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Abstract: This paper presents consistent and stable numerical solutionsof the three dimensional transient heat 

transfer problem with non-homogenous boundary conditions. Finite difference schemes; forward time, 

backward time, and Crank- Nicolson methods have been used to predict the temperature distribution acrossa 

photovoltaic solar cell with specified dimensions. Numerical predictionsusing the three schemes are compared 

with each other and tested against the exact solution of the same problem. Results of the numerical and 

analytical solutions are quite similar with levels of numerical errors kept very negligible. Furthermore, 

accuracy, consistency, convergence, and stability analysis of the finite difference solutions is investigated and 

presented in this study.Conditions for consistency, convergence and stability of each algorithm is derived in this 

paper. The methodology showed to be quite robust for such a time-dependent three-dimensional problem.  
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I. Introduction 
Photovoltaic solar systems are one of the most promising sources of electrical energy. Because of low 

efficiency of PV modules which estimates to be in the range between 13% and 20% [1], some practical 

techniques are used to increase the incoming radiation on the PV cells by using concentrators or using solar 

tracking. However, these techniques cause the temperature of these cells to riseabove the operating limit. This in 

turn, lowers the solar cell efficiency and subsequently its maximum power output. Sensitivity of the electrical 

efficiency to the thermal state of these solar modules motivates research on predictions of temperature 

distributions in the cell. Computational modeling has been favorable due to the lack of practical measurements. 

Numerical predictions of temperature distribution and its response to the amount of solar radiation give better 

insight into the factors controlling the efficiency of this solar system and ways of attaining optimum conditions. 

In addition, numerical methods are regarded as cheap yet accurate tools for testing newly proposed physical 

systems at several operating conditions. For example, it has been suggested that the loss in energy conversion 

would be partially avoided by heat extraction using cooling media.This would be tested numerically by applying 

a convection boundary condition to the mainly conduction heat equation. Also, computational predictions give 

much more details on the temperature distributions across the solar cell.  

Application of finite difference computations to heat transfer problems varies from large industrial 

systems to microscale systems. Dai and Nassar [2] implemented the Crank–Nicholsonscheme on thin microscale 

films of microelectronic devices. They showed that the discrete energy method is unconditionally stable in three 

dimensional solutions of the heat equation. Notton et al. [3,4] developed a one-dimensional Finite Difference 

transient model to solve energy balance equations, between different layers of a PV panel. They also studied the 

effect of various convective heat transfer equations on the accuracy of the results. Shahzada Pamir Alyet al. 

developed a fully transient two-dimensionalfinite difference (FD) thermal model. They developed a completely 

generic computational code that can apply to any PV configuration. Also they have studied were the effects of 

including heat transfer from the sides of a PV panel and heat generation in the front glass cover [5] 

This study presents numerical simulations of the temperature distribution on the PV module using 

three-dimensional finite difference algorithms. The temperature distribution inside a polycrystalline PV solar 

module (SOL-060-01) has been predicted by solving the heat diffusion equation numerically.  Three numerical 

solutions and the exact analytical solution have all been produced at the same initial and boundary conditions for 

meaningful comparisons. 
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Table 1: Thermo-Physical Parameters. 
Solar PV parameters Value 

The length of PV module, a 1.5m 

The width of PV module, b 0.5m 

The thickness of PV module, c 5cm 

The thermal conductivity, k 0.5 w/m.k 

Specific heat, Cp 871 J/kg.k 

Density, 𝜌 2719 𝑘𝑔/𝑚3 

The thermal diffusivity, 𝛼 2.111 × 10−7𝑚2/𝑠𝑒𝑐 

 

The lower surface of the PV module is cooled and maintained at 20𝑜𝐶, and the upper surface is hot as 

it is exposed to the solar irradiance and maintained at 60𝑜𝐶. While, all sides of the PV module are thermally 

insulated. The dimensions and the electrical specifications of the PV module are shown in Table1. 

 

II.  The mathematical model 
The governing equation and the boundary conditions for the transient heat diffusion inside the solar PV 

module is derived from the general form of the heat (energy) equation.  The governing differential equation for 

this physical problem (3-D transient diffusion in a solar module) can bewritten as [6,7,8], 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
=

1

𝛼

𝜕𝑇

𝜕𝑡
                                                                         (1)  

;           𝑇𝑥 0, 𝑦, 𝑧, 𝑡 = 0                ;   𝑇𝑥 𝑎, 𝑦, 𝑧, 𝑡 = 0                         
;           𝑇 𝑥, 0, 𝑧, 𝑡 = 20              ;   𝑇 𝑥, 𝑐, 𝑧, 𝑡 = 60 

