The Convergence of the Approximated Derivative Function by Chebyshev Polynomials

Souad Abumaryam
(Mathematics, Science/ University Sirte, Libya)
Corresponding Author: Souad Abumaryam

Abstract

Let $f(x)$ be a differentiable function on the interval [-1, 1]. Finding an approximation of the derivative of the function through values of the function at points $\left\{x_{j}\right\}_{j=0}^{N}$ is a very interesting problem. It is also important for solving differential equation. In this paper, we study the error bound, in particular for first and second derivatives by Chebyshev polynomials. Moreover, a generalisation for error bound is found. Keywords: Chebyshev polynomials, Chebyshev interpolation, Convergence rate, Error function.

Date of Submission: 21-03-2018
Date of acceptance: 02-04-2018

I. Introduction

In many problems one of interested in finding the approximating the derivative of the function f debending on the value of the function f at x_{j}. One of the method is to consider $\left(p_{N}(f)\right)^{\prime}$ as an approximation to f^{\prime}. Let p_{N} be the Lagrange interpolation polynomial p_{N} for f which it may not converge to f in the sup-norm. We wish to find conditions such that $p_{N}^{\prime} \rightarrow f^{\prime}$.
The Chebyshev approximation method works best when the function is smooth, and particularly when $f(x)$ can be continued into the complex plane as a function $f(z)$ which is analytic in an open neighborhood of $[-1,1]$. In this case, the error
$E_{N}(x)=\max _{0 \leq j \leq N}\left|f^{\prime}\left(x_{j}\right)-p^{\prime}\left(x_{j}\right)\right|$,
decay at least exponentially fast as $N \rightarrow \infty$.
The Chebyshev polynomial of the first kind of degree N is defined as:
$T_{N}(x)=\cos \left(N \cos ^{-1} x\right)=\cos N \theta$,
(1.1)
where $\mathrm{x}=\cos \theta,-1 \leq \mathrm{x} \leq 1,0 \leq \theta \leq \pi$, and n is a non negative integer [1].
The Chebyshev polynomials $\mathrm{T}_{\mathrm{N}}(\mathrm{x})$ satisfy $\left|\mathrm{T}_{\mathrm{N}}(\mathrm{x})\right| \leq 1$.
This follows from the bound $-1 \leq \cos x \leq 1$, which leads to
$\left|\mathrm{T}_{\mathrm{N}+1}(\mathrm{x})-\mathrm{T}_{\mathrm{N}-1}(\mathrm{x})\right| \leq 2$.
The Chebyshev polynomial $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$ of degree $\mathrm{n} \geq 1$ has n zeros on the interval $[-1,1]$. The zeros x_{j} are given by: $x_{j}=\cos \left(\frac{(2 j-1) \pi}{2 n}\right), \quad \mathrm{j}=1, \ldots \mathrm{~N}$
Moreover, the extrema, or points $\widetilde{\boldsymbol{x}}_{\boldsymbol{j}}$ such that $T_{N}\left(\widetilde{\boldsymbol{x}}_{\boldsymbol{j}}\right)=(-1)^{j}$ are given by:
$\tilde{x}_{j}=\cos \left(\frac{j \pi}{N}\right), \mathrm{j}=1, \ldots \mathrm{~N}$
The Chebyshev polynomials of the first kind have a generating function of the form

$$
\sum_{\mathrm{N}=0}^{\infty} \mathrm{T}_{\mathrm{N}}(x) \cdot t^{N}=\frac{1-t x}{1-2 x t+t^{2}} ;|x|<1,|t|<1 \ldots \ldots . \quad(1-3)
$$

The Chebyshev polynomials of the second kind $U_{N}(x)$ is defined as

$$
U_{\mathrm{N}}(\cos \theta)=\frac{\sin ((N+1) \theta)}{\sin \theta}
$$

where $-1 \leq x \leq 1 \quad, 0 \leq \theta \leq \pi, x=\cos \theta$
and have a generating function of the form [1]

$$
\sum_{\mathrm{N}=0}^{\infty} \mathrm{U}_{\mathrm{N}}(x) t^{N}=\frac{1}{1-2 x t+t^{2}} \quad ;|x|<1, \quad|t|<1 \ldots \ldots . \quad(1-4)
$$

The Chebyshev polynomials have interesting properties that make them a very attractive tool to minimize the maximum error in uniform approximation.
The derivatives of the Chebyshev polynomials satisfy the following:
$\left|\frac{d}{d x} \mathrm{~T}_{\mathrm{N}}(x)\right| \leq N^{2}$.

