On Scalar Quasi weak m-power Commutative Algebras

G.Gopalakrishnamoorthy¹, M.Kamaraj² and S.Anitha³

 ¹Principal, Sri krishnasamy Arts and Science College, Sattur – 626203, Tamilnadu.
 ²Dept. of Mathematics, Government Arts and Science College, Sivakasi - 626124.
 ³Lecturer, Raja Doraisingam Government Arts College, Sivagangai – 630 561, Tamil Nadu. Corresponding Author: G.Gopalakrishnamoorthy

Abstract: A right near-ring N is called Quasi-weak commutative if xyz = yxz[3]. A right near-ring N is called quasi weak m- power commutative if x^m y $z = y^m xz$ for all $x, y, z \in N$, where $m \ge 1$ is a fixed integer [5]. An algebra A over a commutative ring R is called scalar quasi-weak commutative if for every $x, y, z \in A$ there exists $\alpha = \alpha$ (x, y, z) $\in R$ depending on x, y, z such that $xyz = \alpha yxz$ [8]. In this paper we generalise the concept of scalar quasi-weak commutative as scalar quasi-weak m- power commutativity and prove many results.

Date of Submission: 27-07-2018

Date of acceptance: 11-08-2018

I. Introduction:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each x, y \in A, there exists $\alpha \in R$ depending on x, y such that $xy = \alpha yx.Rich[11]$ proved that if A is scalar commutative over a field F, then A is either commutative or anti-commutative.KOH,LUH and PUTCHA [9] proved that if A is scalar commutative with 1 and if R is a principal ideal domain , then A is commutative. A near-ring N is said to be weak-commutative if xyz = xzy for all x, y, $z \in N$ (Definition 9.4, p.289, Pliz[10]. An algebra A over a commutative ring R is called scalar quasi weak commutative, if for every x, y, $z \in A$, there exists $\alpha = \alpha$ (x, y, z) $\in R$ depending on x, y, z such that $xyz = \alpha yxz$ [8]. In this paper we define scalar-quasi weak m-power commutativity and prove many interesting results analogous to our own results[8].

II. Preliminaries:

In this section we give some basic definitions and well known results which we use in the sequel.

2.1 Definition [10]:

Let N be a near-ring.N is said to be weak commutative if xyz = xzy for all $x,y,z \in N$.

2.2 Definition:

Let N be a near-ring.N is said to be anti-weak commutative if xyz = - xzy

for all x,y,z∈N.

2.3 Definition [2]:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each x, y \in A, there exists $\alpha = \alpha(x, y) \in R$ depending on

x,y such that $xy = \alpha yx$. A is called scalar anti- commutative if $xy = -\alpha yx$.

2.4 Lemma[5]:

Let N be a distributive near-ring. If $xyz = \pm xzy$ for all $x,y,z \in N$, then N is either weak commutative or weak anti-commutative.

3 Main Results:

3.1 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called an scalar quasi-weak m-power commutative if for every $x,y,z \in A$, ther exists scalar $\alpha \in R$

depending on x,y,z such that $x^m yz = \alpha y^m xz$.

3.2 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called an scalar quasi-weak m-power anti-commutative if for every $x,y,z \in A$, ther exists scalar $\alpha \in R$

depending on x,y,z such that $x^m yz = -\alpha y^m xz$.

3.3 Theorem:

Let A be an algebra (not necessarily associative) over a field F.Let $m \in z^+$.

Let $(x+y)^m = x^m + y^m$ holds for all $x, y \in A$. Assume $\alpha^m = \alpha \forall \alpha \in R$. If for each $x, y, z \in A$, there exists a scalar $\alpha \in F$ depending on x, y, z such that $x^m y z = \alpha y^m x z$ then A is either quasi weak m-power commutative or quasi-weak m-power anti-commutative.

 \rightarrow (1)

 \rightarrow (6)

Proof:

Suppose $x^m y z = y^m x z$ for all $x, y, z \in A$, there is nothing to prove. Suppose not, we shall prove that $x^m y z = -y^m x z$ for all $x, y, z \in A$.

