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Abstract: Let f(x) be a differentiable function on the interval [-1, 1]. Finding an approximation of the 

derivative of the function through values of the function at points  𝑥𝑗  𝑗 =0

𝑁
 is a very interesting problem. It is also 

important for solving differential equation. In this paper, we study the error bound, in particular for first and 

second derivatives by Chebyshev polynomials. Moreover, a generalisation for error bound is found. 
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I. Introduction 
In many problems one of interested in finding the approximating the derivative of the function f debending on 

the value of the function 𝑓 at   𝑥𝑗 . One of the method is to consider  𝑝𝑁  (𝑓) ′ as an approximation to 𝑓′ . Let 

𝑝𝑁be the Lagrange interpolation polynomial 𝑝𝑁  for 𝑓 which it may not converge to 𝑓  in the sup-norm. We 

wish to find conditions such that 𝑝𝑁
′ → 𝑓 ′ .  

The Chebyshev approximation method works best when the function is smooth, and particularly when f(x) 

can be continued into the complex plane as a function f(z) which is analytic in an open neighborhood of [-1,1]. 

In this case, the error  

𝐸𝑁(x)=max0≤𝑗≤𝑁 𝑓′ 𝑥𝑗  −   𝑝′  (𝑥𝑗 ) , 

decay at least exponentially fast as 𝑁 → ∞. 

The Chebyshev polynomial of the first kind of degree N  is defined as: 

TN(x) = cos(N cos
−1

 x) = cos Nθ,                                    (1.1) 

where x = cos θ, −1 ≤ x ≤ 1 , 0 ≤ θ ≤ π , and n is a non negative integer [1]. 

The Chebyshev polynomials TN(x) satisfy |TN(x)| ≤ 1. 

This follows from the bound −1 ≤ cos x ≤ 1, which leads to 

|TN+1(x) –TN−1(x)| ≤  2.                                                   (1.2) 

The Chebyshev polynomial Tn(x) of degree n ≥ 1 has n zeros on the interval [−1, 1]. The zeros 𝑥𝑗  are 

given by: 𝑥𝑗 =cos  
 2𝑗−1 𝜋

2𝑛
 ,    j=1,…N 

Moreover, the extrema, or points 𝒙𝒋  such that    𝑇𝑁 𝒙𝒋  = (−1)𝑗  are given by: 

𝑥 𝑗 =cos  
𝑗𝜋

𝑁
 ,  j=1,…N 

The Chebyshev polynomials of the first kind have a generating function of the form  

 TN 𝑥 . 𝑡𝑁 =
1 − 𝑡𝑥

1 − 2𝑥𝑡 + 𝑡2
;   𝑥 < 1,  𝑡 < 1 … … .                (1 − 3)

∞

N=0

 

The Chebyshev polynomials of the second  kind 𝑈𝑁(𝑥) is defined as  

𝑈N cos 𝜃 =
sin  𝑁 + 1 𝜃 

sin 𝜃
,       

            where  −1 ≤ 𝑥 ≤ 1     ,   0 ≤ 𝜃 ≤ 𝜋    ,    𝑥 = cos 𝜃 

and have a generating function of the form [1] 

 UN 𝑥 𝑡𝑁 =
1

1 − 2𝑥𝑡 + 𝑡2
     ;   𝑥 < 1,  𝑡 < 1 … … .                (1 − 4)

∞

N=0

 

The Chebyshev polynomials have interesting properties that make them a very attractive tool to minimize the 

maximum error in uniform approximation. 

The derivatives of the Chebyshev polynomials satisfy the following: 

 
𝑑

𝑑𝑥
  TN 𝑥  ≤ 𝑁2.                                                                                     (1 − 5) 
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This comes from the definition of  TN 𝑥  and   
𝑑

 𝑑𝑥
  TN 𝑥 =  

𝑁 sin 𝑁 cos −1 𝑥

 1− 𝑥2
  = 

  𝑁 sin 𝑁𝜃

sin 𝜃
.  

We have  sin nθ ≤ n  sin θ  and thus  
d

dx
  TN x  ≤ N2.  For  x=± 1, by L’Hopital’s rule we get 

lim𝜃→0 𝑜𝑟  𝜋
 𝑁 sin 𝑁𝜃

sin 𝜃
= 𝑁2. For second derivative, we have  

 𝑇𝑁
′′ (x) =   𝑇𝑁

′′ (cos θ)  =   
𝑁 sin 𝑁 𝜃 cos 𝜃− 𝑁2 cos 𝑁𝜃𝑠𝑖𝑛𝜃

𝑠𝑖𝑛 3𝜃
 . 