This comes from the definition of $\mathrm{T}_{\mathrm{N}}(x)$ and $\frac{d}{d x} \mathrm{~T}_{\mathrm{N}}(x)=\frac{N \sin N \cos ^{-1} x}{\sqrt{1-x^{2}}}=\frac{N \sin N \theta}{\sin \theta}$.
We have $|\sin n \theta| \leq n|\sin \theta|$ and thus $\left|\frac{d}{d x} T_{N}(x)\right| \leq N^{2}$. For $x= \pm 1$, by L'Hopital's rule we get $\lim _{\theta \rightarrow 0}$ or $\pi \frac{N \sin N \theta}{\sin \theta}=N^{2}$. For second derivative, we have
$T_{N}^{\prime \prime}(x)=T_{N}^{\prime \prime}(\cos \theta)=\frac{N \sin N \theta \cos \theta-N^{2} \cos N \theta \sin \theta}{\sin ^{3} \theta}$.
Again by L'Hopital's rule, we get $\quad \frac{N^{3}-N}{3} \lim _{\theta \rightarrow 0 \text { or } \pi} \frac{\sin n \theta}{\sin \theta \cos \theta}=\frac{N\left(N^{3}-N\right)}{3} \lim _{\theta \rightarrow 0 \text { or } \pi} \frac{\cos N \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$.
Therefore
$\left|T_{N}^{\prime \prime}(x)\right| \leq \frac{N^{2}(N-1)(N+1)}{3}$.
The values of $\mathrm{T}_{\mathrm{N}}(x)$ and their derivatives at some points are of interest:
$\left|T_{N+1}^{\prime}(x)-\quad T_{N-1}^{\prime}(x)\right| \leq 4 N, \quad\left|T_{N+1}^{\prime \prime}(x)-\quad T_{N-1}^{\prime \prime}(x)\right| \leq \frac{4}{3} N\left(2 N^{2}+1\right) . \quad(1-7)$

In general
$T_{N}^{(r)}(x) \leq T_{N}^{(r)}(1)=\frac{N^{2}\left(N^{2}-1\right) \ldots \ldots\left(N^{2}-(r-1)^{2}\right)}{(2 r-1)!}$.

II. Convergence Rate

The convergence of Chebyshev series is determined by a property of the function $f(x)$. If the function f is smooth, then its Chebyshev expansion coefficients decrease rapidly. Two notions of smoothness were considered: an $r^{\text {th }}$ derivative with bounded variation, or analyticity in a neighborhood of $[-1,1]$.

Theorem2.1 [2,p.66] The truncation error when approximating a function $f(x)$ in terms of Chebyshev polynomials satisfies

$$
\left|f(x)-f_{n}(x)\right| \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right|
$$

If all a_{k} are rapidly decreasing, then the error is dominated by the leading term $a_{k+1} T_{k+1}$.
The coefficients a_{k} for $k>n+1$ are negligibly small, where the rest of the terms will be neglected if $a_{n+1} \neq$ 0 .

Theorem 2.2 [2, p.51] If $f, f^{\prime}, \ldots, f^{(r-1)}$ are absolutely continuous for $r \geq 0$ on $[-1,1]$, where the $r^{\text {th }}$ derivative $f^{(r)}$ has bounded variation $V=\left\|f{ }^{(r)}\right\|$, then the coefficients of the Chebyshev series satisfy the fallowing inequality
$\left|a_{k}\right| \leq \frac{2 V}{\pi n k(k-1) \ldots(k-r)} \quad, \quad \mathrm{k} \geq r+1$
for each $\mathrm{k} \geq \mathrm{r}+1$.
Theorem 2.3 [2, p.51] Let a function f be analytic on $[-1,1]$ and analytically continuable to the ellipse $E_{\rho}:=\left\{z \in \mathrm{C}: z=\rho\left(e^{i \theta}+e^{-i \theta}\right) / 2, \theta \in[0,2 \pi]\right\}$ in which $|f(z)| \leq M$ for some M. For all $k \geq 0$ the Chebyshev coefficients a_{k} off exponentially decay as $\quad k \rightarrow \infty$ and satisfying
$\left|a_{k}\right| \leq 2 M \rho^{-k}, \quad \rho>1$.
(2.2)

Theorem 2.4 [2, p.53] If f is absolutely continuous for $r \geq 0$ on $[-1,1]$, where the $r^{\text {th }}$ derivative $f^{(r)}$ has bounded variation $V=\left\|f^{(r)}\right\|$, then the Chebyshev truncation satisfies
$\left\|f-f_{N}\right\|_{\infty} \leq \frac{2 V}{\pi r(N-r)^{r}}$
Theorem 2.5 [2, p.58] Let a function f be analytic on $[-1,1]$ and analytically continuable to the open ellipse E_{ρ}, in which $|f| \leq M$ for some M. Then the Chebyshev truncation error satisfies
$\left\|f-f_{N}\right\|_{\infty} \leq \frac{2 M \rho^{-N}}{\rho-1}$

III. Chebyshev Interpolation

Given a function f that is interpolated at $n+1$ points in term of Chebyshev polynomials and that satisfies the interpolation condition $p_{n}\left(x_{j}\right)=f\left(x_{j}\right)$, we have the following theorem:

