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Abstract: Constructing an estimator for functional estimation is one of the problems in statistical inference. In 

this paper, the problem of constructing an estimator for a studentized sum is considered in the nonparametric 

set-up. In this set-up, data are used to infer to an unknown quantity while making as few assumptions as 

possible.  This non-smooth functional lack some degree of properties traditionally relied upon in estimation. 

Smooth functionals converge at the rate of 𝑛−1
2 while non-smooth functionals converge at the rate slower than 

𝑛−1
2 . This highlights the reason why standard techniques fail to give sharp results. A clear and accurate 

approximation is obtained by using an approximation that admits cumulant generating function; saddle point 

approximation. An optimal estimator is obtained using the MiniMax criterion where the lower and upper 

bounds are constructed. While working in the context of MiniMax estimation, the lower bounds are most 

important. The MiniMax lower bound is obtained by applying the general lower bound technique based on 

testing two composite hypotheses. The quality of an estimator is evaluated with the MiniMax risk. Best 

polynomial approximation of an absolute value function and Hermite polynomials are used to construct an 

optimal estimator when the means are bounded by a given value $M>0$.  
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I. Introduction 
Statistical inference is one of the most important challenges in performing nonparametric statistics. 

Various nonparametric statistics have been proposed and discussed over the course for many years. However, 

finding the exact critical test statistic value for small sample sizes is the most challenging testing problem. It is 

also difficult to find the exact critical value when sample sizes are moderately large. In such circumstances, the 

exact critical value is estimated with an approximation method. Hence, approximation for evaluating the density 

of the test statistic remains one of the most important topics in statistics. 

In modern statistical analysis, many quantities of interest are either non-smooth functionals of the 

observed data or original generative distribution, or both. In this paper, non-smooth functionals are considered; 

however, there are few results on the problem of estimating non-smooth functionals. The problem of estimating 

the 𝐿1 norm of 𝑓 is studied in [1]. In [11], some functional estimation problems in the image model were 

considered. [2] focused on estimating 𝐿𝑟  norm ||𝑓||∞   where 𝑟 ≥ 1. The case of  𝑟 = ∞ corresponds to 

estimating the maximum of  𝑓. 

Estimating smooth functionals involves estimating functionals that are differentiable and have 

continuous derivatives. More specifically, this is first-order smoothness. Second-order smoothness means that 

the second-derivatives exist and are continuous, while infinite smoothness refers to continuous derivatives of all 

orders (Rockafellar et al, 1994). Smoothness is understood as differentiability of 𝐹 in 𝐿2 norm. The 𝐿2 norm is 

an example of an analytic distance induced by an inner product. When smooth functionals are estimated, their 

convergence rate is 𝑛−1
2  [2]. Nonparametric estimates converge at a rate slower than 𝑛−1

2 . 

The disparity between parameter, 𝜃 and its estimator 𝜃  can be specified by a real valued loss function 

𝐿(𝜃, 𝜃 ) which quantifies the amount by which the prediction deviates from the actual values. The "optimal" 

estimate, 𝑝( 𝜃 ) is chosen so as to minimize the expected loss 𝐸[𝐿(𝜃, 𝑝)]. The error is measured on the function 

space by using a norm while on the vector space,𝑉 a norm is a mapping associated to any 𝑓 ∈ 𝑉. A norm is 

denoted ||𝑓|| and satisfies the homogeneity condition, ||𝑐𝑓|| = |𝑐|||𝑓|| where𝑐 ∈ ℝ, and 𝑓 ∈ 𝑉, the triangle 

inequality ||𝑓 + 𝑔|| ≤ ||𝑓|| + ||𝑔||, and which is strictly positive for all non-zero 𝑓 

The value of a norm of a function may vary based on the function and the choice of the norm. The 

choice of the norm also has a significant impact on the solution of the approximation problem. A loss function 

that is globally continuous and differentiable is desired in optimization algorithms. The two commonly used loss 

functions are the squared loss 𝐿 𝑎 = 𝑎2 and the absolute loss 𝐿 𝑎 = |𝑎|. The absolute loss function is not 

differentiable at 𝑎 = 0 whereas the square loss function has the tendency to be dominated by outliers.  
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However, finding the best estimate which minimizes the risk function is not easy since the risk depends 

on unknown parameter. Therefore, it is important to find an additional criteria for finding an optimal estimator; 

the MiniMax criterion. MiniMax estimators are estimators whose maximal risk is minimal among all estimators 

[3] and [6] and perform best in the "worst" possible case allowed in the problem. The MiniMax Risk is used as a 

benchmark for evaluating the performance of any estimation method [4].    

