, Σ is a finite set of inputs, q_0 in Q is the initial state, F Q is the set of final states and δ is the transition function mapping Q× Σ to Q.

If Σ^* is the set of strings of inputs, then the transition function δ is extended as follows : For $w \in \Sigma^*$ and $a \in \Sigma$, $\delta': Q \times \Sigma^* \to Q$ is defined by $\delta'(q, wa) = \delta(\delta'(q, w), a)$.

If no confusion arises δ' can be replaced by δ .

III. Finite Binary Automaton

3.1 Finite Binary Automaton: A Finite Binary Automaton B is a 6-tuple (Q, *, Σ , δ , q_0 , F), where Q is a finite set of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q_0 in Q is the initial state and F⊆Q is the set of final states and δ is the transition function mapping from Q× Σ to Q defined by $\delta(q,n) = q^n$. If Σ^* is the set of strings of inputs, then the transition function δ is extended as follows : For m $\epsilon \Sigma^*$ and n $\epsilon \Sigma$, $\delta': Q \times \Sigma^* \rightarrow Q$ is defined by $\delta'(q,m) = \delta(\delta'(q,m),n)$.

If no confusion arises δ ' can be replaced by δ .

- **3.2** Associative Finite Binary Automaton: A Finite Binary Automaton $B = (Q, *, \Sigma, \delta, q_0, F)$ is said to be an associative finite binary automaton if p * (q * r) = (p * q) * r, for all p,q,r in Q.
- **3.3 Commutative Finite Binary Automaton:** A Finite Binary Automaton $B = (Q, *, \Sigma, \delta, q_0, F)$ is said to be a commutative finite binary automaton if p * q = q * p, for all p,q in Q.

- **3.3** AC Finite Binary Automaton: A Finite Binary Automaton $B = (Q, *, \Sigma, \delta, q_0, F)$ is said to be an AC Finite Binary Automaton if it is both associative and commutative
- **3.4** Cross Product of Finite Binary Automatons: Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two Finite Binary Automatons. Then we define $B_1 \times B_2 = (Q, *, \Sigma, \delta, r_0, F)$, where $Q = Q_1 \times Q_2, *$ is a mapping from $Q \times Q$ to Q defined by for $p, q \in Q = Q_1 \times Q_2$, where $p=(p_1,p_2), q=(q_1,q_2)$, $p * q = (p_1 \Delta_1 q_1, p_2 \Delta_2 q_2)$ $\Sigma = \Sigma_1 \times \Sigma_2, r_0 = p_0 \times q_0$ in Q is the initial state and $F = F_1 \times F_2 \subseteq Q$ is the set of final states and δ is the transition function mapping from $Q \times \Sigma$ to Q defined by $\delta((p,q_1),n) = (p^n,q^n)$.

Proposition 3.4.1 : If $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ are any two Finite Binary Automatons, then $B_1 \times B_2$ is also a finite binary automaton.

Proof: Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two Finite Binary Automatons.

Consider B₁×B₂

Then by definition $B_1 \times B_2 = (Q, *, \Sigma, \delta, r_0, F)$,

where $Q = Q_1 \times Q_2$,

* is a mapping from Q×Q to Q defined by for p,q \in Q = Q₁×Q₂, where p=(p₁,p₂), q=(q₁,q₂),

 $p * q = (p_1 \Delta_1 q_1, p_2 \Delta_2 q_2)$

$$\Sigma = \Sigma_1 \times \Sigma_2,$$

 $r_0 = p_o \times q_o$ in Q is the initial state

 $F = F_1 \times F_2 \subseteq Q$ is the set of final states

δ is the transition function mapping from $Q \times \Sigma$ to Q defined by $\delta((p,q_i),n) = (p^n,q^n)$.

Therefore, $B_1 \times B_2$ is also a finite binary automaton.

Proposition 3.4.2: Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two Associative Finite Binary Automatons. Then $B_1 \times B_2$ is also an associative finite binary automaton.