Theorem 3.1 [2] Let $f(x)$ be a Lipschitz continuous function on [-1, 1], where
$f(x)=\sum_{k=0}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{T}_{\mathrm{k}}(\mathrm{x}), \quad a_{k}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{k}(x)}{\sqrt{1-x^{2}}} d x, \quad k \geq 1$
Then the function $f(x)$ can be presented by interpolation in Chebyshev points as

$$
\begin{equation*}
p_{N}=\sum_{k=0}^{\infty^{\prime \prime}} \mathrm{b}_{\mathrm{k}} \mathrm{~T}_{\mathrm{k}}(\mathrm{x}), \quad \mathrm{b}_{\mathrm{k}}=\frac{2}{\mathrm{~N}} \sum_{\mathrm{j}=0}^{\mathrm{N}} \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{T}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right), \tilde{x}_{j}=\cos \left(\frac{j \pi}{N}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{N}=\sum_{k=0}^{\infty^{\prime \prime}} \mathrm{c}_{\mathrm{k}} \mathrm{~T}_{\mathrm{k}}(\mathrm{x}), \quad \mathrm{c}_{\mathrm{k}}=\frac{2}{\mathrm{~N}+1} \sum_{\mathrm{j}=0}^{\mathrm{N}} \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{T}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right), \quad x_{j}=\cos \left(\frac{(2 j-1)}{2 N}\right) \pi \tag{3.3}
\end{equation*}
$$

Here a_{k} are the exact coefficients, and b_{k} and c_{k} are coefficients of p_{n}.
Theorem 3.2 [3] Assume that $\left\{x_{j}\right\}_{j=0}^{N}$ are distinct points in [a,b] and that $f(x)$ is a function in $C^{N+1}[a, b]$ and $\left|f^{N+1}\right| \leq M$. Let p_{N} be a sequence of polynomial interpolating f. Then for each $x \in[a, b]$, there is $\zeta \epsilon$ (a, b) such that
$\left|f(x)-p_{N}(x)\right| \leq\left|\prod_{k=0}^{N}\left(x-x_{k}\right)\right|\left|\frac{f^{(N+1)}}{(N+1)!}\right|$
Theorem 3.3 Let $f(x)$ be a continuous function, $p_{N}(x)$ its polynomials interpolation at $n+1$ points and $\left(p_{N}(f)\right)^{\prime}$ an approximation to f^{\prime}. Then
$\left\|f-p_{N}\right\|_{\infty} \leq\left|\frac{d}{d x} \prod_{k=0}^{N}\left(x-x_{k}\right)\right|\left|\frac{f^{(N+1)}}{(N+1)!}\right|$

IV. Main Results

The choice of Chebyshev points minimizes the terms $\prod_{k=0}^{N}\left(x-x_{k}\right)$ on $[-1,1]$. This choice ensures uniform convergence for a Lipschitz continuous function f . This condition is more important than the condition of continuity of the function f.

Theorem 4.1 Let $f(x)$ be a continuous function on $[a, b]$ and let $p_{n}(x)$ be interpolant polynomials of f at Chebyshev zeros. Then the error is given by
$\left\|f-p_{n}\right\|_{\infty} \leq\left\|\frac{2(b-a)^{n+1}}{4^{n+1}(n+1)!}\right\|_{\infty}\left\|f^{n+1}(\zeta)\right\|_{\infty}$
Similarly, the error at Chebyshev extrema is given by:
$\left\|f-p_{n}\right\|_{\infty} \leq\left\|\frac{1}{2^{n-1}(n+1)!}\right\|_{\infty}\left\|f^{n+1}(\zeta)\right\|_{\infty}$
Now, we will investigate the interpolation convergence bound at zeros and extrema of Chebyshev polynomials:

Theorem 4.2 If f is absolutely continuous and $\left\|f^{(r)}\right\|=V<\infty$. Then for every $N \geq r+1$,

$$
\begin{equation*}
\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq 4 V\left[\frac{N^{2}(r-1)-2 r(N+1)}{(r-1)(r-2)(N-r)^{r}}\right], \quad r \geq 2 \tag{4,3}
\end{equation*}
$$

and
$\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq \frac{2 V}{3}\left[\frac{1}{(\mathrm{r}-4)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-4}}+\frac{4 \mathrm{r}}{(\mathrm{r}-3)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-3}}+\frac{6 \mathrm{r}^{2}-1}{(\mathrm{r}-2)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-2}}+\frac{4 \mathrm{r}^{2}-2 \mathrm{r}}{(\mathrm{r}-1)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-1}}-\frac{\mathrm{r}^{4}-\mathrm{r}^{2}}{\mathrm{r}(\mathrm{N}-\mathrm{r})^{\mathrm{r}}}\right], \mathrm{r} \geq 4$
4)