An effective approach to consider is to use the near MiniMax approximation. MiniMax polynomial 

approximation is very close to Chebyshev polynomial approximation. Chebyshev polynomial approximation 

exists and is unique when the function is continuous on the interval [𝑎, 𝑏]. In order to improve the accuracy of 

the testing procedure, the saddle point approximation is considered since it has relative error. Saddle point 

approximation is an important tool in asymptotic analysis and statistical analysis. 

The saddle point approximation can be obtained for any statistic that admits a cumulant generating 

function, (CGF). Cumulants are obtained by taking derivatives of the log moment generating function and 

evaluating at 𝑥 = 0. It can be applied in finance and insurance, Physics and Biology. The saddle point literature 

focus on the approximation of densities and tail probabilities [5] and [6] and provide accurate approximations of 

the distribution of some statistic even in small samples. 

 

II. Chebyshev And Hermite Polynomials 
Chebyshev and Hermite polynomials are orthogonal. A sequence of orthogonal polynomials can be 

defined recursively and used to improve control of the interpolation error on the interpolation interval [15]. The 

orthogonal polynomials also have the property of bounded variation and their local maxima and minima on 

[−1,1] are exactly equal to 1 and -1 respectively regardless of the order of the polynomial. 

Orthogonality properties are good for polynomial basis. The Chebyshev polynomials and Hermite 

polynomials are used to make the coefficients uncorrelated and minimize the sensitivity of calculations of 

round-off error. The Hermite polynomials are uncorrelated when  𝑋 is standard normal on(−∞, ∞). They also 

agree with function values and their derivatives at the node points.  

However, the Chebyshev polynomials are not easy to compute. A more effective approach to consider 

is to use a near MiniMax approximation. MiniMax polynomial approximation is very close to Chebyshev 

polynomial approximation. This polynomial approximation exist and is unique when the function 𝑓(𝑥) is 

continuous on an interval [𝑎, 𝑏]. This is stated and proofed in the Weierstrass Approximation Theorem.  

 

The Hermite polynomials form an orthogonal basis of the Hilbert space of functions satisfying:  

                                                                         𝑓 𝑥  2𝜔 𝑥 𝑑𝑥 < ∞
∞

−∞
                                                                (1) 

in which the inner product is given by the integral including the Gaussian weight function 𝜔(𝑥). Suppose 𝜙 is 

the density function of the standard normal variable, then the Hermite polynomials 𝐻𝑘(𝑥) with respect to 𝜙 for 

positive integers 𝑘 are defined by the equation: 

  

                                                                     
𝑑𝑘

𝑑𝑥
𝜙 𝑥 = −1𝑘𝐻𝑘(𝑦)𝜙 𝑥                                                                (2) 

Thus we can obtain 𝐻1 𝑥 = 𝑥, 𝐻2 𝑥 = 𝑥2 − 1, 𝐻3 𝑥 = 𝑥3 − 3𝑥 and so on. By differentiating (2) we obtain: 

                                                                     
𝑑

𝑑𝑥
 𝐻𝑘(𝑥) = 𝐻𝑘+1 𝑥 𝜙(𝑥)                                                              (3) 

 

III. Saddle point Approximation 
As earlier noted, the commonly used loss functions are the squared error loss and the absolute error 

loss function. When the error is absolute, the error holds in the tails as the modes of the density. Therefore, an 

approximation whose error gets small with the density in the tails of the distribution is required. A clear and 

accurate approximation can be obtained by using saddle point approximation. These techniques provide accurate 

approximations of the distribution of some statistic even in small samples.  