First we shall prove that if $x^m y z \neq y^m x z$, then $x^{m+1} z = y^{m+1} z = 0$.

So, assume $x^{m} y z \neq y^{m} x z$.

Since A is scalar quasi weak m power commutative, there exists $\alpha = \alpha(x,y,z) \in F$ such that $x^m y z = \alpha y^m x z$

Also there exists a scalar
$$\gamma = \gamma (x, x+y, z) \in F$$
 such that $x^m (x+y) z = \gamma (x+y)^m xz$.
i.e., $x^m (x+y) z = \gamma (x^m + y^m) xz \longrightarrow (2)$

(1) - (2) gives

 $x^m \ yz \ \textbf{-} \quad x^{m+1} \ z - x^m \ yz = \alpha \ y^m xz \ \textbf{-} \gamma \ x^{m+1}z \textbf{-} \ \gamma \ y^m xz$ (1- γ) $x^{m+1} z = (\gamma - \alpha) y^m xz$ \rightarrow (3) Now $y^m xz \neq 0$ for if $y^m xz = 0$, then from (1) we get $x^m yz = 0$ and so $x^m yz = y^m xz$, contradiciting our assumption that $x^m yz \neq y^m xz$.

Also $\gamma \neq 1$, for if $\gamma = 1$, then from (3) we get $\alpha = \gamma = 1$. Then from (1) we get $x^m yz = y^m xz$, again a contradiction.

Now from (3) we get

$$x^{m+1} z = \frac{\gamma - \alpha}{1 - \gamma} y^m xz$$

i.e., $x^{m+1} z = \beta y^m xz$ for some $\beta \in F. \longrightarrow (4)$

Similarly $y^{m+1} z = \delta y^m xz$ for some $\delta \in F. \rightarrow (5)$

Now corresponding to each choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in F, there is an $\eta \in F$ such that $(\alpha_1 x + \alpha_2 y)^m (\alpha_3 x + \alpha_4 y) z = \eta (\alpha_3 x + \alpha_4 y)^m (\alpha_1 x + \alpha_2 y) z.$ i.e., $(\alpha_1^{m} x^m + \alpha_2^{m} y^m) (\alpha_3 x + \alpha_4 y) z = \eta (\alpha_3^{m} x^m + \alpha_4^{m} y^m) (\alpha_1 x + \alpha_2 y) z.$ Since $\alpha^{m} = \alpha$ for all $\alpha \in F$, we get $\therefore (\alpha_1 x^m + \alpha_2 y^m) (\alpha_3 x + \alpha_4 y) z = \eta (\alpha_3 x^m + \alpha_4 y^m) (\alpha_1 x + \alpha_2 y) z.$ $\therefore \alpha_1 \alpha_3 x^{m+1} z + \alpha_1 \alpha_4 x^m y z + \alpha_2 \alpha_3 y^m x z + \alpha_2 \alpha_4 y^{m+1} z$ $= \eta(\alpha_3\alpha_1x^{m+1}z + \alpha_3\alpha_2x^m yz + \alpha_4\alpha_1y^m xz + \alpha_4\alpha_2y^{m+1}z)$ $\alpha_1 \alpha_3 \beta y^m xz + \alpha_1 \alpha_4 x^m yz + \alpha_2 \alpha_3 y^m xz + \alpha_2 \alpha_4 \delta y^m xz$ $= \eta(\alpha_3\alpha_1\beta y^m xz + \alpha_3\alpha_2 x^m yz + \alpha_4\alpha_1 y^m xz + \alpha_4\alpha_2 \delta y^m xz)$