Proof: Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two Associative Finite Binary Automatons.

Consider $B_1 \times B_2$

By the Proposition 3.4.1 $B_1 \times B_2$ is also a finite binary automaton.

Let p,q,r $\in Q = Q_1 \times Q_2$, where p=(p_1,p_2), q=(q_1,q_2) r=(r_1,r_2)

$$p * (q * r) = (p_1, p_2) * ((q_1, q_2) * (r_1, r_2))$$

= (p_1, p_2) * (q_1 \Delta_1 r_1, q_2 \Delta_2 r_2)
= (p_1 \Delta_1 (q_1 \Delta_1 r_1), p_2 \Delta_2 (q_2 \Delta_2 r_2))
= ((p_1 \Delta_1 q_1) \Delta_1 r_1, (p_2 \Delta_2 q_2) \Delta_2 r_2)
= ((p_1 \Delta_1 q_1), (p_2 \Delta_2 q_2)) * (r_1, r_2)
= ((p_1, p_2) * (q_1, q_2)) * (r_1, r_2)
= (p * q) * r

Hence $B_1 \times B_2$ is an associative finite binary automaton.

Proposition 3.4.3 : Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two commutative Finite Binary Automatons. Then $B_1 \times B_2$ is also a commutative finite binary automaton.

Proof: Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two Commutative Finite Binary Automatons.

Consider $B_1 \times B_2$

Let $p,q \in Q = Q_1 \times Q_2$, where $p=(p_1,p_2), q=(q_1,q_2)$

 $p * q = (p_1, p_2) * (q_1, q_2)$ = ((p_1 \Delta_1 q_1), (p_2 \Delta_2 q_2)) = ((q_1 \Delta_1 p_1), (q_2 \Delta_2 p_2)) (since B_1 and B_2 are commutative) = (q_1, q_2) * (p_1, p_2) = q * p

 $B_1 \times B_2$ is also a commutative finite binary automaton.

Proposition 3.4.4 : Let $B_1 = (Q_1, \Delta_1, \Sigma_1, \delta_1, p_0, F_1)$ and $B_2 = (Q_2, \Delta_2, \Sigma_2, \delta_2, q_0, F_2)$ be any two AC Finite Binary Automatons. Then $B_1 \times B_2$ is also an AC finite binary automaton.

Proof: It is clear from Propositions 3.4.1, 3.4.2, 3.4.3

Proposition 3.4.5: Let $B = (Q, \Delta_1, \Sigma, \delta, p_0, F)$ be an AC Finite Binary Automaton. Then $\delta((a * b), n) = \delta(a, n) * \delta(b, n)$, for any $a, b \in Q$ and $n \in \Sigma$.

Proof: Let $B = (Q, *, \Sigma, \delta, p_0, F)$ be an AC Finite Binary Automaton.

Let a , b \in Q and let n $\in \Sigma$.

 $\delta((a * b), n) = (a * b)^n$

 $= (a * b) * (a * b) * \dots * (a * b)$

(n times)

 $= a^n * b^n$ (since * is associate and commutative)

 $= \delta(a, n) * \delta(b, n)$

IV. Conclusion

Automata theory is a developing area which helps the computer and electrical engineering. Finite binary automata is also useful in these fields. Researcher can develop these ideas and produce good results.

References

- S.Shanmugavadivoo And Dr. M.Kamaraj, "Finite Binary Automata" "International Journal Of Mathematical Archive", 7(4),2016, Pages 217-223.
- [2]. John E. Hopcroft , Jeffery D.Ullman, Introduction To Automata Theory, Languages, And Computation, Narosa Publising House,.
- [3]. Zvi Kohavi, Switching And Finite Automata Theory, Tata Mcgraw-Hill Publising Co. Lid.

[5]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.

S.Shanmugavadivoo. " Ac Finite Binary Automaton." IOSR Journal of Mathematics (IOSR-JM) 14.1 (2018): pp 19-21.

^{[4].} John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London, 1967.