Saddle point approximation can be obtained for any statistic that admits a cumulant generating 

function.  Saddle point approximation uses relative error which gets small with the density in the tails of the 

distribution. When the underlying distribution is unknown and the empirical distribution is used, the empirical 

saddle point approximation results in a relative error of order 𝑁−1
2 . The relative error results in an 

improvement over the absolute error in the tails of the distribution. This is important in the calculation of p-

values. For instance, if 𝑓 𝑥 denotes the density being approximated, the asymptotic approximation can be 

written: 

                                                                   𝑓 𝐴 𝑥 = 𝑓 𝑥 + 𝒪(𝑁−1
2 )                                                                  (4) 

This means  𝑓 𝐴 𝑥 − 𝑓(𝑥)/(𝑁−1
2 ) is bounded as 𝑥 approaches some limiting value. The empirical saddle point 

approximation can be written: 
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                                                                  𝑓 𝑆 𝑥 = 𝑓(𝑥)  1 + 𝒪(𝑁−1
2 )                                                              (5) 

 

The Saddle point density replaces the CLT in the traditional general method of moment’s distribution 

theory. The CLT uses information about the location and convexity of the general method of moment’s 

objective function at the global minimum. The saddle point approximation uses information about the shape of 

the objective function at each point in the parameter space. 

 

The CLT is usually presented in terms of estimating the mean of a distribution. It shows that the sample mean 

𝑋 =
1

𝑛
 𝑥𝑖

𝑛
𝑖=1  has a distribution that is approximately𝑁(𝜇,

𝛿2

𝑛
). The function 𝑀𝑋 𝑡 = 𝑒𝑡𝑋  is called the moment 

generating function of 𝑋. The MGF can be used to prove how fast the distribution converges to normality. It is 

also possible to make adjustments to increase the accuracy of the approximations. Edgeworth expansions are 

one method of using information about higher order moments to increase accuracy. 

 

MGF uniquely identify a particular distribution. One problem with the MGFs is that they do not always exist. 

This is solved by using the characteristic function which is the complex extension of the MGF and is defined 

𝜙𝑋 𝑡 = 𝐸(𝑒𝑖𝑋𝑡 ), where 𝑖2 = −1. The characteristic function uniquely identify distributions and can be used to 

show limiting results. 

 

As seen earlier, the CLT is built on a two-term Taylor series expansion, i.e., a linear approximation of 

the characteristic function about the mean. A higher order expansion of Taylor series about the mean is used to 

obtain additional precision. This results in Edgeworth expansion. The Edgeworth expansion gives a significantly 

better approximation at the mean of a distribution. However, the quality of the approximation can deteriorate 

significantly for the values away from the mean. The saddle point exploits these characteristics of the 

Edgeworth expansion in order to get an improved approximation. 

The improved approximation of the Edgeworth expansion only occurs at the mean of the distribution. 

In order to obtain such an improvement at an arbitrary value in the parameter space, the original distribution is 

transformed to a conjugate distribution. A specific conjugate distribution is selected so that its mean is 

transformed back to the original distribution at the value of interest. To develop the estimator, the following 

important mathematical concepts are considered; The normal Means, Hilbert sample space, Polynomial 

approximation and MiniMax lower bounds and saddle point approximation. 

 

3.1 Normal Means Model 

The problem of density estimation can be connected to the Normal means problem. The normal means problem 

unifies some NP problems. Let 𝑍𝑛 = (𝑍1, ⋯ , 𝑍𝑛)  where:   

                                            𝑍𝑖 = 𝜃𝑖 + 𝛿𝑛𝜖𝑖 , 𝑖 = 1,2, … , 𝑛                                                                                     (6) 

𝜖𝑖 , … , 𝜖𝑛  are independent, 𝑁(0,1) random variables, 𝑍𝑖 = 𝑛−1  𝑋𝑖𝑗
𝑛
𝑗=1  

𝜃𝑛 = (𝜃1, ⋯ , 𝜃𝑛 ∈ ℝ𝑛  

is a vector of unknown parameters and 𝛿𝑛  is assumed known. The model appears to be parametric but the 

number of parameters increases at the same rate as the number of data points. The model has all the 

complexities of NP problem. An infinite-dimensional version of  (3) is given as:  

  

                                              𝑍𝑖 = 𝜃𝑖 + 𝛿𝑛  𝜖𝑖 , 𝑖 = 1,2, ⋯                                                                                       (7) 

 

where now the unknown parameter is 𝜃 = 𝜃1, 𝜃2, … 
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Figure 1: The normal means 𝑋𝑖𝑗 = 𝜃𝑖 + 𝑁(0, 𝛿2) and 𝑍𝑖 = 𝑛−1  𝑋𝑖𝑗 = 𝜃𝑖 + 𝛿𝑛𝜖𝑖
𝑛
𝑗=1  where 𝛿𝑛 =

𝛿

 𝑛
 . 
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Estimating the parameters 𝜃1 ⋯𝜃𝑛 from the 𝑛column means 𝑍1 ⋯𝑍𝑛  leads to the model: 𝑍𝑖 = 𝜃𝑖 + 𝛿𝑛𝜖𝑖  with 

𝛿𝑛 =
𝛿

 𝑛
. 