 Again by L’Hopital’s rule, we get              
𝑁3− 𝑁

3
 lim𝜃→0 𝑜𝑟  𝜋    

  sin 𝑛𝜃

sin 𝜃 cos 𝜃
 = 

𝑁(𝑁3− 𝑁)

3
 lim𝜃→0 𝑜𝑟  𝜋    

  cos 𝑁𝜃

cos 2 𝜃− sin 2𝜃
.  

Therefore  

 𝑇𝑁
′′  (𝑥) ≤

𝑁2 𝑁−1 (𝑁+1)

3
.                                                                    (1 − 6) 

The values of     TN 𝑥  and  their derivatives at some points are of interest:  

 

 𝑇𝑁+1
′ (𝑥)  −     𝑇𝑁−1

′ (𝑥)  ≤ 4N,            𝑇𝑁+1
′′ (𝑥)  −     𝑇𝑁−1

′′ (𝑥)  ≤
4

3
 𝑁 (2𝑁2 + 1).          (1 − 7) 

 

 

In general  

𝑇𝑁
 𝑟  𝑥 ≤ 𝑇𝑁

 𝑟  1  = 
𝑁2   𝑁2−1 ……(𝑁2− 𝑟−1 2)

 2𝑟−1 !
.                                 (1 − 8) 

 

II. Convergence Rate 
The convergence of Chebyshev series is determined by a property of the function  xf . If the function 𝑓 is 

smooth, then its Chebyshev expansion coefficients decrease rapidly. Two notions of smoothness were 

considered: an 𝑟𝑡ℎ   derivative with bounded variation, or analyticity in a neighborhood of [-1,1]. 

 

Theorem2.1 [2,p.66] The truncation error when  approximating a function  xf  in terms of 

Chebyshev polynomials satisfies  

 𝑓 𝑥 −  𝑓𝑛  (𝑥) ≤   𝑎𝑘  

∞

𝑘=𝑛+1

 

If all ak  are rapidly decreasing, then the error is dominated by the leading term 𝑎𝑘+1𝑇𝑘+1. 

The coefficients ak  for 1 nk  are negligibly small, where the rest of the terms will be neglected if 𝑎𝑛+1 ≠
0. 

Theorem 2.2 [2, p.51] If 𝑓, 𝑓′ , … , 𝑓(𝑟−1) are absolutely continuous for r ≥ 0 on  1,1 , where the 
thr  

derivative 
 rf  has bounded variation V=  𝑓  (𝑟) , then the coefficients of the Chebyshev series satisfy 

the fallowing inequality 

 

 𝑎𝑘  ≤
2𝑉

 𝜋𝑛𝑘  𝑘−1 …(𝑘−𝑟)
 , k ≥ 𝑟 + 1                   (2.1)     

for each  k ≥ r + 1. 
 

Theorem 2.3 [2, p.51] Let a function f be analytic on [−1, 1] and analytically continuable to the ellipse    

Eρ:= {z ∈C : z =ρ (e
iθ
 + e

−iθ
)/2 , θ ∈[0, 2π]} in which |f (z)| ≤ M for some M . For all k ≥ 0 the Chebyshev 

coefficients ak of f exponentially decay as    k → ∞ and satisfying 

|ak| ≤                         2M ρ
−k

, ρ > 1.                  (2.2) 

 

Theorem 2.4 [2, p.53] If f is absolutely continuous for r ≥ 0 on [−1, 1], where the r
th

 derivative 

𝑓 (𝑟) has bounded variation V=  𝑓  (𝑟) ,  then the Chebyshev truncation satisfies 

 𝑓 − 𝑓𝑁 ∞ ≤
2𝑉

𝜋𝑟  𝑁−𝑟 𝑟
                 (2.3) 

 

Theorem 2.5 [2, p.58] Let a function f be analytic on [−1, 1] and analytically continuable to the open 

ellipse Eρ, in which  |f| ≤ M for some M . Then the Chebyshev truncation error satisfies 

 𝑓 − 𝑓𝑁 ∞ ≤
2𝑀𝜌−𝑁

𝜌−1
                       (2.4) 
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III. Chebyshev Interpolation 
Given a function f  that is interpolated at n + 1 points in term of Chebyshev polynomials and 

that satisfies the interpolation condition pn(xj)= f(xj), we have the following theorem: 

 