$$\begin{aligned} \alpha_1 \alpha_3 \ \beta \ \alpha^{-1} x^m yz + \alpha_1 \alpha_4 x^m \ yz + \alpha_2 \alpha_3 \ \alpha^{-1} x^m yz + \alpha_2 \alpha_4 \ \delta \ \alpha^{-1} x^m yz) \\ = \eta(\alpha_3 \alpha_1 \beta y^m xz + \alpha_3 \alpha_2 \ \alpha \ y^m xz + \alpha_4 \alpha_1 y^m xz + \alpha_4 \alpha_2 \delta \ y^m xz) \\ (\ \alpha_1 \alpha_3 \ \beta \ \alpha^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \ \alpha^{-1} + \alpha_2 \alpha_4 \ \delta \ \alpha^{-1}) x^m yz \\ = \eta(\alpha_3 \alpha_1 \beta + \alpha_3 \alpha_2 \ \alpha + \alpha_4 \alpha_1 + \alpha_4 \alpha_2 \delta \) y^m xz \longrightarrow (7) \end{aligned}$$

In (7) we choose $\alpha_2 = 0$, $\alpha_3 = \alpha_1 = 1$, $\alpha_4 = -\beta$.

The Right handside of (7) is zero where as the left hand side of (7) is

$$(\beta \alpha^{-1} - \beta) x^{m}yz = 0$$

 $\beta (\alpha^{-1} - 1) x^{m}yz = 0$

Since $x^m yz \neq 0$ and $\alpha \neq 1$, we get $\beta = 0$.

Hence from (4) we get $x^{m+1}z = 0$.

Also if in (7) we choose $\alpha_3 = 0$, $\alpha_4 = \alpha_2 = 1$ and $\alpha_1 = -\delta$ the right side of (7) is zero where as the left side of (7) is

$$(-\delta + \delta \alpha^{-1}) x^{m} yz = 0$$

i.e., $\delta(\alpha^{-1} - 1) x^m yz = 0$ Since $x^m yz \neq 0$ and $\alpha \neq 1$, we get $\delta = 0$.

Hence from (5) we get $y^{m+1}z = 0$.

Then (6) becomes

$$\begin{aligned} \alpha_1 \alpha_4 & x^m yz + \alpha_2 \alpha_3 y^m xz = \eta \left(\alpha_3 \alpha_2 x^m yz + \alpha_4 \alpha_1 y^m xz \right) \\ & \text{i.e., } \alpha_1 \alpha_4 x^m yz + \alpha_2 \alpha_3 \alpha^{-1} x^m yz = \eta \left(\alpha_3 \alpha_2 x^m yz + \alpha_4 \alpha_1 \alpha^{-1} x^m yz \right) \\ & \left(\alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} \right) x^m yz = \eta \left(\alpha_3 \alpha_2 + \alpha_4 \alpha_1 \alpha^{-1} \right) x^m yz \end{aligned}$$

This is true for any choice of $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in F$.

Choosing $\alpha_1 = \alpha_3 = \alpha_4 = 1$ and $\alpha_2 = -\alpha^{-1}$ we get

 $(1 - (\alpha^{-1})^2) x^m yz = 0.$

Since $x^m yz \neq 0$, $1 - (\alpha^{-1})^2 = 0$. Hence $(\alpha^{-1})^2 = 1$ i.e., $\alpha = \pm 1$.

Since $\alpha \neq 1$, we get $\alpha = -1$.

i.e., $x^m yz = -y^m xz$ for all $x,y,z \in A$. i.e., A is either quasi weak m power commutative or quasi-weak m power anti-commutative.

3.4 Note:

Taking m = 1, we get Theorem 3.2[8].

3.5 Lemma:

Let A be an algebra (not necessarily associative) over a commutative ring R.Let $m \in z^+$. Suppose A is scalar quasi weak m – power commutative. Then for all x,y,z \in A, $\alpha \in$ R, $\alpha x^{m}yz = 0$ iff α y^m xz = 0. Also x^m yz = 0 iff y^m xz = 0. **Proof:**