Given an estimator the squared error loss: 

                                                 𝐿(𝜃 𝑛 , 𝜃𝑛) =  (𝜃 𝑖 − 𝜃𝑖)
2 = ||𝜃 𝑛 − 𝜃𝑛 ||2𝑛

𝑖=1                                                        (8) 

is used with risk function: 

                                     𝑅 𝜃 𝑛 , 𝜃𝑛 = 𝔼𝜃 (𝐿(𝜃 𝑛 , 𝜃𝑛)) =  𝔼𝜃(𝜃 𝑖 − 𝜃𝑖)
2𝑛

𝑖=1                                                           (9) 

One of the choices for an estimator of 𝜃𝑛  is  𝜃 𝑛 = 𝑍𝑛 . This estimator is the maximum likelihood estimator, the 

minimum variance unbiased estimator and the Bayes estimator under a flat prior. However, 𝜃 𝑛  is a poor 

estimator as its risk is: 𝑅 𝑍𝑛 , 𝜃𝑛 =  𝔼𝜃 (𝑍𝑖 − 𝜃𝑖)
2 =𝑛

𝑖=1  𝛿𝑛
2𝑛

𝑖=1 = 𝑛𝛿𝑛
2 

There are other estimators with significantly smaller risks. To improve this estimator, the normal means problem 

relation to NP regression and density estimation is important. In order to do this, a review on the Hilbert 

function space is required. 

 

3.2 Hilbert Space 

Nonparametric estimation is by nature infinite-dimensional. When the form of the functions in the true 

model are unknown, the most efficient use of data is to allow the estimated functions to depend on the size of 

the sample tending to infinity with the sample size [7]. In this research, the Hilbert sample space is a natural 

choice because it is the closest analog to the Euclidean space, ℝ𝑛  in infinite dimension.  

The Hilbert space is a complete inner product space denoted by(𝐿 . , .  ) and abbreviated by 𝐿2 [9].  The 

𝐿2  denotes the set of square integrable functions, but does not specify the selection of metric, norm or inner 

product. The set, together with the specific inner product  . , .   specify the inner product space. The square 

integrable functions form a complete metric space under the metric induced by the inner product. A metric 

allows a discussion on convergence of sequences. The importance of completeness is to allow Cauchy 

sequences converge, and find a point to which they converge within space. 

In vector spaces, elements can be added and multiplied by scalars with rules of ℝ𝑛and ℂ𝑛 . Vector 

spaces with inner product structure allow length and angle to be measured. This inner product in an abstract 

space therefore opens the door to geometric arguments that are remarkably similar to those used in Euclidean 

space ℝ𝑛 . The normed vector space idea is away to forget that the function spaces being dealt with actually arise 

as functions, and treat them as elements of a vector space with a norm that gives the correct topology [9]. 

 

An inner product always generates a norm. And where there is a norm, there is a metric. A norm defined by the 

inner product  . , .    will define the following metric: 

                                                          𝑑 𝑥, 𝑦 =   𝑥 − 𝑦  =    𝑥 − 𝑦, 𝑥 − 𝑦  ⩝ 𝑥, 𝑦 ∈ 𝑋                                 (10) 

Inner product norms satisfy a number of properties that aren't enjoyed by all norms. For instance, a complex 

vector space 𝑉 is called an inner product space (or a pre-Hilbert space) if there is a mapping . , .  : 𝑉 × 𝑉 → ℂ, 

called an inner product that satisfies: 

 ∀𝑥, 𝑦, 𝑧 ∈  𝑉, ∀∝∈ ℂ 

1) (𝑥, 𝑥) ≥ 0 

2)  𝑥, 𝑥 = 0 ⟺ 𝑥 = 0 

3)  𝑥, 𝑦 + 𝑧 =  𝑥, 𝑦 + (𝑥, 𝑧) 