;          𝑇𝑧 𝑥, 𝑦, 0, 𝑡 = 0                 ;    𝑇𝑧 𝑥, 𝑦, 𝑏, 𝑡 = 0          
;           𝑇 𝑥, 𝑦, 𝑧, 0 = 25𝑥𝑦𝑧     

The exact solution for the non-homogenous system above has been found analytically by using the assumption, 

T x, y, z, t = u(y) + v(x, y, z, t)withseparation of variable technique and the resulting expression is [7,8], 
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c
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2.1 Finite difference algorithm 

In this method, the partial differential equation is transformed to a set of algebraic equations expressing 

temperature at discrete points. This numerical formulation is derived by applying the finite difference and 

Taylor expansion for the functionT x, y, z, t . Spaces between nodal points can straightforwardly be taken as 

variable or constant. For simplicity of presented formulas, a derivation with a fixed grid spacing is considered 

here but the final numerical model is not constrained to this option.As a result,we get a system of linear 

algebraic equations which couldbe solved with algebraic methods [8,9], 

Ti,j,k
l+1 − Ti,j,k

l = λ[Ti+1,j,k
l − 2Ti,j,k

l + Ti−1,j,k
l + Ti,j+1,k

l − 2Ti,j,k
l + Ti,j−1,k

l + Ti,j,k+1
l − 2Ti,j,k

l + Ti,j,k−1
l ]                     (3) 

2.1.1 Theta algorithms 

By taking a linear combination of right side of equation (3) on twoperiod of time we get, 

Ti,j,k
l+1 − Ti,j,k

l = λθ Ti+1,j,k
l+1 + Ti−1,j,k

l+1 + Ti,j+1,k
l+1 + Ti,j−1,k
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l − 6Ti,j,k
l ]                                                                                 (4) 

where the parameterθ represents a weighting factor[8,10]. 

2.1.1.1 Forward difference algorithm 

The forward time algorithm is obtained by assigningθ = 0  in equation (4), 

Ti,j,k
l+1 =  1 − 6λ Ti,j,k

l + λ[Ti+1,j,k
l + Ti−1,j,k

l + Ti,j+1,k
l + Ti,j−1,k

l + Ti,j,k+1
l + Ti,j,k−1

l ]                                                   (5) 

Equation (5) can be written in matrix form as follows, 

Tl+1 =    I + λA Tl                                                                                            (6) 

2.1.1.2 Backward difference algorithm 

The backward-time algorithm is obtained by assigningθ = 1  in equation (4), 

Ti,j,k
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l+1 − λ[Ti+1,j,k
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l+1 ]                                                   (7) 

𝑜𝑟, Ti,j,k
l+1 =

λ

1 + 6λ
 Ti+1,j,k
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l+1 + Ti,j−1,k
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1
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Equation (8) can be written in matrix form as follows, 

Tl =  I − λA Tl+1                                                                                        (9) 

2.1.1.3 Crank-Nicolson algorithm 

The Crank Nicolson algorithm is obtained by assigningθ = 0.5  in equation (4), 
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+
1
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Or,  Ti,j,k
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Equation (11) can be written in a matrix form as follows, 

(I −
λ

2
A)Tl+1 = (I +

λ

2
A)Tl                                                                                (12) 

 

 

III. Numerical Treatment 
The finite difference systems of equations derived above are solved with iterative methods. Marching 

of the solution is performed using iterative time stepping with no internal iteration. The solution is performed 

using Matlab script which has been developed to compute temperature at all nodal points and thus produces a 

detailed distribution of temperature in all the domain with the required resolution. A sample of the predicted 

temperature field in the (y-z) plan is shown in Table (2). 
 

Table 2: Sample of the results and errors. 