Proof.
We have

$$
\begin{aligned}
&\left\|\mathrm{f}^{\prime}-\mathrm{p}_{\mathrm{N}}^{\prime}\right\| \leq \sum_{k=0}^{N-1}\left|a_{k}-b_{k}\right|\left\|T_{k}^{\prime}\right\|_{\infty}+\left|a_{N}-\frac{b_{N}}{2}\right|\left\|T_{N}^{\prime}\right\|_{\infty}+\sum_{k=N+1}^{\infty}\left|a_{k}\right|\left\|T_{k}^{\prime}\right\|_{\infty} \\
& \leq 2+\sum_{k=N+1}\left|a_{k}\right| \mathrm{k}^{2} \leq+\sum_{k=N+1}^{\infty} \frac{4 V}{\operatorname{rr}(k-r)^{r+1}} \mathrm{k}^{2}
\end{aligned}
$$

Where, a_{k}, b_{k} and c_{k} are defined in $(3,1),(3,2)$ and $(3,3)$.
From the above we have that $\left\|T^{\prime}{ }_{k}\right\|_{\infty}=\mathrm{k}^{2}$

$$
\begin{aligned}
\sum_{k=N+1}^{\infty} \frac{\mathrm{k}^{2}}{(k-r)^{r+1}} & \leq \int_{\mathrm{N}}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{(x-r)^{r+1}} \\
& =\int_{\mathrm{N}-\mathrm{r}}^{\infty} \frac{(\mathrm{u}+\mathrm{r})^{2} \mathrm{du}}{u^{r+1}}=\frac{\mathrm{N}^{2}(\mathrm{r}-1)-2 \mathrm{r}(\mathrm{~N}+1)}{(\mathrm{r}-1)(\mathrm{r}-2)(\mathrm{N}-\mathrm{r})^{\mathrm{r}}}
\end{aligned}
$$

Therefore, for the second derivative $\left\|\mathrm{f}^{\prime \prime}-\mathrm{p}_{\mathrm{N}}^{\prime \prime}\right\|_{\infty} \leq \sum_{k=0}^{N-1}\left|a_{k}-b_{k}\right|\left\|T^{\prime \prime}{ }_{k}\right\|_{\infty}+\left|a_{N}-\frac{b_{N}}{2}\right|\left\|T^{\prime \prime}{ }_{N}\right\|_{\infty}+\quad \sum_{k=N+1}^{\infty}\left|a_{k}\right|\left\|T^{\prime \prime}{ }_{k}\right\|_{\infty}$.
We have from () that $\left\|T^{\prime \prime}{ }_{k}\right\|_{\infty}=\frac{\mathrm{k}^{2}\left(\mathrm{k}^{2}-1\right)}{3}$ and so

$$
\begin{aligned}
& \left\|\mathrm{f}^{\prime \prime}-\mathrm{p}_{\mathrm{N}}^{\prime \prime}\right\|_{\infty} \leq \sum_{k=0}^{N-1}\left|a_{k}-b_{k}\right| \frac{\mathrm{k}^{2}(\mathrm{k}-1)(\mathrm{k}+1)}{3}+\left|a_{N}-\frac{b_{N}}{2}\right| \frac{\mathrm{N}^{2}(\mathrm{~N}-1)(\mathrm{N}+1)}{3}+\sum_{k=N+1}^{\infty}\left|a_{k}\right| \frac{\mathrm{k}^{2}(\mathrm{k}-1)(\mathrm{k}+1)}{3} . \\
& \quad \leq \sum_{k=N+1}^{\infty} \frac{2 V}{\pi(k-r)^{r+1}} \frac{\mathrm{k}^{2}(\mathrm{k}-1)(\mathrm{k}+1)}{3}
\end{aligned}
$$

Similarly to the above we have

$$
\begin{aligned}
\sum_{k=N+1}^{\infty} \frac{\mathrm{k}^{2}\left(\mathrm{k}^{2}-1\right)}{(k-r)^{r+1}} & \leq \int_{\mathrm{N}}^{\infty} \frac{\mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right) \mathrm{dx}}{(x-r)^{r+1}}=\int_{N-r}^{\infty} \frac{(u+r)^{2}\left((u+r)^{2}-1\right) d u}{u^{r+1}} \\
& \leq \frac{1}{(\mathrm{r}-4)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-4}}+\frac{4 \mathrm{r}}{(\mathrm{r}-3)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-3}}+\frac{6 \mathrm{r}^{2}-1}{(\mathrm{r}-2)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-2}}+\frac{4 \mathrm{r}^{2}-2 \mathrm{r}}{(\mathrm{r}-1)(\mathrm{N}-\mathrm{r})^{\mathrm{r}-1}}-\frac{\mathrm{r}^{4}-\mathrm{r}^{2}}{\mathrm{r}(\mathrm{~N}-\mathrm{r})^{\mathrm{r}}}
\end{aligned}
$$

Therefore

$$
\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq \frac{2 V}{3}\left[\frac{1}{(r-4)(N-r)^{r-4}}+\frac{4 r}{(r-3)(N-r)^{r-3}}+\frac{6 r^{2}-1}{(r-2)(N-r)^{r-2}}+\frac{4 r^{2}-2 r}{(r-1)(N-r)^{r-1}}-\frac{r^{4}-r^{2}}{r(N-r)^{r}}\right], r \geq 4
$$