4) 𝑥, ∝ 𝑦 =∝  𝑥, 𝑦  

5)  𝑥, 𝑦 = (𝑦, 𝑥)∗ 
Hilbert spaces are easy to come by in practice. This research is concerned with only four: First, given a positive 

Riemann integrable weight function 𝜔(𝑥) defined on some interval[𝑎, 𝑏], the expression:   

                                                   𝑓, 𝑔 =  𝑓 𝑡 𝑔 𝑡 𝜔 𝑡 𝑑𝑡
𝑏

𝑎
                                                              (11) 

Defines an inner product on 𝐶[𝑎, 𝑏], the space of all continuous, real-valued functions 𝑓: [𝑎, 𝑏] → ℝ, with 

associated norm: 

                                                                  ||𝑓||2 =    𝑓 𝑡  2𝜔 𝑡 𝑑𝑡
𝑏

𝑎
 

1

2
                                                            (12) 

Secondly, the sequence space ℓ2, where 𝑥 = (𝑥1 , 𝑥2 , … ) ∈ ℓ2 implies that  𝑥𝑖
2 < ∞𝑛

𝑖=1  .For 𝑥, 𝑦 ∈ ℓ2, the inner 

product is defined by as: 

                                                                   𝑥, 𝑦 =  𝑥𝑖𝑦𝑖
∞
𝑖=1                                                                               (13) 

The ℓ2 is the only ℓ𝑝  space for which an inner product exists. 

 

Thirdly, the space of (real- or complex-valued) square-integrable 𝐿2[𝑎, 𝑏]$ where: 

 

                                                    ||𝑓||2 =  𝑓, 𝑓 =  |𝑓 𝑥 |2𝑑𝑥 < ∞
𝑏

𝑎
                                                (14) 
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The inner product in this space is given by:  

                                                     𝑓, 𝑔 =  𝑓(𝑥)𝑔(𝑥)      𝑑𝑥 < ∞
𝑏

𝑎
                                                          (15) 

In this case of sequence spaces, 𝐿2 is the only 𝐿𝑝  space for which an inner product exists 

 

Lastly, a Banach space is also a Hilbert space since a Hilbert space is complete with respect to the induced 

metric [12]. A Banach space is a normed space with associated metric 𝑑 𝑥, 𝑦 = ||𝑥 − 𝑦|| such that every 

Cauchy sequence in 𝐵 has a limit in 𝐵 [13]. The difference between Banach space and Hilbert space is the 

source of the norm. In the Hilbert space case the norm is defined via the inner product, whereas in the Banach 

space case the norm is defined directly. Thus a Hilbert space is a Banach space, but the inverse is not true, 

because in some cases the norm cannot be related with an inner product [13] and [14]. 

 

A Banach space,  |𝑓(𝑥)|2𝑑𝑥 < ∞
∞

−∞
, which is a space of square integrable functions gives the Hilbert 

space further property of inner product under the metric induced by the norm which in turn is induced by the 

inner product. A part from the classical Euclidean spaces and spaces of square-integrable functions, other 

examples of Hilbert spaces include spaces of sequences, Sobolev spaces consisting of generalized functions and 

Hardy spaces of holomorphic functions. 

The coordinates of an element of the Hilbert space can be specified uniquely with respect to a set of 

coordinate axes (an orthonormal basis), which is in analogy with the Cartesian coordinates in the plane. A 

sequence of functions 𝜙1 , 𝜙2, … is called orthonormal if ||𝜙𝑗 || = 1 for all 𝑗 (normalized) and 

 𝜙𝑖 𝑥 𝜙𝑗  𝑥 𝑑𝑥 = 0
𝑏

𝑎
 for 𝑖 ≠ 𝑗 (orthogonal). This sequence is complete if the only function that is orthogonal 

to each 𝜙𝑗  is the zero function. A complete, orthogonal set of functions forms a basis, meaning that if 𝑓 ∈

𝐿2(𝑎, 𝑏) then 𝑓 can be expanded in the basis. An example of an orthonormal basis is the Chebyshev and 

Hermite polynomials defined on (−1,1). These polynomials are discussed in the next section. 

We observe that [8] pointed out that there is a limitation for the use of Hilbert space on the real line. 

The standard Hilbert space such as 𝐿2(ℝ) requires that the unknown function approaches zero at infinity. This 

makes it unreasonable to be used on some models like the economic model, since it excludes widely used 

functions such as constant increasing and cyclical functions on a line. To overcome this, weighted Hilbert 

spaces are used, since they impose weaker limiting requirements at infinity. 