No x y Z 
The exact 

value 

Time step 55 

Forward error Backward error 
Crank- 

Nicolson 
Error 

1 0.015 0.03333 0.0125 46.7858 46.6652 0.1206 46.6645 0.1213 46.6648 0.121 

2 0.015 0.03333 0.0375 46.7678 46.6652 0.1026 46.6646 0.1032 46.6648 0.103 

3 0.015 0.03333 0.0625 46.7479 46.6652 0.0827 46.6646 0.0833 46.6649 0.083 

4 0.015 0.03333 0.0875 46.7326 46.6652 0.0674 46.6646 0.068 46.6649 0.0677 

5 0.015 0.03333 0.1125 46.7171 46.6652 0.0519 46.6646 0.0525 46.6649 0.0522 

6 0.015 0.03333 0.1375 46.7013 46.6652 0.0361 46.6646 0.0367 46.6649 0.0364 

7 0.015 0.03333 0.1625 46.6881 46.6652 0.0229 46.6646 0.0235 46.6649 0.0232 

8 0.015 0.03333 0.1875 46.6757 46.6652 0.0105 46.6646 0.0111 46.6649 0.0108 

9 0.015 0.03333 0.2125 46.6632 46.6652 0.002 46.6646 0.0014 46.6649 0.0017 

10 0.015 0.03333 0.2375 46.6526 46.6652 0.0126 46.6646 0.012 46.6649 0.0123 

11 0.015 0.03333 0.2625 46.6432 46.6652 0.022 46.6646 0.0214 46.6649 0.0217 

12 0.015 0.03333 0.2875 46.6338 46.6652 0.0314 46.6646 0.0308 46.6649 0.0311 

13 0.015 0.03333 0.3125 46.6259 46.6652 0.0393 46.6646 0.0387 46.6649 0.039 

14 0.015 0.03333 0.3375 46.6195 46.6652 0.0457 46.6646 0.0451 46.6649 0.0454 

15 0.015 0.03333 0.3625 46.6133 46.6652 0.0519 46.6646 0.0513 46.6649 0.0516 

16 0.015 0.03333 0.3875 46.6082 46.6652 0.057 46.6646 0.0564 46.6649 0.0567 

17 0.015 0.03333 0.4125 46.6047 46.6652 0.0605 46.6646 0.0599 46.6649 0.0602 

18 0.015 0.03333 0.4375 46.6016 46.6652 0.0636 46.6646 0.063 46.6649 0.0633 

19 0.015 0.03333 0.4625 46.5993 46.6652 0.0659 46.6646 0.0653 46.6649 0.0656 

20 0.015 0.03333 0.4875 46.5987 46.6652 0.0665 46.6646 0.0659 46.6649 0.0662 

 

IV. Consistency analysis 
The consistency of the three finite difference algorithms for the current partial differential equation is 

satisfied with the condition that the limit of the truncation error approaches zero [9,10], 
lim

(h,∆t)→(0,0)
T. E = 0 

where h = ∆x = ∆y = ∆z. 
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4.1. Consistency analysis of the forward time algorithm 

The truncation error for the forward-time algorithm can be found from equation (13) by 

substituting θ1 = θ2 = θ3 = 0, λ =
α .∆t

h2  , and by neglecting the term of the sixth derivative we get, 
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T. E = α. ∆t[
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]
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2
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From the equation above it is obvious that the forward algorithm is first-order in time, second-order in space, 

and is consistent with the heat equation. 

4.2. Consistency analysis of the backward time algorithm 

The truncation error for the backward-time algorithm can be found from equation (13) by 

substituting θ1 = θ2 = θ3 = 1 ,λ =
α .∆t

h2  , and by neglecting the term of the sixth derivative we get, 

T. E = −α. ∆t[
α. ∆t

2
+

h2

12
]
∂4T

∂x4
− α. ∆t[

α. ∆t

2
+

h2

12
]
∂4T

∂y4
− α. ∆t[

α. ∆t

2
+

h2

12
]
∂4T

∂z4
                                                    (15) 

From the equation above, it is obvious that the backward algorithm is first-order in time,second-order in space, 

and is consistent with the heat equation. 
4.3. Consistency analysis of the Crank-Nicolson algorithm 

The truncation error for the Crank-Nicolson time algorithm can be found from equation (13) by 

substituting θ1 = θ2 = θ3 = 0.5, =
α .∆t

h2  , and by neglecting the term of the sixth derivative we get, 

T. E = −
α. ∆t

12
[h2

∂4T

∂x4
+ α2.  ∆t 2

∂3T

∂t3
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12
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12
[h2
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∂3T
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From the equation above, it is obvious that the Crank-Nicolson algorithm is second-order in both time and 

space. Also, it is consistent with the heat equation. 

 
 

V. Convergence 
Convergence of the finite difference algorithms with the partial differential equation is reached when 

limit of the difference between the exact solution U and the numerical solution V approaches to zero [9,10], 
lim

(h,∆t)→(0,0)
(U − V) = 0                                                                 (17) 

 

VI. Stability 
The finite difference algorithm is stable if the resulting errorsdecay from one time step to the next 

one.To Study the stability of the finite difference algorithm we apply Von-Numman method for numerical 

stability and we putTi,j,k
l = Eleghαi eghβ jeghγk    ; g =  −1  in the truncation error equation (13). The equation for 

the magnification coefficient E is derived as follows [8,11], 

E =
1 − 4λ[ 1 − θ1 sin2 hα

2
+  1 − θ2 sin2 hβ

2
+  1 − θ3 sin2 hγ

2
]

1 + 4λ[θ1sin2 hα

2
+ θ2sin2 hβ

2
+ θ3sin2 hγ

2
]

                                                                       (18) 

The stability condition is satisfied using  E ≤ 1, 

 
1 − 4λ[ 1 − θ1 sin2 hα

2
+  1 − θ2 sin2 hβ

2
+  1 − θ3 sin2 hγ

2
]