Theorem 4.3 Let f be an analytic function such that $|f(z)| \leq M$ in the region bounded by an ellipse with foci ± 1 and major and minor semi-axes summing to $\rho>1$. Then for each $n \geq 0$

$$
\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq \frac{4 M}{\rho^{N+1}(\rho-1)^{3}}\left[N^{2} \rho+\left(1-2 N-2 N^{2}\right) \rho^{2}+\left(1+2 N+2 N^{2}\right) \rho^{3}\right] \quad r \geq 2 \quad(4,5)
$$

and

$$
\begin{array}{lcc}
\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} & & \leq \frac{4 \mathrm{M}}{\rho^{N}(1-\rho)^{5}} \\
{\left[N^{4}(\rho-1)^{4}+4 N^{3} 1\right.} & (\rho-1)^{3} \rho+12 \rho^{2}(1+\rho) & + \\
1+2 \mathrm{~N} \rho(\rho 3+9 \rho 2-9 \rho-1) & (4,6) & +N^{2}(\rho-1)^{2}\left(5 \rho^{2}+8 \rho-\right.
\end{array}
$$

Proof.

As above, we arrive at
$\left\|\mathrm{f}^{\prime}-\mathrm{p}_{\mathrm{N}}^{\prime}\right\| \leq 2 \quad \sum_{k=N+1}^{\infty}\left|a_{k}\right|\left\|T_{k}^{\prime}\right\|_{\infty} \leq \quad \sum_{k=N+1}^{\infty} \frac{4 M k^{2}}{\rho^{k}}$
By the table value of the last sum $\sum_{k=N+1}^{\infty} \frac{k^{2}}{\rho^{k}}$, which can also verified in computer algebra system '" Mathematica', we get the above result.
For the second derivative
$\left\|\mathrm{f}^{\prime \prime}-\mathrm{p}_{\mathrm{N}}^{\prime \prime}\right\| \leq 2 \quad \sum_{k=N+1}^{\infty}\left|a_{k}\right|\left\|T^{\prime \prime}{ }_{k}\right\|_{\infty} \leq \quad \sum_{k=N+1}^{\infty} \frac{4 M k^{2}\left(k^{2}-1\right)}{\rho^{k}}$
Again by the table value of the last sum $\sum_{k=N+1}^{\infty} \frac{k^{2}\left(k^{2}-1\right)}{\rho^{k}}$, which can also verified in computer algebra system
'' Mathematica', we get the above result.
We now consider the case when the function $f(x)$ extends to function $f(z)$ of the complex plane which is analytic in a simple closed contour C the interval $[a, b]$. The complex equivalent to $(4,1)$ and $(4,2)$ is given by a contour integral [$1, \mathrm{p} 150]$:

Theorem 4.4 [5, p.83] Assume that f is that extends to an analytic function in a domain Ω that contains the interval $[-1,1]$. Let $C \subset \Omega$ be a simple closed contour in the complex plane and let $x_{j} \subset C$, where f is an analytic function on and inside C. Then
$f(x)-p_{N}(x)=\frac{1}{2 \pi i} \int_{C} \frac{\varnothing_{N}(x) f(z)}{\emptyset_{N}(z)(z-x)} \mathrm{dz}, \quad x \in[-1,1]$,
where
$p_{N}(x)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)\left(\varnothing_{N}(z)-\emptyset_{N}(x)\right)}{\emptyset_{N}(z)(z-x)} \mathrm{dz}, \emptyset_{N}(x)=\prod_{k=0}^{N}\left(x-x_{k}\right)$
Remark. In the case of Interpolation at Chebyshev zeros, we have
$\emptyset_{N}(x)=\prod_{k=0}^{N}\left(x-x_{k}\right)=T_{N}(x)$, whereas in the case of interpolation at Chebyshev extrema,
$\emptyset_{\mathrm{N}}(\mathrm{x})=\prod_{\mathrm{k}=0}^{\mathrm{N}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right)=\mathrm{T}_{\mathrm{N}+\mathbf{1}}(\mathrm{x})-\mathrm{T}_{\mathrm{N}-\mathbf{1}}(\mathrm{x})$.
Theorem 4.5 If f is a bounded analytic function such that $|f(z)| \leq M$ in the region bounded by an ellipse E_{ρ} with foci $\pm l$ and major semi-axis $a=\frac{\rho+\rho^{-1}}{2}$ and minor semi-axis $b=\frac{\rho-\rho^{-1}}{2}$ summing to $\rho>1$. Then

$$
\begin{equation*}
\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq\left[\frac{N^{2}}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{1}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho^{N}-\rho^{-N}\right)} \tag{4,9}
\end{equation*}
$$

And, for second derivative

$$
\begin{equation*}
\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq\left[\frac{N^{2}\left(N^{2}-1\right)}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{2 N^{2}}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}+\frac{2}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{3}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho^{N}-\rho^{-N}\right)} \tag{4,10}
\end{equation*}
$$

Where p_{N} is the polynomial interpolant of degree $\leq N$ at Chebyshev zeros.