The Hilbert space is restricted to bounded sample spaces in nonparametric estimation. [8] considered 

the space 𝐿2[𝑎, 𝑏] of functions defined on the bounded segment [𝑎, 𝑏] ∈ ℝ, where [𝑎, 𝑏] represents the sample 

space. It is pointed out that continuity is the only assumption to be made for the unknown function. Every 

continuous unknown function on the segment [𝑎, 𝑏] is bounded and belongs to the Hilbert space 𝐿2[𝑎, 𝑏]. 
The general polynomial 𝑃(𝑥) can be written in terms of any sequence of basic polynomials of increasing degree. 

It is written in terms of the monomials 𝑥 𝑗  which are the natural form polynomials. Monomials make all 

polynomials look very similar when plotted; that is they are correlated (G.K. Smyth, 1998). This shows that, 

first, a small change in 𝑃(𝑥)  may arise from relatively large changes in the coefficients. Secondly, when there is 

a measurement or round-off error, the coefficients are not well determined. Therefore, monomials are not a good 

basis for the space of continuous functions because they are far from being orthogonal. 

 

IV. The Central Limit Theorem and the Characteristic Function 
The characteristic function of a probability measure $\mu$ on the line is defined for real 𝑡 by: 

𝜓 𝑥 =  𝑒𝑖𝑡𝑥𝜇 𝑑𝑥

∞

−∞

 

                                                                           =  cos 𝑡𝑥𝜇 𝑑𝑥 + 𝑖  sin 𝑡𝑥𝜇 (𝑑𝑥)
∞

−∞

∞

−∞
                  (16) 

A random variable 𝑋 with the distribution 𝜇 has the characteristic function: 

                                                                   𝜓 𝑥 = 𝔼 𝑒𝑖𝑡𝑥  =  𝑒𝑖𝑡𝑥𝜇 𝑑𝑥
∞

−∞
                                        (17) 

The characteristic function is thus defined as the moment generating function but with the real argument 𝑠 

replaced by 𝑖𝑡. As seen earlier, it has the advantage that it always exists because 𝑒𝑖𝑡𝑥  is bounded. The 

characteristic function in nonprobabilistic contexts is called the Fourier transform. The knowledge of the Fourier 

transform is used in the Central Limit Theorem to send smooth functions to bounded functions and bounded 

functions to smooth functions. 

 

For instance, if 𝑔: ℝ → ℝ, the Fourier transform of 𝑔 is defined by: 

                                                                   𝑔  𝑦 =  𝑒𝑖𝑥𝑦 𝑔 𝑥 𝑑𝑥
∞

−∞
                                                    (18) 

where 𝑔 is a Schwartz function, it is 𝐶∞  and all of its derivatives decay at ±∞ faster than every polynomial. If 𝑔 

is Schwartz, then 𝑔  is Schwartz. The inversion formula: 
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                                                                  𝑔 𝑥 =
1

2𝜋
 𝑒−𝑖𝑥𝑦 𝑔 

∞

−∞
 𝑦 𝑑𝑦                                              (19) 

 Hold for Schwartz functions. A straightforward computation shows that: 

                                                                  𝑒
−𝑥2

2 =  2𝜋𝑒
−𝑦2

2
 

                                                           (20) 

Suppose 𝑋~𝐺(𝑥) and 𝜑𝑥(𝑡) denotes the characteristic function of 𝑋. If   𝜑𝑥 𝑡  𝑑𝑡 < ∞
∞

−∞
 then 𝑔 𝑥 =

𝐺 ′ 𝑥 exists and:  

                                                             𝑔 𝑥 =
1

2𝜋
 𝑒−𝑖𝑥𝑦 𝜑𝑥(𝑡)

∞

−∞
𝑑𝑡                                                  (21) 

 

This gives the inversion formula for characteristic functions. Also: 

 

 𝑓 𝑥 𝑔  𝑥 𝑑𝑥 =    𝑔(𝑦)𝑒−𝑖𝑥𝑦

∞

−∞

𝑑𝑦 

∞

−∞

∞

−∞

 

 

=  𝑔(𝑦)   𝑓(𝑥)𝑒−𝑖𝑥𝑦

∞

−∞

𝑑𝑥 𝑑𝑦

∞

−∞

 

 

                                                       =  𝑓 (𝑦)𝑔(𝑦)𝑑𝑦
∞

−∞
                                                                        (22) 

This is valid provided that the interchange of integrals can be justified; in particular, it holds for Schwartz 𝑓, 𝑔. 