Let x,y,z \in A and $\alpha \in$ R such that $\alpha x^m yz = 0$.Since A is scalar quasi weak m – power commutative there exists $\beta = \beta(y, x, \alpha z) \in \mathbb{R}$ such that $y^m x(\alpha z) = \beta x^m y(\alpha z)$. 0

i.e.,
$$\alpha y^m xz = \beta \alpha x^m yz =$$

Conversely assume $\alpha y^m xz = 0$. Since A is scalar quasi weak m – power commutative there exists $\gamma = \gamma(x, y, \alpha z) \in \mathbb{R}$ such that

$$x^{m} y(\alpha z) = \gamma y^{m} x(\alpha z).$$

i.e., $\alpha x^m yz = \gamma \alpha y^m xz = 0$. Thus $\alpha x^m yz = 0$ iff $\alpha y^m xz = 0 \forall \alpha \in \mathbb{R}$. Now assume $x^m yz = 0$. Since A is scalar quasi weak m – power commutative, there exists scalar $\delta(y,x,z) \in \mathbb{R}$ such that $y^m xz = \delta x^m yz = 0$. Conversely assume $y^m xz = 0$. Then there exists scalar $\eta = \eta$ (x,y,z) $\in \mathbb{R}$ such that $x^m yz = \eta y^m xz = 0$. Then $x^m yz = 0$ iff $y^m xz = 0$. 3.6 Note: Taking m = 1, we get Lemma 3.3[8]. 3.7 Lemma: Let A be an algebra (not necessarily associative) over a commutative ring R.Let $m \in z^+$. Suppose $(x+y)^m = x^m + y^m$ for all $x, y \in A$ and every element of R is m – potent (i.e., $\alpha^m = \alpha \forall \alpha \in R$).

Let x, y, z, $u \in A$, $\alpha, \beta \in R$ such that $x^m u = u^m x$, $y^m xz = \alpha x^m yz$ and $(y+u)^m xz = \beta x^m (y+u)z$, then $(\mathbf{x}^{\mathbf{m}}\mathbf{u} - \alpha \mathbf{x}^{\mathbf{m}}\mathbf{u} - \boldsymbol{\beta} \quad \mathbf{x}^{\mathbf{m}}\mathbf{u} + \alpha \boldsymbol{\beta} \ \mathbf{x}^{\mathbf{m}}\mathbf{u}) \ \mathbf{z} = \mathbf{0}.$

Proof:

Proof:		
Given $(y+u)^m xz = \beta x^m (y+u)z$	\rightarrow (1)	
$y^m xz = \alpha x^m yz$	\rightarrow (2)	
and $x^m u = u^m x$	\rightarrow (3)	
From (1) we get		
$(y^m + u^m) xz = \beta x^m (y+u)z$		
(ie) $y^m xz + u^m xz = \beta x^m yz + \beta x^m uz$	\rightarrow (4)	
$\alpha x^{m} yz + u^{m} xz = \beta x^{m} yz + \beta x^{m} uz (using (2))$		
$\alpha x^{m} yz + x^{m} uz = \beta x^{m} yz + \beta x^{m} uz (using (3))$		
$x^{m}(\alpha y + u - \beta y - \beta u) z = 0$		
By Lemma 3.5, we get		
$(\alpha y + u - \beta y - \beta u)^m xz = 0$		
$((\alpha y)^{m} + u^{m} - (\beta y)^{m} - (\beta u)^{m}) xz = 0$		
$(\alpha^{m}y^{m} + u^{m} - \beta^{m}y^{m} - \beta^{m}u^{m}) xz = 0$		
Since R is m – potent, we get		
$(\alpha y^m + u^m - \beta y^m - \beta u^m) xz = 0$		
(ie) $\alpha y^m xz + u^m xz - \beta y^m xz - \beta u^m xz = 0$		
$\alpha y^{m} xz + u^{m} xz - \alpha \beta x^{m} yz - \beta u^{m} xz = 0$	\rightarrow (5)	
From (4) we get		
$y^{m}xz - \beta x^{m}yz = \beta x^{m}uz - u^{m}xz$		
Multiply by α		
$\alpha y^{m}xz - \alpha\beta x^{m}yz = \alpha\beta x^{m}uz - \alpha u^{m}xz$	\rightarrow (6)	
From (5) and (6), we get		
$\alpha\beta x^{m}uz - \alpha u^{m}xz + u^{m}xz - \beta u^{m}xz = 0.$		
$(\alpha\beta x^{m}u - \alpha u^{m}x + u^{m}x - \beta u^{m}x) z = 0.$		
i.e., $(u^m x - \alpha u^m x - \beta u^m x + \alpha \beta x^m u) z = 0.$		
i.e., $(\mathbf{x}^m \mathbf{u} - \alpha \mathbf{x}^m \mathbf{u} - \beta \mathbf{x}^m \mathbf{u} + \alpha \beta \mathbf{x}^m \mathbf{u}) \mathbf{z} = 0.$		
3.8 Corrollary:		
Taking $u = x$, we get $(x^{m+1} - \alpha x^{m+1} - \beta x^{m+1} + \alpha \beta x^{m+1}) z = 0.$		
$(x^m - \alpha x^m) (x - \beta x) z = 0.$		
i.e., $x^{m-1}(x - \alpha x)(x - \beta x) z = 0.$		
DOI: 10.9790/5728-1404031419	www.josrjournals.org	-