Proof.

By differentiating $(4,7)$ we obtain

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{p}_{\mathrm{N}}^{\prime}(\mathrm{x}) & =\frac{1}{2 \pi i} \int_{E_{\rho}}\left[\frac{\emptyset_{N}^{\prime}(x) f(z)}{\emptyset_{N}(z)(z-x)}+\frac{\emptyset_{N}(x) f(z)}{\emptyset_{N}(z)(z-x)^{2}}\right] \mathrm{dz} \\
= & \frac{1}{2 \pi i} \int_{E_{\rho}}\left[\frac{\phi_{N}^{\prime}(x)}{(z-x)}+\frac{\emptyset_{N}(x)}{(z-x)^{2}}\right] \frac{f(z)}{\emptyset_{N}(z)} \mathrm{dz}
\end{aligned}
$$

From $(1,2),(1,5)$, we have $\left|\emptyset_{N}(x)\right| \leq 1,\left|\emptyset_{N}^{\prime}(x)\right| \leq N^{2} \quad$ and $|z-x| \geq a-1=\frac{1}{2}\left(\rho+\rho^{-1}\right)-1$, so
$\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq\left[\frac{N^{2}}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{1}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho^{N}-\rho^{-N}\right)}$
For the second part, we differentiate $(4,7)$ twice to get

$$
\mathrm{f}^{\prime \prime}-\mathrm{p}_{\mathrm{N}}^{\prime \prime}=\frac{1}{2 \pi i} \int_{E_{\rho}}\left[\frac{\emptyset_{N}^{\prime \prime}(x)}{(z-x)}+\frac{2 \emptyset_{N}^{\prime}(x)}{(z-x)^{2}}+\frac{2 \emptyset_{N}(x)}{(z-x)^{3}}\right] \frac{f(z)}{\emptyset_{N}(z)} \mathrm{dz}
$$

From the above, we have $\left|\emptyset_{N}^{\prime \prime}(x)\right| \leq \frac{N^{2}\left(\mathrm{~N}^{2}-1\right)}{3}$, thus
$\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq\left[\frac{N^{2}\left(N^{2}-1\right)}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{2 N^{2}}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}+\frac{2}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{3}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho^{N}-\rho^{-N}\right)}$

Theorem 4.6 If f is a bounded analytic function such that $|f(z)| \leq M$ in the region bounded by an ellipse E_{ρ} with foci $\pm l$ and major semi-axis $a=\frac{\rho+\rho^{-1}}{2}$ and minor semi-axis $b=\frac{\rho-\rho^{-1}}{2}$ summing to $\rho>1$. Then
$\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq\left[\frac{N^{2}}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{1}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho+\rho^{-1}\right)\left(\rho^{N}-\rho^{-N}\right)}$
And, for second derivative
$\left\|f^{\prime \prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq\left[\frac{N\left(2 N^{2}-1\right)}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{8 N^{2}}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}} \quad+\frac{2}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{3}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho+\rho^{-1}\right)\left(\rho^{N}-\rho^{-N}\right)}$

Where p_{N} is the polynomial interpolant of degree $\leq N$ at Chebyshev extrema.

Proof.

By differentiating () we obtain

$$
\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{p}_{\mathrm{N}}^{\prime}(\mathrm{x})=\frac{1}{2 \pi i} \int_{E_{\rho}}\left[\frac{\emptyset_{N}^{\prime}(x)}{(z-x)}+\frac{\emptyset_{N}(x)}{(z-x)^{2}}\right] \frac{f(z)}{\emptyset_{N}(z)} \mathrm{dz}
$$

From $\left|\emptyset_{N}(x)\right| \leq 2,\left|\emptyset_{N}^{\prime}(x)\right| \leq 4 N$, then
$\left\|f^{\prime}-p_{N}^{\prime}\right\|_{\infty} \leq\left[\frac{N^{2}}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{1}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho+\rho^{-1}\right)\left(\rho^{N}-\rho^{-N}\right)}$
For the second part

$$
\mathrm{f}^{\prime \prime}-\mathrm{p}_{\mathrm{N}}^{\prime \prime}=\frac{1}{2 \pi i} \int_{E_{\rho}}\left[\frac{\emptyset_{N}^{\prime \prime}(x)}{(z-x)}+\frac{2 \emptyset_{N}^{\prime}(x)}{(z-x)^{2}}+\frac{\emptyset_{N}(x)}{(z-x)^{3}}\right] \frac{f(z)}{\emptyset_{N}(z)} \mathrm{dz}
$$

From above, we have $\left|\emptyset_{N}^{\prime \prime}(x)\right| \leq \frac{4 N\left(2 N^{2}+1\right)}{3}$, we have

$$
\left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{\infty} \leq\left[\frac{N\left(2 N^{2}-1\right)}{\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)}+\frac{8 N^{2}}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{2}} \quad+\frac{2}{\left(\left(\frac{1}{2}\left(\rho+\rho^{-1}\right)-1\right)\right)^{3}}\right] \frac{M \sqrt{\rho^{2}+\rho^{-2}}}{\left(\rho+\rho^{-1}\right)\left(\rho^{N}-\rho^{-N}\right)}
$$

Lemma For Chebyshev polynomial, the estimation of $r^{t h}$ derivative satisfy the bound
$\left\|\frac{d^{r}}{d x^{r}}\left(\boldsymbol{T}_{N+\mathbf{1}}(\boldsymbol{x})-\boldsymbol{T}_{N-\mathbf{1}}\right)\right\|_{\infty} \leq \frac{(N+r-2)!}{((2 r-1)!!)(N-r+11)!}\left[4 r N^{2}+r^{2}\right]$.

