Extension of Some Theoremsin General Metric Spaces

Salwa Salman Abed ${ }^{1)}$, Ebtihal Nabil Jaluobe ${ }^{2)}$
${ }^{1,2)}$ Department of Math., Coll. of Education for pure sciences Ibn Al-Haitham, Uinversity of Baghdad, Iraq
Corresponding Auther:Salwa Salman Abed salwaalbundi@yahoo.com

Abstract:Abstract: We prove a version ofCaristi-Kirk - Browder Theorem and Park's Theorem (Park, 198) and (Park and Rhoades, 1983) in G-metric space. And then give some corollaries.
Keywords: G-metric spaces, fixed point.

I. Introduction

In 2006, a general metric space was introduced by Mustafa and Sims, as appropriate notion of generalized metric space called G-metric spaces as follows.

Definition (1.1)(Mustafa, Sims, 2006)
(1) 'Let X be a non-empty set and $\mathrm{G}: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}^{\wedge}+$ be a function for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}$ in X satisfying the following conditions: $(x, y, z)=0$ if $x=y=z$
(2) $0<G(x, x, y)$ with $x \neq y$
(3) $\quad G(x, x, y) \leq G(x, y, z)$ with $y \neq z$
(4) $\quad G(x, y, z)=G(P(x, y, z)), P(x, y, z)$ is permutation of x, y, z
(5) $\quad G(x, y, z) \leq G(x, a, a)+G(a, y, z)$

Then the ordered pair (X, G) is called a generalized metric or G-metric space. X is said to be symmetric if for all x, y in X

$$
G(x, y, y)=G(y, x, x) . "
$$

Proposition (1.3) (Mustafa, Sims, 2006)
"Let (X, G) be a G-metric space Then for any u, v, w, and $b \in X$, the following are satisfies
(1)if $G(u, v, w)=0$ Then $u=v=w$
(2) $G(u, v, w) \leq G(u, u, v)+G(u, u, w)$
(3) $G(u, v, v) \leq 2 G(v, u, u)$
(4) $G(u, v, w) \leq G(u, b, w)+G(b, v, w)$
(5) $G(u, v, w) \leq 2 / 3(G(u, v, b)+G(u, b, w)+G(b, w, y))$
(6) $G(u, v, w) \leq G(u, b, b)+G(v, b, b)+G(w, b, b) "$

Definition (1.4) (Mustafa, Obiedat, Awawdeh,2008)
"Let (X, G) be a G-metric space, let $\left(x_{n}\right)$ be a sequence of points of X a point $x \in X$ is said to be the limit of the sequence $\left(x_{n}\right)$ if

$$
\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0
$$

Thus, that if $x_{n} \rightarrow x_{0}$ in a G-metric space (X, G),then for any $\varepsilon>0$ there exists $K \in N$ such that $G\left(x, x_{n}, x_{m}\right)<$ ε for all $n, m \geq K$. "
Definition (1.5) (Mustafa, Obiedat, Awawdeh, 2008)
"Let (X, G) be a G-metric space a sequence $\left(x_{n}\right)$ is called G-Cauchy if given $\varepsilon>0$, there is $K \in N$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$, for all $n, m, l \geq K$, that is , if $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow \infty$."
Definition (1.6) (Mustafa, Obiedat, Awawdeh, 2008)
"A G-metric space (X, G) is said to be G-complete or (complete G-metric) if every G-cauchy sequence in (X, G) is convergent in (X, G)."

Extension of Some Theorems in General Metric Spaces

Definition (1.7)(Mustafa, Sims, 2006)
"Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G-metric spaces, and let $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ be a function. Then f is said to be G-continuaus at a point $a \in X$ if and only if given $\varepsilon>0$, there exists $\delta>0$ such that $x, y \in X$; and $G(a, x, y)<\delta \Rightarrow G^{\prime}(f(a), f(x), f(y))<\varepsilon$
A function f is G-continuous on X if and only if it is G-continuous at all $a \in X$."
Definition (1.8) (Mustafa, Obiedat, Awawdeh, 2008)
"Let (X, G) be a G-metric spase, the mapping $T: X \rightarrow X$ then for all $x, y, z \in X$
$\mathrm{i}-T$ is called $G-$ contraction mapping if
$G(T(x), T(y), T(z)) \leq k G(x, y, z)$,forsome $k \in(0,1)$
ii-. T is called a G - contractive if
$G(T(x), T(y), T(z))<G(x, y, z)$, for all x, y, z in X with $x \neq y \neq z$
iii- T is called G-expansive mapping if
$G(T(x), T(y), T(z)) \geq a G(x, y, z)$, for some $a>1^{\prime \prime}$
"The version of Banach's fixed point Theorem in G-metric space is
Theorem (1.10) (Mustafa, Obiedat, Awawdeh, 2008)
"If (X, G) be a complete G-metric space and $T: X \rightarrow X$ be a G - contraction mapping, then T has unique fixed point z in X, and $\lim _{n \rightarrow \infty} T^{n}(x)=z$, for any intial point x in X."