Theorem 3.1 [2] Let f (x) be a Lipschitz continuous function on [−1, 1], where 

𝑓 𝑥 =  ak
∞
𝑘=0 Tk (x),                  𝑎𝑘 =   

2

𝜋
   

𝑓 𝑥 𝑇𝑘(𝑥)

 1−𝑥2

1

−1
  𝑑𝑥,     𝑘 ≥ 1             (3.1) 

Then the function f (x) can be presented by interpolation in Chebyshev points as 

𝑝𝑁 =  bk
∞′′
𝑘=0 Tk (x),    bk =  

2

N
 f xj Tk  xj  ,N

j=0  𝑥 𝑗 = cos  
𝑗𝜋

𝑁
                      (3.2) 

and 

 

𝑝𝑁 =  ck
∞′′
𝑘=0 Tk (x),     ck =  

2

N+1
 f xj Tk  xj ,N

j=0   𝑥𝑗 = cos  
 2𝑗−1 

2𝑁
 𝜋                   (3.3) 

Here ak are the exact coefficients, and bk and ck are coefficients of pn. 

 

Theorem 3.2 [3] Assume that     𝑥𝑗  𝑗 =0

𝑁
     are distinct points in [a,b] and that f(x) is a function in 𝐶𝑁+1 [a,b]  

and  𝑓𝑁+1 ≤ M. Let  𝑝𝑁   be a sequence of polynomial interpolating f. Then for each x 𝜖 [a, b], there is  𝜁𝜖 

(a, b) such that  

 𝑓 𝑥 −   𝑝𝑁(𝑥) ≤   (𝑥 − 𝑥𝑘
𝑁
𝑘=0 )  

𝑓(𝑁+1)

 𝑁+1 !
                    (3.4) 

Theorem 3.3 Let f (x) be a continuous function,  pN(x) its polynomials  interpolation at n+1 points and 

 𝑝𝑁(𝑓) ′an approximation to 𝑓′ . Then 

 

 𝑓 −   𝑝𝑁 ∞ ≤  
𝑑

𝑑𝑥
 (𝑥 − 𝑥𝑘

𝑁
𝑘=0 )  

𝑓(𝑁+1)

 𝑁+1 !
                                      (3.5) 

 

IV. Main Results 

The choice of Chebyshev points minimizes the terms  (𝑥 − 𝑥𝑘
𝑁
𝑘=0 ) on [-1,1].  This choice ensures 

uniform convergence for a Lipschitz continuous function f. This condition is more important than 

the condition of continuity of the function f.  

 

Theorem 4.1 Let f (x) be a continuous function on [a, b] and let pn(x) be interpolant polynomials of  f  at 

Chebyshev zeros. Then the error is given by 

 

 𝑓 −   𝑝𝑛 ∞ ≤  
2(𝑏−𝑎)𝑛+1

4𝑛+1 𝑛+1 !
 

∞
 𝑓𝑛+1(𝜁) ∞          (4.1) 

Similarly, the error at Chebyshev extrema is given by: 

 

 𝑓 − 𝑝𝑛 ∞ ≤  
1

2𝑛−1 𝑛+1 !
 

∞
 𝑓𝑛+1(𝜁) ∞           (4, 2) 

 

Now, we will investigate the interpolation convergence bound at zeros and extrema of Chebyshev 

polynomials: 

 

Theorem 4.2 If f is absolutely continuous and  𝑓 𝑟  = 𝑉  < ∞. Then for every N≥ 𝑟 + 1, 
 

 𝑓 ′ −  𝑝𝑁
′  ∞   ≤4V  

𝑁2 𝑟−1 − 2𝑟  (𝑁+1)

 𝑟−1  𝑟−2 (𝑁−𝑟)𝑟
  ,              𝑟 ≥ 2                              (4, 3) 

 

and 

 

 𝑓 ′′ −  𝑝𝑁
′′  ∞  ≤

2𝑉

3
  

1

(r−4)(N−r)r−4   +  
4r

(r−3)(N−r)r−3  +  
6r2−1

(r−2)(N−r)r−2 + 
4r2−2r

(r−1)(N−r)r−1 −  
r4−r2

r(N−r)r   ,  r ≥ 4          (4, 

4) 

 

Proof.  