Proof.

We have [1]
$\left\|T_{N}^{(r)}(x)\right\|_{\infty} \leq \prod_{k=0}^{r-1} \frac{N^{2}-k^{2}}{2 k+1}$
From the Stirling formula, the term $(2 r-1)!!$ can be written as $\frac{(2 r)!}{2^{\mathrm{r}} \mathrm{r}!}$ and
$N^{2}\left(N^{2}-1^{2}\right)\left(N^{2}-2^{2}\right) \ldots\left(\left(N^{2}-(r-1)^{2}\right)=\frac{N(N+r)!}{N+r(N-r)!}\right.$
We use induction on r. If $\mathrm{r}=1$, then we have N^{2}. If this hold for $N \geq 2$, and $\mathrm{r}=1, \ldots N-2$, then it also hold for $\mathrm{r}+1$:

$$
\begin{gathered}
\frac{N(N+(r+1)!)}{N+(r+1)(N-(r+1)!}=\frac{N+r}{N+(r+1)}\left(N+(r+1)(N-r) \frac{N(N+r)!}{N+r(N-r)!}\right. \\
=\left(N^{2}-r^{2}\right)\left(N^{2}\left(N^{2}-1^{2}\right)\left(N^{2}-2^{2}\right) \ldots N^{2}(r-1)^{2} .\right.
\end{gathered}
$$

Then by using $(4,14)$ and $(4,15)$ to estimate $\left|\frac{d^{r}}{d x^{r}}\left(\boldsymbol{T}_{N+\mathbf{1}}(\boldsymbol{x})-\boldsymbol{T}_{N-\mathbf{1}}\right)\right|$, we have

$$
\begin{aligned}
\frac{d^{r}}{d x^{r}}\left(\boldsymbol{T}_{n+\mathbf{1}}(\boldsymbol{x})-\boldsymbol{T}_{n-\mathbf{1}}\right) & =\frac{1}{(2 r-1)!!}\left[\frac{(N+1)(N+r+1)!}{(N+r+1)(N-r+1)!}-\frac{(N-1)(N+r-1)!}{(N+r-1)(N-r-1)!}\right] \\
& =\frac{(N+r-2)!}{((2 r-1)!!)(N-r+11)!}\left[4 r N^{2}+r^{2}\right]
\end{aligned}
$$

We may generalize the previous result as follows:
Theorem 4.7 If f is a bounded analytic function such that $|f(z)| \leq M$ in the region bounded by an ellipse E_{ρ} with foci $\pm l$ and major semi-axis $a=\frac{\rho+\rho^{-1}}{2}$ and minor semi-axis $b=\frac{\rho-\rho^{-1}}{2}$ summing to $\rho>1$. Then
$\left\|f^{(r)}-p_{N}^{(r)}\right\|_{\infty} \leq \sum_{k=0}^{(r)} \frac{r!}{k!} \times \frac{(N+r-2)!}{((2 r-1)!!)(N-r+11)!}\left[4 r N^{2}+r^{2}\right] \times \frac{M}{\left(\rho^{N}-\rho^{-N}\right)} \times \sum_{\mathrm{k}=0}^{\mathrm{r}}\left(\frac{2 \rho}{(\rho-1)^{2}}\right)^{\mathrm{r}-\mathrm{k}+1}$
16)

Where p_{N} is the polynomial interpolant of degree $\leq N$ at Chebyshev extrema points.

Proof.

By considering the error formula (), we have
$f^{(r)}-p_{N}^{(r)}=\frac{1}{2 \pi i} \int_{E_{\rho}} \frac{f(z)}{\emptyset_{N}(z)} \quad\left(\frac{\varnothing_{N}(x)}{(z-x)}\right)^{(r)} \mathrm{dz}$.

By Leibniz's rule we have
$f^{(r)}(x)=\sum_{k=0}^{r}\binom{r}{k} u^{(k)} \cdot v^{(r-k)}$, where $\quad \mathrm{f}(\mathrm{x})=\mathrm{u}(\mathrm{x}) \cdot \mathrm{v}(\mathrm{x})$.