 

If 𝑋~𝑁(0,1), then by completing the square in the exponential, the characteristic function for a standard normal 

distribution can be obtained: 

 

                                                 𝜙 𝑥 =  𝑒𝑖𝑡𝑥 1

 2𝜋
𝑒

−𝑥2

2 𝑑𝑥 = 𝑒
−𝑡2

2 
∞

−∞
                                              (23) 

Then for any positive integer 𝑘, we have: 

1

 2𝜋
 𝑒−𝑖𝑡𝑥 𝑒

−𝑡2

2 

∞

−∞

(𝑖𝑡)𝑘𝑑𝑡 =
−1𝑘

2𝜋
 𝑒−𝑖𝑡𝑥 𝑒

−𝑡2

2 𝑑𝑡

∞

−∞

 

                                                                                      = −1𝑘 𝑑𝑘

𝑑𝑥 𝑘 𝜙(𝑥) 

                                                                                      = 𝐻𝑥 𝑥 𝜙(𝑥)                                                  (24) 

 

where (24) follows from (21) since 𝑒
−𝑡2

2  𝑑𝑡 is the characteristic function for a standard normal distribution. 

 

V. The Proposed Model 
Suppose 𝐹 is a function to approximate 𝑇(𝜃) such that 𝐹: [𝑎, 𝑏] → ℝ and 𝑔(𝑥) is a polynomial 

approximation of 𝐹 with respect to the weight function 𝜔(𝑥). Let 𝑋1 , … , 𝑋𝑛  be independent normal random 

variables where 𝑋𝑖~𝑁 𝜃𝑖 , 1  from 𝐹(𝑥). Suppose 𝔼 𝑋1 = 0 and 𝑣𝑎𝑟 𝑋1 = 1; for otherwise, each 𝑋𝑖  is 

replaced by (𝑋𝑗 − 𝔼(𝑋1)/ 𝑣𝑎𝑟(𝑋1). Let also 𝛾 = 𝔼(𝑋𝑗
3) and  𝜏 = 𝔼(𝑋𝑗

4) and suppose 𝜏 < ∞. In this paper, the 

estimate of the distribution of the standardized sum:  

                                                            𝑆𝑛 =
1

 𝑛
 𝑋𝑗

𝑛
𝑗=1                                                                          (25) 

 is constructed.   

 

From the CLT, for every 𝑥, 𝑃(𝑆𝑛 ≤ 𝑥) → Φ(𝑥), where Φ(𝑥), denotes the standard normal distribution function. 

In this paper, a better approximation to 𝑃(𝑆𝑛 ≤ 𝑥 is constructed by the characteristic function of  𝑆𝑛 .  

 𝜑𝑆𝑛 𝑡 = 𝔼 𝑒𝑥𝑝  𝑖𝑡/ 𝑛  𝑋𝑗𝑗   = 𝜙𝑋(
𝑡

 𝑛
)𝑛   

Then the Taylor's expansion of 𝑒𝑥𝑝 𝑖𝑡𝑥/ 𝑛  is used: 

 As 𝑛 → ∞,  

𝜓
𝑋 

𝑡

 𝑛
 =𝔼 1+

𝑖𝑡𝑋

 𝑛
+

(𝑖𝑡 )2𝑋2

2𝑛
+

(𝑖𝑡 )3𝑋3

6𝑛 𝑛
+

(𝑖𝑡 )4𝑋4

24𝑛2  +ℴ 
1

𝑛2 
 

                                                            =  1 −
𝑡2

2𝑛
 +

(𝑖𝑡)3𝛾

6𝑛 𝑛
+

(𝑖𝑡)4𝜏

24𝑛2 + ℴ  
1

𝑛2                                           (26) 

where ℴ  
1

𝑛2  is the error in the Taylor's expansion and 𝑖 = −1. 

