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Abstract: We examine the probability density function of the present value ofperpetuity, subject to a stochastic 

Brownian motion rate of return of an investment and then show that its inverse is a gamma distribution. The 

derivation uses the scale function and martingale results from the theory of calculus. 
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I. Introduction 
 In a real world the expected occurrence of events in future cannot be predicted accurately without 

errors. The assumption of accurate prediction is only theoretical; hence the present value of a unit-currency in a 

deterministic world can be represented by a continuous perpetuity as; 

 



0

1
exp

r
dtrtA (1) 

 This impliesthat, an initial amount A   invested at a rate of interest  r  will be enough to fund a unit-

currency continuous perpetuity.  Giaccotto (1989)concludes that the assumption, that future interest rates are 

known with certainty at the time of investment is not practicable; interestand investment rates of return are 

stochastic in real situations. Stochastic differential equations, according toShiryaev (2003), enrich modeling 

capacity to an astonishing degree.  Hence the present value of a unit-currency continuous perpetuity becomes a 

random variable which can be presented as:  

 



0

* exp tdtrA t (2) 

where trt is the rate of return on  t,0 . Thus the certainty of stating the value of A needed to fund the 

perpetuity is not guaranteed. One can only estimate the probability  AAP *
, that the sum A  is enough. The 

random quantity 
*A isreferred to as the present value of a stochastic perpetuity (PVSP). The main objective of 

 this paper is to show that the inverse of the present value,   1* 
A , of   a stochastic perpetuity has a 

gamma distribution when the rate of return obeys Brownian motion with a drift term. A precise confidence 

interval can be obtained for the amount needed to sustain a fixed perpetual consumption level when rates of 

return on investment are stochastic( Karatzas& Shreve 1991).Boyles (1976) analyses the statistical properties of 

the present value of an insurance contract under stochastic returns in discrete time. Panjer and Bellhouse (1990) 

expand Boyle’s results and apply them to contingency reserves and premium margins. Beekman and Fuelling 

(1991) used an Ornstein-Uhlenbeck process to model the force of interest accumulation function and derived the 

first two moments of both deterministic and contingent future cash flows.De Shepper et al (1994) derived 

approximate expressions for the present value of annuitiesfor stochastic interest rates.Christiansen(2013) argues 

that the class of Gaussian diffusions would be a good approximation of the real future development. Shilong et 

al (2017) construct a new class of interest models based on compound Poisson process. 
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II. Derivation 

If the gamma distribution with parameters   ,  is defined by the probability density function (PDF): 

 
 
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


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





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ww
wg for 0 (3) 

where 0 , 0 ,with mean   WE  and   2var W . Let the cumulative distribution function 

(CDF) be denoted by   ,|wG , and also let the inverse cumulative distribution function (ICDF) be denoted 

by   ,|qIG where ,10  q this imply that    .,|,| qqIGG   

Now, we defined the integral  

  dtBtI t


 
0

exp   (4) as the PVSP of a unit currency with an instantaneous interest rate  and 

variance   driven by a Brownian motion tB . The aim of this paper is to show that the inverse of the PVSP 

obeys a gamma distribution; that is  wIP 



1
has afunctional form that is identical to 









2
,

2

2
|

2
wG , and 

hence Gamma distributed.  

Consider the diffusion process on the space       ,0,,tx  given by the differential equation: 

tttt dBXdtdtXdX  







 2

2

1
,                                                                                    (5) 

where 0 , 0 , 0  are constants and the initial value of the process at time .0t Solving the 

differential equation  in (5) yields the solution; 

    







 

t

stt dsBsxBsX
0

expexp  .(6) 

The process defined by equation (6) will be less than or equal to zero, at a future time 
t  if and only if  

   0exp
0









 

t

s dsBsx   

That is 0t
X iff   





t

s dsBs
x

0

exp 


(7) 

Another property of tX is that, it crosses zero not more than once; which imply that the integral 

 dsBs

t

s




0

exp  is monotonic with respect to
t . This can be written in probability form as 

     000:inf  



ts XPtsXP .(8) 

When t equations (7) and (8), becomes  

     

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                                                 (9) 
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 (10) 

Next is to show using the scale function that the probability of the differential equation given in equation (5) 

with initial value xX 0 ever crosses zero is given by:  
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   





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

2
,

2
|00:inf

2
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





x
GsXP s (11)Definition:The scale function is the mapping that 

transforms the original function into a martingale. We will use the scale function in our derivation. 

Let’s assume another diffusion process defined by  tt XfY  ,then, applying Ito’s lemma this new diffusion 

process will obey the stochastic differential equation: 

     
ttttt XdXfdXXfXdf 

2

1'
,   (12) 

where dtXXd tt

22
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The diffusion process tY  will be a martingale if the drift term  
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1
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1
tttt XXfXXf     collapses to zero. That is the process tY will be a 

martingale if:  

    0
2

1
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1 222 
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tttt XXfXXf  (14) 

 the scale function  xf  must satisfy the differential equation                                                                                     

    222
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Subject to the given initial condition. 

Equation (15) is written in simplified form as: 
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Integrating equation (16) we obtain the solution: 

     1
22

2

2

1
ln

2

1
2

1

ln c

x

xxf 














(17) 

where 1c  is an arbitrary constant. 

Writing equation (17) in exponential form and simplifying gives us the equation  
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where 2c  is a constant. We set 2c  to be equal to one for simplicity inequation (18) and integrating we obtain 
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with 3c  greater than zero. We now re-arrange equation (19) by conveniently setting
k

w
2

2




 ; 
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dk
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 , and substituting to obtain 
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x




 
2

2

2

12 exp




(20) 

by re-scaling the constant 3c . The integral in equation (20)can also be written as: 
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xf .                                                       (21) 

The original diffusion process tX has been mapped into the martingale tY , via the scale function  xf . Hence 

by mapping tX into a martingale, the probability that the process reaches zero is: 
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that is:  
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And dividing by
2

2

1
  we arrived at the equation below which is the required result: 
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Hence    2,2| 221 wGwIP 

 . 

 

III. Conclusion 
 In this paper we obtained an analytical expression for the probability distribution of the present value of 

a continuous perpetuity subject to a stochastic geometric Brownian motion rate of return. The result was 

obtained using the scale function and martingale principle from stochastic ordinary differential equation. The 

integral approximates to the infinite sum of lognormal variates that has no known standard density function. 

Thus,the result can be used both as a pedagogical tool and as a more precise method for computing confidence 

levels. It is of interest to note that the integral in our theorem approximates to the infinite sum of lognormal 

variates 
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