Thus

$$
\begin{aligned}
f^{(r)}(x)-p_{N}^{(r)}(x) & =\frac{1}{2 \pi i} \int_{E_{\rho}} \frac{f(z)}{\emptyset_{N}(z)} \quad \sum_{k=0}^{(r)} \frac{r!}{k!} \quad\binom{r}{k} \quad(\mathrm{r}-\mathrm{k})!\left(\emptyset_{N}(x)\right)^{(k)}(z-x)^{k-r-1} \mathrm{dz} . \\
& =\sum_{k=0}^{(r)} \frac{r!}{k!} \quad \frac{1}{2 \pi i} \int_{E_{\rho}} \frac{\left(\emptyset_{N}(x)\right)^{(k)} f(z)}{\emptyset_{N}(z)(z-x)^{r-k+1}} \\
& =\sum_{k=0}^{(r)} \frac{r!}{k!} \quad \frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{E}_{\rho}} \frac{\left(\emptyset_{\mathrm{N}}(\mathrm{x})\right)^{(\mathrm{k})} \mathrm{f}(\mathrm{z})}{\mathrm{w}\left(\mathrm{w}^{\mathrm{N}}-\mathrm{w}^{-\mathrm{N}}\right)(\mathrm{z}-\mathrm{x})^{\mathrm{r}-\mathrm{k}+1}} \mathrm{dW} .
\end{aligned}
$$

To estimate $\left|\frac{1}{z-x}\right|$, let $z=\frac{w+w^{-1}}{2}$, where $\mathrm{w}=\rho e^{i \theta}$ and $0 \leq \theta \leq 2 \pi$. Then

$$
\left|\frac{1}{z-x}\right|=\left|\frac{1}{\frac{w+w^{-1}}{2}-x}\right|=\left|\frac{2}{w\left(1-2 x w^{-1}+w^{-2}\right)}\right|
$$

By the definition of the generating function of the second kind $(1,4)$ of the Chebyshev polynomials $U_{\mathrm{n}}(x)$, we have

$$
\left|\frac{2}{w\left(1-2 x w^{-1}+w^{-2}\right)}\right|=\frac{2}{\rho}\left|\sum_{k=0}^{\infty} U_{\mathrm{n}}(x) w^{-k}\right| \leq \frac{2}{\rho} \sum_{k=0}^{\infty} \frac{k+1}{\rho^{k}}=\frac{2 \rho}{(\rho-1)^{2}}
$$

From $(4,13)$ we have

$$
\left(\emptyset_{\mathrm{N}}(\mathrm{x})\right)^{(\mathrm{k})} \leq \frac{(N+r-2)!}{((2 r-1)!!)(N-r+11)!}\left[4 r N^{2}+r^{2}\right]
$$

Therefore

$$
\begin{aligned}
& \left\|f^{(r)}(x)-p_{N}^{(r)}(x)\right\|_{\infty}=\left\|\sum_{k=0}^{(r)} \frac{r!}{k!} \frac{1}{2 \pi i} \int_{E_{\rho}} \frac{\left(\emptyset_{N}(x)\right)^{(k)} f(z)}{\emptyset_{N}(z)(z-x)^{r-k+1}}\right\|_{\infty} \\
& \quad \leq \sum_{k=0}^{(r)} \frac{r!}{k!}\left\|\left(\emptyset_{N}(x)\right)^{(k)}\right\|_{\infty} \frac{1}{2 \pi} \int_{E_{\rho}} \frac{|f(z)|}{\rho\left(\rho^{N}-\rho^{-N}\right)(\mathrm{z}-\mathrm{x})^{\mathrm{r}-\mathrm{k}+1}}|d w| \\
& \quad \leq \sum_{k=0}^{(r)} \frac{r!}{k!} \times \frac{(N+r-2)!}{((2 r-1)!!)(N-r+11)!}\left[4 r N^{2}+r^{2}\right] \times \frac{M}{\left(\rho^{N}-\rho^{-N}\right)} \times \sum_{\mathrm{k}=0}^{\mathrm{r}}\left(\frac{2 \rho}{(\rho-1)^{2}}\right)^{\mathrm{r}-\mathrm{k}+1}
\end{aligned}
$$

Acknowledgements

I am deeply indebted to Dr. Vladimir Kisil for his constant encouragement.

References

[1] Mason, J. And Handscomb, D, Chebyshev Polynomials., CRC Press, 2003.
[2] Trefethen, N,Approximation Theory and Approximation Practice., University of Oxford, 2012.
[3] Powell, M,Approximation Theory and Methods. , Cambridge University, 2004.
[4] Berrut, J, P. And Trefethen, L, N, Barycentric Lagrange Interpolation., SIAM Review, 2004.
[5] Davis, P,Approximation and Approximation., Blaisdell Publishing Company, 1965.
[6] Fox, L. And Parker, T, Chebyshev Polynomials in Numerical Analysis. , Oxford Press, 1968.
[7] Rivlin, T, J, The Chebyshev Polynomials. , A Wiley-Interscience publication, 1974.
[8] Trefethen, L. N. Six myths of polynomial interpolation and quadrature. , Maths. Today 47, 2011.