We have  

 f ′ −  pN
′  ≤   𝑎𝑘 − 𝑏𝑘  𝑁−1

𝑘=0  𝑇′𝑘   ∞ +  𝑎𝑁 −
𝑏𝑁

2
  𝑇′𝑁 ∞ +       𝑎𝑘  ∞

𝑘=𝑁+1  𝑇′𝑘   ∞             

             ≤ 2  +       𝑎𝑘  ∞
𝑘=𝑁+1 k2      ≤     +      

4𝑉

𝜋𝑟  𝑘−𝑟 𝑟+1   k2                ∞
𝑘=𝑁+1  
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Where, 𝑎𝑘 , 𝑏𝑘  and  𝑐𝑘  are defined in (3, 1), (3, 2)  and (3, 3). 

From  the above we have that  𝑇′𝑘   ∞=  k2 

 
 k2

 𝑘 − 𝑟 𝑟+1
 ≤         

x2dx

 𝑥 − 𝑟 𝑟+1

∞

N

        

∞

𝑘=𝑁+1

 

 

                                                                                =    
(u+r)2du

𝑢𝑟+1

∞

N−r 
=  

N2 r−1 −2r (N+1)

 r−1 (r−2)(N−r)r . 

Therefore, for the second derivative 

 f ′′ −  pN
′′  ∞ ≤   𝑎𝑘 − 𝑏𝑘  𝑁−1

𝑘=0  𝑇′′𝑘   ∞ +  𝑎𝑁 −
𝑏𝑁

2
  𝑇′′𝑁 ∞ +        𝑎𝑘  ∞

𝑘=𝑁+1  𝑇′′𝑘   ∞  .      

We have from ()  that   𝑇′′𝑘   ∞=
k2  (k2−1)

3
  and so  

 f ′′ −  pN
′′  ∞ ≤   𝑎𝑘 − 𝑏𝑘  𝑁−1

𝑘=0
k2   k−1 (k+1)

3
+  𝑎𝑁 −

𝑏𝑁

2
 

N2   N−1 (N+1)

3
+   𝑎𝑘  ∞

𝑘=𝑁+1  
k2   k−1 (k+1)

3
.      

 

                  ≤  
2𝑉

𝜋 𝑘−𝑟 𝑟+1   
k2   k−1 (k+1)

3
               ∞

𝑘=𝑁+1  

Similarly to the above we have  

 
k2   (k2  − 1)

 𝑘 − 𝑟 𝑟+1
 ≤         

x2 x2 − 1 dx

 𝑥 − 𝑟 𝑟+1

∞

N

    

∞

𝑘=𝑁+1

=   
 𝑢 + 𝑟 2  𝑢 + 𝑟 2 − 1 𝑑𝑢

𝑢𝑟+1

∞

𝑁−𝑟

 

                             ≤
1

(r−4)(N−r)r−4   +  
4r

(r−3)(N−r)r−3  +  
6r2−1

(r−2)(N−r)r−2 +  
4r2−2r

(r−1)(N−r)r−1 −  
r4−r2

r(N−r)r . 

Therefore 

 f ′′ −  pN
′′  ∞   ≤

2𝑉

3
  

1

 r−4  N−r r−4   +  
4r

 r−3  N−r r−3  +  
6r2−1

 r−2  N−r r−2 + 
4r2−2r

 r−1  N−r r−1 −  
r4−r2

r N−r r   ,  r ≥ 4 

 

Theorem 4.3 Let f be an analytic function such that |f (z)| ≤ M in the region bounded by an ellipse with 

foci ±1 and major and minor semi-axes summing to ρ >1. Then for each n≥0 

 

 

 𝑓 ′ −  𝑝𝑁
′  ∞   ≤ 

4𝑀

𝜌𝑁+1   𝜌−1 3   𝑁2𝜌 +  1 − 2𝑁 − 2𝑁2 𝜌2 + (1 + 2𝑁 + 2𝑁2)𝜌3         𝑟 ≥ 2   (4, 5) 

 

and 

 

 𝑓 ′′ −  𝑝𝑁
′′  ∞   ≤

4M

 𝜌𝑁  1−ρ 5  

 𝑁4   (𝜌 − 1)4  +  4𝑁3 1    (𝜌 − 1)3 𝜌 + 12𝜌2   1 +  𝜌                +                          +   𝑁2(𝜌 − 1)2  5𝜌2 +  8 𝜌 −
1 +2N 𝜌(𝜌3 + 9 𝜌2− 9𝜌 −1                     (4, 6) 

 

Proof. 