II. Method

We begin with following
Theorem (2.1): Let M be a subset of a complete G-metric space and $T: X \rightarrow X$ be mapping such that $\varnothing: X \rightarrow R^{+} G(x, x, T x) \leq \emptyset(x)-\emptyset(T(x))$, for all $x \in X$.
where \emptyset is lower semi continuous function

Proof:

For $x_{0} \in X$ and $n, m \in N$ with $n<m$, we have $\emptyset: X \rightarrow R$, then, by similar argument of proof of Theorem (2.1) in [2]

$$
\begin{gathered}
G\left(T^{n}\left(x_{0}\right), T^{n}\left(x_{0}\right), T^{m+1}\left(x_{0}\right)\right) \leq \sum_{i=n}^{m} G\left(T^{i}\left(x_{0}\right), T^{i}\left(x_{0}\right), T^{i+1}\left(x_{0}\right)\right) \\
\leq \emptyset\left(T^{n}\left(x_{0}\right)\right)-T^{m+1}\left(x_{0}\right)
\end{gathered}
$$

In particular,

$$
\sum_{i=0}^{\infty} G\left(T^{i}\left(x_{0}\right), T^{i}\left(x_{0}\right), T^{i+1}\left(x_{0}\right)\right)<\infty
$$

Therefore, ($\left.T^{n}\left(x_{0}\right)\right)$ is Cauchy sequence. Since T is continuous, then $\left(T^{n}\left(x_{0}\right)\right)$ converges to a fixed point of T.

Definition(2.2):

A real valued function \emptyset on X has a G-point $p \in X$ if

$$
\emptyset(p)-\emptyset(x)<G(p, p, x), \text { forother point } x \in X, x \neq p
$$

Proposition (2.3) :
Every lower semi continuous function $\emptyset: X \rightarrow R^{+}$on a complete X has a $G-$ point p in X.

Proof:

By putting $T=I$ and $T(x)=p$ in theorem (2.1).

Theorem (2.4)

Let M be a subset of a complete G-metric space X and $f, g: M \rightarrow X$ be maps such that
(i) $\quad f$ is surjective
(ii) There exist a lower semi continuous function $\emptyset: X \rightarrow R^{+}$satisfying
$G(f(x), f(x), g(x)) \leq \emptyset(f(x))-\emptyset(g(x))$
for each $x \in M$. Then f and g have a coincidence point.

Proof:

By proposition (2.3), then \emptyset has a G-point $p \in X$, means that

$$
\emptyset(p)-\emptyset(x)<G(p, x, x)
$$

Now, let $x \in f^{-1} p$, suppose $f x=g x$ since $p=f x$ and $g x \in X$, we have

$$
\emptyset(f(x))-\emptyset(g(x))<G(f(x), f(x), g(x))
$$

which contradicts (ii).
By putting $X=M$ and $=I$, Theorem (2.1) reduces to the version of Caristi-Kirk Theorem in G-metric space: Consequently, we obtain the following:

Extension of Some Theorems in General Metric Spaces

Corollary (1)

(i)

If $M=X$ and $f=I_{x}$, then the above theorem reduces to the version Caristi-Kirk -Browder theorem in this case , if g is G-continuous then for any $x \in X$ the sequence $\left\{\begin{array}{l}g_{x}^{n}\end{array}\right\}$ G-converges to a fixed point of g
(ii) If $M=X$ and $g=1_{x}$.then f has a fixed point

Corollary (2)
Let X be a G-metric space and $f: X \rightarrow X$ be onto mapping such that for all x, y in X if there is a constant $a>1$ such that
$G(f(x), f(x), f(y)) \geq a G(x, x, y) \ldots$ (2.2)
then f has a unique fixed point

Proof:

From (2.2) f is clearly injective. Since f is also surjective, $g=f^{-1}$ exists and is surjective for any x, y in X we obtain, from (2.3)

$$
G(x, x, y) \geq a G(g x, g x, g y)
$$

and g is G-continuous. One could use Theorem (1.10) at this point to prove that g has a unique fixed point.
Adding $(a-1) G(x, x, y)$ to each side of the above inequality to get

$$
a G(x, x, y)-a G(g x, g x, g y) \geq(a-1) G(x, x, y)
$$

Now, put $y=g x$ to get
$G(x, x, g x) \leq \emptyset(x)-\emptyset(g x)$,
where, define \emptyset as

$$
\emptyset(x)=\frac{a G(x, x, g x)}{(a-1)}
$$

since g is G-continuous, \varnothing is lower semi continuous, and g has a fixed point by Corollary (1-i). For any $x \in X$,the sequence $\left\{g^{n} x\right\} G$-converges to a fixed point of g, that is ,of f. From (2.2) the fixed point is unique.

