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Abstract: The problem of Fitting conic sections to given data in the plane is one which is of great interest and 

arises in many applications, e.g. computer graphics, statistics, coordinate metrology, aircraft industry, 

metrology, astronomy, refractometry, and petroleum engineering [7, 2, 3]. In this paper, we present several 

methods which have been suggested for Fitting ellipses to data in the plane. We will look particularly at one 

method, by giving examples and using Matlab to solve these problem. 
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I. Introduction 

 Let a relationship between variables x and y be given by ,0);,( pyxf  where 
nRp  is a vector 

of parameters. For example, this could be an ellipse or any conic in the x,y plane. 

Let data points miyx ii ,...,1),,(   be given. Then ideally we wish to choose p so that 

.,....1,0);,( mipyxf ii   

 However, this is unlikely to be possible, so we need some other ways of choosing p. 

This method is known as geometric fitting and uses the parametric representation of the ellipse such that the 

sum of the squared orthogonal distances from each data points to the ellipse is minimal, and this is discussed by 

Helmut  Spath in [4]. 

 In the other sections we introduces different numerical different numerical examples, with relevant 

figures and results. 

 

II. Geometric Fitting 
Given the model 

)1.2(,0);,( yxf  

and the data points miyx ii ,...,1),,(   in the plane, another possibility is as follows: 

 We can choose the sum of the squares of the distances from the data points ),( ii yx  to the curve 

0);,( yxf  to be minimized. We consider the special case when it is possible to give a parameterization of 

the curve, using )(),( tyytxx  . Then we examine here a special algorithm proposed by Helmut Spath. A 

more general Gauss-Newton method is considered also to be compared with it. Both methods are applied for 

ellipses. 

 

III. The method of Spat for an ellipse 

Let the data points mkyx kk ,...,1),,(   be given in the plane, and )(),( tyytxx   be the parametric 

representation of an ellipse 

.sin)(,cos)( tqbtytpatx   

We have to minimize with respect to   and t  

 

where 
Tqpba ][  is the parameter vector which must be determined. Also 

T

mttt ),...,( 1  has to be 

determined, representing the positions of the points on the curve whose distances to the data points are 

minimized i.e. the distances are orthogonal. 

Notice that ti only appears in the i-th term i.e. ),( tS   is separable with 

],))(())([(),( 22

1
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i tyytxxtS 


 (3.1) 
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respect to the unknowns .,...,1 mtt  

Conditions for a minimum are 

)3.3().,...,1(,0),(

)2.3().,...,1(,0),(

njt
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If    is fixed, the (3.2) corresponds to m equations, each of which can be solved for it . If t is fixed, the (3.3) is 

a linear least squares problem for   . We can obtain a solution by an alternation procedure, updating t and    

systematically. 

First we fix   and we must determine the minimum it  which satisfies (3.2). That is 

)4.3().,...,1(,0))())(((2))())(((2 mjtytyytxtxx iiiiii   

For each i, then we could select the it  that globally minimises the i-th term of S. 

Thus, for given   , we could attain a global minimum of 1),( StS   with respect to t. 

 Now for the ellipse it turns out that the equations (3.4) already are or can be transformed into m 

polynomial equations of low degree less than or equal to four. This is explained below. For the ellipse we have 

four roots (zeros), but either two or four are real zeros. 

Next we fix t at these values and satisfy (3.3), which can be interpreted as a linear squares problem, because 

appears linearly. 

 This delivers the global minimum for  𝑆(𝛽, 𝑡) as desired, for this t. 

Each step gives a reduction of the value of S until no further reduction is possible, when a minimum of (3.1) has 

seen found.  