As above, we arrive at  

 f ′ −  pN
′  ≤2      𝑎𝑘  

∞
𝑘=𝑁+1  𝑇′𝑘   ∞  ≤        

4𝑀𝑘2  

𝜌𝑘
∞
𝑘=𝑁+1        

By the table value of the last sum   
𝑘2  

𝜌𝑘
∞
𝑘=𝑁+1  , which can also verified in computer algebra system ‘’ 

Mathematica’’,  we get the above result. 

For the second derivative  

 f ′′ −  pN
′′  ≤2      𝑎𝑘  ∞

𝑘=𝑁+1  𝑇′′𝑘   ∞     ≤        
4𝑀𝑘2  (𝑘2−1)

𝜌𝑘
∞
𝑘=𝑁+1           

Again by  the table value of the last sum  
𝑘2  (𝑘2−1)

𝜌𝑘
∞
𝑘=𝑁+1  , which can also verified in computer algebra system 

‘’ Mathematica’’,  we get the above result. 

We now consider the case when the function 𝑓(𝑥) extends to function 𝑓(𝑧) of the complex plane 

which is analytic in a simple closed contour 𝐶 the interval [𝑎, 𝑏]. The complex equivalent to (4, 1 ) 

and (4, 2 ) is given by a contour integral [1, p150]: 

 

Theorem 4.4  [5, p.83] Assume that  f is that extends to an analytic  function in a domain 𝛺that contains 

the interval [-1, 1]. Let 𝐶 ⊂ 𝛺 be a simple closed contour in the complex plane and let 𝑥𝑗   ⊂  𝐶, where 𝑓 

is an analytic function on and inside C. Then 
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𝑓 𝑥 −  𝑝𝑁(𝑥)= 
1

2𝜋𝑖
  

∅𝑁   𝑥 𝑓(𝑧)

∅𝑁    𝑧 (𝑧−𝑥)𝐶
  dz ,              𝑥𝜖[−1, 1],                              (4, 7) 

where 

𝑝𝑁(𝑥) =
1

2𝜋𝑖
  

𝑓 𝑧 (∅𝑁   𝑧 − ∅𝑁   𝑥 )

∅𝑁    𝑧 (𝑧−𝑥)𝐶
  dz,  ∅𝑁  𝑥 =   ( 𝑥 − 𝑥𝑘  )

𝑁
𝑘=0                  (4, 8) 

 

Remark. In the case of Interpolation at Chebyshev zeros, we have  

∅𝑁  𝑥 =   ( 𝑥 − 𝑥𝑘  )
𝑁
𝑘=0  =  𝑇𝑁(𝑥), whereas in the case of interpolation at Chebyshev extrema, 

∅N  x =   ( x − xk )
N
k=0   =     𝐓𝐍+𝟏  𝐱  −  𝐓𝐍−𝟏(x). 

 

Theorem 4.5 If f is a bounded analytic function such that |f (z)| ≤ M in the region bounded by an ellipse 

𝐸𝜌  with foci ±1 and major semi-axis a=
𝜌+𝜌−1

2
 and minor semi-axis b= 

𝜌−𝜌−1

2
 summing to ρ >1. Then 

 

 𝑓 ′ −  𝑝𝑁
′  

∞
≤  

𝑁2

 
1

2
 𝜌+𝜌−1 −1 

     +    
1

  
1

2
 𝜌+𝜌−1 −1  

2  
𝑀 𝜌2+𝜌−2

(𝜌𝑁− 𝜌−𝑁 )
                                                                    (4, 9) 

 

And, for second derivative 

 𝑓′
′′ −  𝑝𝑁

′′  
∞

≤  
𝑁2(𝑁2−1 )

 
1

2
 𝜌+𝜌−1 −1 

     +    
2𝑁2

  
1

2
 𝜌+𝜌−1 −1  

2     +
2

  
1

2
 𝜌+𝜌−1 −1  

3 
𝑀 𝜌2+𝜌−2

(𝜌𝑁− 𝜌−𝑁 )
                                  (4, 10) 

                                                 

Where 𝑝𝑁  is the polynomial interpolant of degree ≤ 𝑁 at Chebyshev zeros. 

 

Proof.  