3.9 Note:

Taking m = 1, we get Lemma 3.4 [8] and corrollary 3.5 [8].

3.10 Theorem:

Let A be an algebra (not necessarily associative) over a commutative ring R. Let $m \epsilon z^+$. Suppose $(x+y)^m = x^m + y^m$ for all x,y ϵ A and that A has no zero divisors. Assume every element of R is m- potent. If A is scalar quasi weak m-power commutative, then A is quasi weak m-power commutative.

Proof:

Let $x, y, z \in A$. Since A is scalar quasi weak m-power commutative there exists scalars $\alpha = \alpha(y,x,z) \in \mathbb{R}$ and $\beta = \beta(y+x,x,z) \in \mathbb{R}$ such that $(y+x)^m xz = \beta x^m (y+x) z$ \rightarrow (1) $y^{m}xz = \alpha x^{m}yz$ \rightarrow (2) From (1) we get $(y^{m} + x^{m})xz = \beta x^{m}yz + \beta x^{m+1}z$ $y^{m}xz + x^{m+1}z = \beta x^{m}yz + \beta x^{m+1}z$ (ie) \rightarrow (3) $\alpha x^{m}yz + x^{m+1}z - \beta x^{m}yz - \beta x^{m+1}z = 0$ (using (2)) $x^{m}(\alpha y + x - \beta y - \beta x)z = 0$ By Lemma 3.3 we get $(\alpha y + x - \beta y - \beta x)^{m} xz = 0$ $(\alpha^{m} y^{m} + x^{m} - \beta^{m} y^{m} - \beta^{m} x^{m}) xz = 0$ $(\alpha y^{m} + x^{m} - \beta y^{m} - \beta x^{m}) xz = 0$ (since R is m potent) (ie) $\alpha y^{m} xz + x^{m+1} z - \beta y^{m} xz - \beta x^{m+1} z = 0$ $\alpha y^{m} xz + x^{m+1}z - \alpha \beta x^{m}yz - \beta x^{m+1}z = 0$ \rightarrow (4)(using(2)) Multiply (3) by α $\alpha v^m xz - \alpha \beta x^m vz + \alpha x^{m+1}z - \alpha \beta x^{m+1}z = 0$ \rightarrow (5) From (4) and (5) we get, $x^{m+1}z - \beta x^{m+1}z - \alpha x^{m+1}z + \alpha \beta x^{m+1}z = 0$ $x^{m-1}(x^2 - \alpha x^2 - \beta x^2 + \alpha \beta x^2)z = 0$ $x^{m-1}(x-\alpha x)(x-\beta x) z = 0$ Since A has no zero divisors, x = 0 (or) $x - \alpha x = 0$ (or) $x - \beta x = 0$ If x = 0, then $x^m yz = y^m xz$ If $x = \alpha x$, then from (2) we get $y^m \alpha xz = \alpha x^m yz$ $\alpha (y^m xz - x^m yz) = 0$ Since $\alpha \neq 0$, $y^m xz = x^m yz$ If $x = \beta x$, then from (3) we get $y^m xz + x^{m+1}z = x^m yz + x^{m+1}z$ $y^m xz = x^m yz$ (since $\beta = \beta^{m}$) This A is quasi weak m-power commutative. 3.11Note: Taking m = 1, we get Lemma 3.6 [8] **3.12Definition:** Let R be any ring.Let m > 1 be a fixed integer.An element $a \in R$ is said to be m-potent if $a^m = a$. 3.13Lemma: Let A be an algebra with unity over a P.I.D R. Let $m \epsilon z^+$. Assume $(x + y)^m = x^m + y^m$ for all x,y ϵA and that every element of R is m – potent. If A is scalar quasi weak m – power commutative, x ϵA such that $O(x^{m+1}) = o$, then $x^m yz = y^m xz$ for all $y, z \epsilon A$. **Proof:** Let $x \in A$ such that $O(x^{m+1}) = 0$. Let y,z ϵA . Then there exists scalars $\alpha = \alpha(y,x,z) \in \mathbb{R}$ and $\beta = \beta(y+x,x,z) \in \mathbb{R}$ such that $(y+x)^m xz = \beta x^m (y+x) z$ \rightarrow (1) and $v^m xz = \alpha x^m vz$ \rightarrow (2) From (2) we get $(y^{m} + x^{m}) xz = \beta x^{m} yz + \beta x^{m+1} z$