Consider the calculation for 𝛽. Let r be the residual vector: 

 

𝑟 =  [𝑟𝑥    𝑟𝑦 ]𝑇 , 

each component of r is: 

𝑟𝑥 =  

𝑥1 − 𝑎 − 𝑝 𝑐𝑜𝑠𝑡1

⋮
   𝑥𝑚 − 𝑎 − 𝑝 𝑐𝑜𝑠𝑡𝑚

 , 

 

𝑟𝑦 =  
𝑦1 − 𝑏 − 𝑞 𝑐𝑜𝑠𝑡1

⋮
   𝑦𝑚 − 𝑏 − 𝑞 𝑐𝑜𝑠𝑡𝑚

 , 

 

we can write the i-th component of  r as follows 

 

,),,1(
1

nmmirdc ii

n

k

kik 


  

 

 

if we introduce the residuals ri, in matrix form, we can write the error equation 

)5.3(,,,,, 22 mnnm RrdRRCrdC     
 

 

where C is a 2m x n, matrix, with n in this case equals to 4, and d is a vector of length 2m. 
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we assumed that the matrix C has the maximal rank, i.e. its column vectors are linearly independent. 

The unknowns k of the error equations are to be determined according to the Gaussian principle, such that S 

the sum of squares of the residuals r is minimal. And this is equivalent to minimising the square of the 

Euclidean 

norm of the residual vector. 

From (3.5) we obtain 

.)(2

)()(

dddCCC

ddCddCCCdCdCrr

TTTTT

TTTTTTTT








 

 

We put    ., nnnTT RbRAdCbCCA  
 

As C has maximal rank, the symmetric matrix A is positive definite. Thus 

 

).6.3(!2:),(2 MinddbArrtSS TTTT    

 

A necessary condition for minimising S( β) at the point , is the gradient  .0)(  S  

The i-th component of the gradient   )(S  is obtained from the explicit representation of (3.6). 

 

)7.3(),...,2,1(22),(
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After division by 2 from (3.7), we obtain the linear system of equations: 

 

)8.3(,0bA  

 

for the unknowns  .,...,, 21 n We call this system of equations the Normal equations of the error 

equations (3.8). The Matrix A is positive definite, thus from the assumption on C, the unknowns k are uniquely 

determined by the normal equations (3.8). 

The function S(β) is indeed minimised by these values, because the Hessian matrix of S( ), the matrix of the 

second partial derivatives, is equal to the positive definite matrix A (see [6] page 294-296). 

There are a lot of ways to solve the normal equations (3.8). Because the direct method used by MATLAB is 

faster, we solve the normal equation by this method 

.0)(\  bA  

There is also the possibility that (3.5) can be solved directly using the (\) 

MATLAB command. 

 

3.1 The general Algorithm 

Minimise S( β,t) w.r.t t, let S1  be the result for this stage. 

 

Step 1: 

Give initial guess 0, tolerancetol. 

 

Step 2: 

Compute by (Maple) the derivative of S w.r.t. (t) 

1. ;0))sin(())cos((: 22  iiiii tqbytpaxS  

2. ;0))sin(())cos((: 22  iiii tqbytpaxeq  

3. );,(: teqsolvesol   

3
22

4

*)*2*2**2**2(*)**((arctan(*2: ZqpapxpZyqbqRootOfsol ii 

))***)*2*2**2**2( 22

ii yqbqzqpapxp   
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 222 *2**2)(**2;0;*2*2**2)(**2);(**[ papixpqpapixpiyqbqB

.:1)];(**;*2 2 niforiyqbqq   

 

);(BrootsAlpha  

 

).();tan(2 MATLABinAlphaaT   

 

4. Take only the real values of T 

5. Substitute this real values in Si, and choose the minimum of Si and the correspondent Ti. 

6. The minimal S is  

n

i iS
1

, equals to S1. 

Step 3: 

Fix t and find S2 the minimium of S w.r.t. β 

1. Solve the linear least square problem A*β = b as we saw above such that = A\ - b. 

2. ,*2 rrS   where r is the residual defined before. 

3. Compute S1 and S2 until we get the minimum value of them with tolerance proposed. At each iteration, 

there must be a decrease in the value of S. 