By differentiating (4, 7 ) we obtain  

f ′ x −  pN
′  x =  

1

2𝜋𝑖
    

∅𝑁
′  𝑥  𝑓(𝑧)

∅𝑁    𝑧 (𝑧−𝑥)
   + 

∅𝑁   𝑥 𝑓(𝑧)

∅𝑁    𝑧 (𝑧−𝑥)2  
𝐸𝜌

  dz 

                   =         
1

2𝜋𝑖
    

∅𝑁
′  𝑥  

(𝑧−𝑥)
   +  

∅𝑁   𝑥 

(𝑧−𝑥)2  
𝐸𝜌

 
𝑓(𝑧)

∅𝑁    𝑧 
 dz       

From (1, 2), (1, 5) , we have  ∅𝑁   𝑥  ≤ 1,  ∅𝑁
′  𝑥  ≤ N2         and  

 𝑧 − 𝑥  ≥ 𝑎 − 1 =  
1

2
 𝜌 + 𝜌−1 − 1, so  

 𝑓 ′ −  𝑝𝑁
′  

∞
≤  

𝑁2

 
1

2
 𝜌+𝜌−1 −1 

     +    
1

  
1

2
 𝜌+𝜌−1 −1  

2  
𝑀 𝜌2+𝜌−2

(𝜌𝑁− 𝜌−𝑁 )
                                                                     

 

For the second part, we differentiate (4, 7) twice to get 

f′′′ −  pN
′′ =          

1

2𝜋𝑖
    

∅𝑁
′′  𝑥  

(𝑧 − 𝑥)
   + 

2∅𝑁
′  𝑥 

(𝑧 − 𝑥)2
 + 

2∅𝑁   𝑥 

(𝑧 − 𝑥)3
   

𝐸𝜌

 
𝑓(𝑧)

∅𝑁   𝑧 
 dz       

 

From the above, we have  ∅𝑁
′′  𝑥  ≤

N2  (N2−1)

3
 , thus 

 𝑓′
′′ −  𝑝𝑁

′′  
∞

≤  
𝑁2(𝑁2−1 )

 
1

2
 𝜌+𝜌−1 −1 

     +    
2𝑁2

  
1

2
 𝜌+𝜌−1 −1  

2     +
2

  
1

2
 𝜌+𝜌−1 −1  

3 
𝑀 𝜌2+𝜌−2

(𝜌𝑁− 𝜌−𝑁 )
                                   

 

 

Theorem 4.6 If f is a bounded analytic function such that |f (z)| ≤ M in the region bounded by an ellipse 

𝐸𝜌   with foci ±1 and major semi-axis a=
𝜌+𝜌−1

2
 and minor semi-axis b= 

𝜌−𝜌−1

2
 summing to ρ >1. Then 

 

 𝑓 ′ −  𝑝𝑁
′  ∞ ≤  

𝑁2

 
1

2
 𝜌+𝜌−1 −1 

     +    
1

  
1

2
 𝜌+𝜌−1 −1  

2  
𝑀 𝜌2+𝜌−2

 𝜌+𝜌−1 (𝜌𝑁− 𝜌−𝑁 )
                     (4, 11) 

 

And, for second derivative 

 𝑓′′′ −  𝑝𝑁
′′  ∞ ≤  

𝑁(2𝑁2−1 )

 
1

2
 𝜌+𝜌−1 −1 

     +    
8𝑁2

  
1

2
 𝜌+𝜌−1 −1  

2     +
2

  
1

2
 𝜌+𝜌−1 −1  

3 
𝑀 𝜌2+𝜌−2

 𝜌+𝜌−1 (𝜌𝑁− 𝜌−𝑁 )
             (4, 12) 
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Where 𝑝𝑁  is the polynomial interpolant of degree ≤ 𝑁 at Chebyshev extrema. 

Proof. 

By differentiating ( ) we obtain  

f ′ x −  pN
′  x =          

1

2𝜋𝑖
    

∅𝑁
′  𝑥  

(𝑧 − 𝑥)
   +  

∅𝑁  𝑥 

(𝑧 − 𝑥)2
  

𝐸𝜌

 
𝑓(𝑧)

∅𝑁   𝑧 
 dz       

From  ∅𝑁   𝑥  ≤ 2,  ∅𝑁
′  𝑥  ≤ 4𝑁, 𝑡ℎ𝑒𝑛 

 𝑓 ′ −  𝑝𝑁
′  ∞ ≤  

𝑁2

 
1

2
 𝜌+𝜌−1 −1 

     +    
1

  
1

2
 𝜌+𝜌−1 −1  

2  
𝑀 𝜌2+𝜌−2

 𝜌+𝜌−1 (𝜌𝑁− 𝜌−𝑁 )
                      

 