Raising this tetra nominal to the nth power most terms are ℴ  
1

𝑛
 : 
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   𝜓𝑋  
𝑡

 𝑛
  

𝑛

= 

 1 −
𝑡2

2𝑛
 
𝑛

+  1 −
𝑡2

2𝑛
 
𝑛−1

+  
(𝑖𝑡)3𝛾

6 𝑛
+

(𝑖𝑡)4𝜏

24𝑛
 +  1 −

𝑡2

2𝑛
 
𝑛−2  𝑛−1 (𝑖𝑡)6𝛾2

72𝑛2 + ℴ  
1

𝑛
                                (27) 

 

 

 

Using (27) and the binomial theorem equation for a fixed nonnegative integer 𝑘: 

   

                                  1 +
𝑎

𝑛
 
𝑛−𝑘

= 𝑒𝑎  1 −
𝑎 𝑎+𝑘 

2𝑛
 + ℴ  

1

𝑛
  as 𝑛 → ∞ 

𝜓𝑆𝑛
 𝑡 = 𝑒−

𝑡2

2  1 −
𝑡4

8𝑛
+

(𝑖𝑡)3𝛾

6 𝑛
+

(𝑖𝑡)4𝜏

24𝑛
+

(𝑖𝑡)6𝛾

72𝑛
 + ℴ  

1

𝑛
  

                                              = 𝑒−
𝑡2

2  1 +
(𝑖𝑡)3𝛾

6 𝑛
+

 𝑖𝑡 4(𝜏−3)

72𝑛
+

(𝑖𝑡)6𝛾2

72𝑛
 + ℴ  

1

𝑛
                                     (28) 

 

Combining equation (28) with (21) the density function below is obtained as an approximation to the 

distribution of 𝑆𝑛 : 

𝑔 𝑥 =

1

2𝜋
  𝑒−𝑖𝑡𝑥 𝑒

−𝑡2

2 +
∞

−∞

𝛾6𝑛−∞∞𝑒−𝑖𝑡𝑥𝑒−𝑡22(𝑖𝑡)3𝑑𝑡+𝛾−324𝑛−∞∞𝑒−𝑖𝑡𝑥𝑒−𝑡22(𝑖𝑡)4𝑑𝑡    
+𝛾272𝑛−∞∞𝑒−𝑖𝑡𝑥𝑒−𝑡22(𝑖𝑡)6𝑑𝑡                       (29) 
 

Putting (28) with (23) gives: 

                                𝑔(𝑥) = 𝜙(𝑥)  1 +
γH3(x)

6 𝑛
+

(𝜏−3)𝐻4(𝑥)

24𝑛
+

𝛾2𝐻6(𝑥)

72𝑛
                                                 (30)   

 

Using (3), the antiderivative of 𝑔(𝑥) equals: 

𝐺 𝑥 = Φ 𝑥 − 𝜙(𝑥)  
γH2(x)

6 𝑛
+

(𝜏 − 3)𝐻3(𝑥)

24𝑛
+

𝛾2𝐻5(𝑥)

72𝑛
  

                                           = Φ 𝑥 − 𝜙(𝑥)  
γ(x2−1)

6 𝑛
+

 𝜏−3 (𝑥3−3𝑥)

24𝑛
+

𝛾2(𝑥5−10𝑥3+15𝑥)

72𝑛
                       (31) 

 

 

The letter 𝜙 denotes the probability density function and the corresponding distribution function is denoted Φ. 

 

VI. Conclusion 
Our observation led us to the conclusion that estimating non-smooth functional exhibits some features 

that are significantly different from those in estimating smooth functional. Lack of these properties highlights 

the reason why standard techniques fail to give sharp results. Therefore, the best polynomial approximation and 

the Hermite polynomial are used in the derivation of lower bounds and construction of optimal estimators. 

Saddle point approximation is an important tool in asymptotic analysis and statistical analysis and it 

provides accurate approximation of the distribution even in small sample. This statistical procedure can be used 

on all types of data which are nominally, ordinal, interval and/or ratio scaled. It is also easy to apply the 

procedure on a small sample size, which would demand the distributions to be known precisely in order for 

parametric tests to be applied. Therefore, the procedure is used in many applications, for example, hierarchical 

clustering, data ranking, anomaly detection, detecting regions of brain activity, mapping environmental 

contamination, estimating contour levels in digital elevation mapping and identification of genes with 

significant expression levels in micro array analysis. It is quite useful in finding excess mass in tinned food 

stuff. 
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