Remark: Direct methods are usually faster and more generally applicable, the usual way to access direct 

methods in MATLAB is not through the LU or Cholesky factorisation, but rather with the matrix division 

operator /  and  \. If A is square, the result of X = A\B is the solution to the linear system AX = B. If A is not 

square, then a least squares solution is computed ( see [5] and MATLAB version 4.2c, 1994). 

 

IV. Gauss-Newton method 
On considering the nonlinear least squares problem: 

).(min
1

2 XrS
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For the ellipse
TtX ],[ , where

Tqpba ][ and ,][ 1

T

mttt  , n=4, 

T

mrrrr ][ 21  , .rrS T  

 

Differentiating w.r.t.  ),...,1(, mniX i   
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where J is the Jacobian matrix associated with S and is an m x n matrix of the form: 
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Hence the p-th row is the derivative vector of the p-th sub-function rX w.r.t. each element of X. 

 

Differentiate again: 
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Where  S2 is the n x n  symmetric Hessian matrix of S. The n x n matrix B which the error matrix is: 

,2

1

i

m

i

i rrB 


 

 

where S2  symmetric and positive definite J
T
J positive semi-definite because  ,0 yyzJJz TTT

thus 

we neglect B [1]. 

 

4.1 The general algorithm for Gauss-Newton Method 

 

Then the G-N Algorithm is: 

 

Step 1: 

Choose x
0
 initial approximation to x and a maximum value of S let be S1 = 10

8
, and a tolerance tol, set k =0. 

 

Step 2: 

Compute r
k
, J

k
, thus J

kT
J

k
 and  J

kT
 r

k
. 

If  ,tolrJ T   stop. 

;* kkT rrS   

);1( SSabsd   

If d < tol, break, end 

 

Step 3: 

Solve the equations by finding  
k , here  is the correction vector 

.kkTkkkT rJJJ   

 

Step 4: 

If ,tolk   return. Otherwise set   .1,1  kkxx kkkk  We put here the step length or the 

damping factor equals to 1 (for the ellipse and the circle). 

 

Step 5: 

If 
kk SS 1

 return to step 2. where rrS T . Otherwise set 
2


  . i.e. halve the step-length , until we get 

kk SS 1
 then return to step 4, (this case appears clearly for the parabola). 

The correction vector 
k  is based on local information, the new approximation may have undesirable 

properties. For example, even though 
k  is not uphill at 

kx , we may still find that 
kk SS 1

 (the case of the parabola). It is necessary, therefore, to 

introduce a factor 
k , which modifies the norm of the correction vector; it becomes convenient to refer to the 

latter as a " search direction ". And 
k  is usually called a step length, or in the present context, a " damping 

factor " (see [1]). 

 

V. Examples 
 With different set of points, we applied here the geometric methods (Spath, Gauss-Newton) for an 

ellipse. MATLAB was used here, because it is easy to implement against another package or language like 

Fortran, and we save a lot of time too. 

 

5.1Fitting Ellipses 

Consider the 'Spath' data set given from [4] in Table (4.1) which is used for all examples of ellipses. 

 

 

x 8 3 2 7 6 6 4 
y 1 6 3 7 1 10 0 
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5.2 Example 1: Geometric method with Spath Algorithm 

Figure 1 shows the ellipse generated from the data using the Spath method with initial guess 

4.8224]'.   2.9542   4.4887   [5.2604 = 0 . 

And s= 2.4279 number of iterations = 22. 

The ellipse generated is 

 





sin  5.325467 + 4.790501 =y 

cos 2.626025 + 5.041206 =x
 

 
Figure 1: Ellipse fits with Spath Method 

 

5.3 Example 2: Geometric method with Gauss-Newton 

We get the same Figure as Figure 1 and we got the results as follow. 

s= 2.4279 number of iterations = 10. 

The ellipse generated is: 





sin  5.326559 + 4.789972 =y 

cos 2.625540 + 5.041063 =x
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