For  the second part  

     

f′′′ −  pN
′′ =          

1

2𝜋𝑖
    

∅𝑁
′′  𝑥  

(𝑧 − 𝑥)
   +  

2∅𝑁
′  𝑥 

(𝑧 − 𝑥)2
 +  

∅𝑁   𝑥 

(𝑧 − 𝑥)3
   

𝐸𝜌

 
𝑓(𝑧)

∅𝑁   𝑧 
 dz       

From above, we have         ∅𝑁
′′  𝑥    ≤

4𝑁(2N2+1 )

3
 , we have  

 𝑓′′′ −  𝑝𝑁
′′  ∞ ≤  

𝑁(2𝑁2−1 )

 
1

2
 𝜌+𝜌−1 −1 

     +    
8𝑁2

  
1

2
 𝜌+𝜌−1 −1  

2     +
2

  
1

2
 𝜌+𝜌−1 −1  

3 
𝑀 𝜌2+𝜌−2

 𝜌+𝜌−1 (𝜌𝑁− 𝜌−𝑁 )
              

 

 Lemma For Chebyshev polynomial, the estimation of  𝑟𝑡ℎ  derivative satisfy  the bound  

 
𝑑𝑟

𝑑𝑥 𝑟  ( 𝑻𝑵+𝟏  𝒙  −  𝑻𝑵−𝟏) 
∞

≤
 𝑁+𝑟−2 !

( 2𝑟−1 ‼) 𝑁−𝑟+11 !
 4𝑟𝑁2 + 𝑟2 .                                             (4, 13) 

 

Proof. 

We  have [1] 

 𝑇𝑁
 𝑟 

(𝑥) 
∞

≤  
𝑁2−𝑘2

2𝑘+1

𝑟−1
𝑘=0                                                                                          (4, 14) 

From the Stirling formula, the term  2r − 1 ‼ can be written as  
 2r !

2r r!
 and  

𝑁2 𝑁2 − 12)(𝑁2 − 22 … ((𝑁2 −  𝑟 − 1 2) =
𝑁 𝑁+𝑟 !

𝑁+𝑟 𝑁−𝑟 !
                                         (4, 15) 

We use induction on 𝑟.  If   r =1, then we have 𝑁2. If this hold for 𝑁 ≥ 2,  and r =1,… 𝑁 − 2, then it 

also hold for r+1: 
𝑁(𝑁 +  𝑟 + 1 !)

𝑁 +  𝑟 + 1 (𝑁 −  𝑟 + 1 !
=

𝑁 + 𝑟

𝑁 + (𝑟 + 1)
 (𝑁 + (𝑟 + 1)(𝑁 − 𝑟)

𝑁 𝑁 + 𝑟 !

𝑁 + 𝑟 𝑁 − 𝑟 !
 

                                                    = (𝑁2 − 𝑟2  ) (𝑁2(𝑁2 − 12  ) (𝑁2 − 22  )… 𝑁2(𝑟 − 1)2. 

Then by using (4, 14) and (4, 15) to estimate 
𝑑𝑟

𝑑𝑥 𝑟  ( 𝑻𝑵+𝟏  𝒙  −  𝑻𝑵−𝟏) , we have  

𝑑𝑟

𝑑𝑥𝑟
 ( 𝑻𝒏+𝟏  𝒙  −  𝑻𝒏−𝟏) =  

1

 2𝑟 − 1 ‼
 

(𝑁 + 1) 𝑁 + 𝑟 + 1 !

 𝑁 + 𝑟 + 1  𝑁 − 𝑟 + 1 !
−  

(𝑁 − 1) 𝑁 + 𝑟 − 1 !

 𝑁 + 𝑟 − 1  𝑁 − 𝑟 − 1 !
  

 

=  
 𝑁 + 𝑟 − 2 !

( 2𝑟 − 1 ‼) 𝑁 − 𝑟 + 11 !
 4𝑟𝑁2 + 𝑟2 . 

We may generalize the previous result as follows: 

 

Theorem 4.7 If f is a bounded analytic function such that |f (z)| ≤ M in the region bounded by an ellipse 

𝐸𝜌   with foci ±1 and major semi-axis a=
𝜌+𝜌−1

2
 and minor semi-axis b= 

𝜌−𝜌−1

2
 summing to ρ >1. Then 

 

 𝑓(𝑟) −   𝑝𝑁
(𝑟)

 
∞

≤  
𝑟 !

𝑘 !

(𝑟)
𝑘=0  ×

 𝑁+𝑟−2 !