1 + 4λ[θ1sin2 hα

2
+ θ2sin2 hβ

2
+ θ3sin2 hγ

2
]

 ≤ 1                                                                    (19) 

6.1. The stability for the forward-time algorithm 

By putting θ1 = θ2 = θ3 = 0 into equation above we conclude that the algorithm is conditionally 

stable, 

λ ≤
1

2[sin2 hα

2
+ sin2 hβ

2
+ sin2 hγ

2
]

 ⇒  λ ≤
1

6
                                                                                                               (20) 

6.2. The stability for the backward-time algorithm 

By putting θ1 = θ2 = θ3 = 1 into equation above we conclude that the algorithm is unconditionally 

stable. 
6.3. The stability for the crank-Nicolson algorithm 

By putting θ1 = θ2 = θ3 = 0.5 into equation above we conclude that the algorithm is unconditionally 

stable. 

 

VII. Results 
Three-dimensional contours for temperature inside the PV module are for the exact and the three finite 

difference solutions as shown in fig(1). Figure(2) shows two-dimensional temperature distribution on y-z plan. 

It is obvious from figures (1) and (2) that predictions of the three numerical algorithms are identical. On the 

other hand, deviations of these finite-difference computations from the exact solution are not negligible 

especially at the point’s lies between 0.01 to 0.04 in y-direction. Yet, the accuracy is still very good. From the 

results analysis that has been done, the finite difference algorithm shows a faster convergence to the solution 



Consistent Three-Dimensional Finite Difference Modeling of Heat Transfer with non-homogenous .. 

DOI: 10.9790/5728-1402021217                                      www.iosrjournals.org                                        16 | Page 

than Crank Nicolson and the backward algorithms. In addition, the forward time algorithm is stable under the 

condition ∆𝑡 ≤ 55.5. 

 

VIII.  Conclusion 
A three-dimensional finite difference model for heat transfer was derived and implemented in 

MATLAB to predict temperature distributions inside the PV panel SOL-060-01. The forward-time, the 

backward-time, and Crank-Nicolson algorithms were used to solve temperature equation for the PV panel. The 

results from numerical solutions were very similar and quite comparable to the exact solution as can be seen in 

figures (1,2). The accuracy, the consistency, the convergence, and the stability of the solution of the three  

 

 

 

 
 

 

 

Temperature distribution for the exact solution. Temperature distribution for the forward algorithm. 

 

 
 

 

 

Temperature distribution for the backward algorithm. Temperature distribution for the crank-Nicolson. 
Figure 1: 3-D temperature distribution for the exact solution & the finite difference algorithms. 

 

 
 

 

 

Temperature distribution for the exact solution. Temperature distribution for the forward algorithm. 
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Temperature distribution for the backward algorithm. Temperature distribution for the crank-Nicolson. 

Figure 2: 2-Dtemperature distributions on y-z plane. 

 
algorithms were discussed in this paper. It has been shown that these three finite difference schemes give 

consistent solution for the partial differential heat equation. The forward-time is shown to be conditionally 

stable while the backward-time and the crank-Nicolson schemes are unconditionally stable.  The properties of 

these schemes are summarized in Table (3). 
 

Table 3: Numerical comparison between numerical results of the finite difference algorithms. 
 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 Forward Bacward Crank − Nicolson 

1 
Algorithm θ = 0 θ = 1 θ =

1

2
 

2 

Truncation Error 

T. E = 

α. ∆t[
α. ∆t

2
−

h2

12
]
∂4T

∂x4
 

+α. ∆t[
α. ∆t

2
−

h2

12
]
∂4T

∂y4
 

+α. ∆t[
α. ∆t

2
−

h2

12
]
∂4T

∂z4
 

T. E = 

−α. ∆t[
α. ∆t

2
+

h2

12
]
∂4T

∂x4
 

−α. ∆t[
α. ∆t

2
+

h2

12
]
∂4T

∂y4

− α. ∆t[
α. ∆t

2
+

h2

12
]
∂4T

∂z4
 

T. E = 

−
α. ∆t

12
[h2

∂4T

∂x4
+ α2 .  ∆t 2

∂3T

∂t3
] 

−
α. ∆t

12
[h2

∂4T

∂y4
+ α2 .  ∆t 2

∂3T

∂t3
] 

−
α. ∆t

12
[h2

∂4T

∂z4
+ α2 .  ∆t 2

∂3T

∂t3
] 

3 Accuracy O(h2 + ∆t) O(h2 + ∆t) O(h2 + (∆t)2) 
4 Consistency Consistent Consistent Consistent 
5 Convergence Convergent Convergent Convergent 
6 

Stability 
Conditionally stable  

λ ≤
1

6
 

Unconditionally stable Unconditionally stable 

7 Time Step size 55 55 55 
8 Number of time steps  179 267 223 
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