Corollary (4)

Let X be a G-metric space and $f: X \rightarrow X$ be onto mapping such that for all x, y in X if there exist $a, b, c \geq 0$ with $a+b+c>1$ and $a<1$ such that $G(f(x), f(x), f(y)) \geq a G(x, x, f(x))+b G(y, y, f(y))+c G(x, x, y) \ldots .(2.3)$
with $x \neq y$,then f has a fixed point
Proof:
Since (2.4) is symmetric in x and yassume that $a=b<1$. Adding, a $G(f x, f x, f y)$ to both sides of (2.3) we have

$$
(1+a) G(f x, f x, f y) \geq a[G(x, x, f x)+G(f x, f x, f y)+G(f y, y, y)]+c G(x, x, y) \geq(a+c) G(x, x, y)
$$ or

$$
G(f x, f x, f y) \geq \frac{a+c}{1+a} G(x, x, y)
$$

since $a+c=0$ implies $a=b>1,(a+c) /(1+a)>0$
and f is injective. Since f is also surjective $g=f^{-1}$ exists. Also, since
$G(x, x, y) \geq \frac{a+c}{1+a} G(g x, g x, g y)$, for all $x, y \in X$,
and hence g is G-continuous. (2.3) will be in the form

$$
G(x, x, y) \geq a G(g x, g x, x)+b G(g y, g y, y)+c G(g x, g x, g y)
$$

set $y=g x$ and then add $(b+c+a-1) G(x, x, g x)$
to each side to get

$$
(b+c)\left[G(x, x, g x)-G\left(g x, g x, g^{2} x\right)\right] \geq(b+c+a-1) G(x, x, g x)
$$

or
where defined

$$
G(x, x, g x) \leq \emptyset(x)-\emptyset(g x)
$$

$$
\emptyset(x)=\frac{(b+c) G(x, x, g x)}{(a+b+c-1)}
$$

Since g is G-continuous, \emptyset is (lsc) and g has a fixed point by Corollary (1-i). Moreover for $\forall x \in X$ the sequence $\left\{g^{n} x\right\} G$-converges to a fixed point of g, that is ,of f
Corollary (5)

Extension of Some Theorems in General Metric Spaces

Let X be a G-metric space and $f: X \rightarrow X$ be onto and G-continuous mapping such that for all $x \in X$ and if $\exists a>1$ satisfying

$$
\begin{equation*}
G\left(f(x), f(x), f^{2}(x)\right) \geq a G(x, x, f(x)) \tag{2.4}
\end{equation*}
$$

then f has a fixed point

Proof:

Adding $-G(x, x, f(x))$ to condition (2.4) yields

$$
G(x, x, f x) \leq\left[G\left(f x, f x, f^{2} x\right)-G(x, x, f x)\right] /(a-1)
$$

Define, $\varnothing: X \rightarrow R^{+}$by $\emptyset(x)=\frac{G(x, x, f(x))}{a-1}$
since f is G-continuous, \varnothing is (lsc) and by corollary (1-ii), f has fixed point Corollary (6)

Let X be a G-metric space and $f: X \rightarrow X$ be onto and G-continuous mapping such that for all x, y in X and if there exists a real constant $a>1$ such that

$$
G(f(x), f(x), f(y)) \geq a \min [G(x, x, f(x)), G(y, y, f y), G(x, x, y)] \ldots .(2.5)
$$

then f has a fixed point

Proof:

Set $y=f(x)$ in condition (2.5)

$$
G(f(x), f(x), f(y)) \geq a \min [G(x, x, f x), G(y, y, f y), G(x, x, y)]
$$

yield to

$$
G\left(f(x), f(x), f^{2}(x)\right) \geq a G(x, x, f(x)) \ldots . .(2.4)
$$

then f has a fixed point .

Reference

[1] Mustafa, Z., Obiedat , H. Awawdeh, F. 2008. Some Fixed Point Theorem for Mapping on Complete G-metric Spaces. Fixed Point Theory and Applications, , article ID 189870, doi: 10.1155/2008/189870
[2] Mustafa, Z., Sims, B., 2006. A New Approach to Generalized Metric Spaces ,Journal of Nonlinear and Convex Analysis, 7 (2), 289-297.
[3] Park, S. 1983.On Extensions of The Caristi-kKirk Fixed Point Theorem, Korean math.sco.,19, 143-151.
[4] Park, S. Rhoades, B. 1983. Some Fixed Point Theorems for Expansion Mappings Jnanbha, 15, 151-156.

[^0]
[^0]: DOI: 10.9790/5728-1402023846www.iosrjournals.org41 | Page