( 2𝑟−1 ‼) 𝑁−𝑟+11 !
 4𝑟𝑁2 + 𝑟2 ×

𝑀

(𝜌𝑁− 𝜌−𝑁 )
×   

2ρ

(ρ−1)2 
r−k+1

r
k=0                        (4, 

16) 

 

Where 𝑝𝑁  is the polynomial interpolant of degree ≤ 𝑁 at Chebyshev extrema  points. 

 

Proof. 

By considering the error formula (), we have  

𝑓(𝑟) −   𝑝𝑁
(𝑟)

     =    
1

2𝜋𝑖
    

𝑓(𝑧)

∅𝑁    𝑧 
          

∅𝑁   𝑥  

(𝑧−𝑥)
 

(𝑟)

      
𝐸𝜌

 dz  .     
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By Leibniz’s rule we have  

𝑓(𝑟)  𝑥 =    𝑟
𝑘
 𝑟

𝑘=0  𝑢(𝑘) ∙   𝑣(𝑟−𝑘),       where       f(x) = u(x) ∙ v(x). 

Thus  

𝑓 𝑟  𝑥 −   𝑝𝑁
(𝑟)

  (𝑥)   = 
1

2𝜋𝑖
    

𝑓(𝑧)

∅𝑁    𝑧 
      

𝑟 !

𝑘 !

(𝑟)
𝑘=0      𝑟

𝑘
    

𝐸𝜌
 (r-k)!  ∅𝑁   𝑥  

(𝑘)
  𝑧 − 𝑥 𝑘−𝑟−1dz. 

                                 

                                =  
𝑟 !

𝑘 !

(𝑟)
𝑘=0      

1

2𝜋𝑖
   

𝐸𝜌

 ∅𝑁   𝑥  
 𝑘 

𝑓(𝑧)

∅𝑁    𝑧  𝑧−𝑥 𝑟−𝑘+1 

 

                               =  
𝑟 !

𝑘 !

(𝑟)
𝑘=0      

1

2πi
   

Eρ

 ∅N   x  
 k 

f(z)

w (wN −w−N  ) z−x r−k +1 dw. 

To estimate  
1

𝑧−𝑥
 , 𝑙𝑒𝑡  𝑧 =  

𝑤+ 𝑤−1

2
, where w=𝜌𝑒𝑖𝜃  and 0 ≤ 𝜃 ≤ 2𝜋. Then 

 
1

𝑧 − 𝑥
 =  

1

𝑤 + 𝑤−1

2
− 𝑥

 =   
2

𝑤(1 − 2𝑥𝑤−1 + 𝑤−2)
 .  

By the definition of the generating function of the second kind  (1, 4) of the Chebyshev polynomials 

𝑈n 𝑥 , we have  

 
2

𝑤(1 − 2𝑥𝑤−1 + 𝑤−2)
 =  

2

𝜌
   𝑈n 𝑥 

∞

𝑘=0

𝑤−𝑘   ≤
2

𝜌
 

𝑘 + 1

𝜌𝑘
=

2𝜌

 𝜌 − 1 2
.

∞

𝑘=0

 

 

From (4, 13) we have  

 ∅N  x  
 k 

≤
 𝑁 + 𝑟 − 2 !

( 2𝑟 − 1 ‼) 𝑁 − 𝑟 + 11 !
 4𝑟𝑁2 + 𝑟2 . 

Therefore 

       𝑓 𝑟  𝑥 −   𝑝𝑁
(𝑟)

  (𝑥) 
∞

   =   
𝑟 !

𝑘 !

(𝑟)
𝑘=0      

1

2𝜋𝑖
   

𝐸𝜌

 ∅𝑁   𝑥  
 𝑘 

𝑓(𝑧)

∅𝑁    𝑧  𝑧−𝑥 𝑟−𝑘+1 
∞

 

                ≤  
𝑟 !

𝑘 !

(𝑟)
𝑘=0   ∅𝑁  𝑥  

 𝑘 
 

∞

1

2π
  
𝐸𝜌

 𝑓(𝑧) 

𝜌   𝜌𝑁− 𝜌−𝑁  z−x r−k +1  𝑑𝑤  

≤  
𝑟!

𝑘!

(𝑟)

𝑘=0

 ×
 𝑁 + 𝑟 − 2 !

( 2𝑟 − 1 ‼) 𝑁 − 𝑟 + 11 !
 4𝑟𝑁2 + 𝑟2 ×

𝑀

(𝜌𝑁 −  𝜌−𝑁)
×   

2ρ

(ρ − 1)2
 

r−k+1r

k=0
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