DOI: 10.9790/5728-1404031419

$$y^{m} xz + x^{m+1}z = \beta x^{m} yz + \beta x^{m+1}z \longrightarrow (3)$$

$$\alpha x^{m} yz + x^{m+1}z - \beta x^{m} yz - \beta x^{m+1}z = 0$$

$$x^{m} (\alpha y + x - \beta y - \beta x)^{m} zz = 0$$

$$(\alpha^{m} y^{m} + x^{m} - \beta y^{m} - \beta x^{m}) xz = 0$$

$$(\alpha y^{m} + x^{m} - \beta y^{m} - \beta x^{m}) xz = 0$$

$$(\alpha y^{m} + x^{m} - \beta y^{m} - \beta x^{m}) xz = 0$$

$$(\alpha y^{m} + x^{m} - \beta y^{m} - \beta x^{m+1}z = 0. \quad (using (2) \longrightarrow (4))$$
Multiply (3) by α ,

$$\alpha y^{m} xz - \alpha \beta x^{m} yz - \alpha \beta x^{m+1} z = 0 \longrightarrow (5)$$
From (4) and(5) we get

$$x^{m+1} z - \beta x^{m+1} z - \alpha x^{m+1} z + \alpha \beta x^{m+1} z = 0$$

$$(1 - \alpha - \beta + \alpha \beta) x^{m+1} z = 0 \longrightarrow (6)$$
Thus for each z eA , there exists scalars $y \in \mathbb{R}$ and $\delta \in \mathbb{R}$ such that

$$y^{m+1} z = 0 \longrightarrow (6)$$
Thus for each z eA , there exists scalars $y \in \mathbb{R}$ and $\delta \in \mathbb{R}$ such that

$$y^{m+1} z = 0 \longrightarrow (6)$$
Thus for each z eA , there exists calars $y \in \mathbb{R}$ and $\delta \in \mathbb{R}$ such that

$$y^{m+1} z = 0 \longrightarrow (6)$$
Thus for each z eA , there exists calars $y \in \mathbb{R}$ and $\delta \in \mathbb{R}$ such that

$$y^{m+1} z = 0 \longrightarrow (6)$$
Thus for each z eA , there exists $y \in \mathbb{R}$ and $\delta \in \mathbb{R}$ such that

$$y^{m+1} z = 0 \longrightarrow (6)$$
Therefore $y \delta x^{m+1} z + \gamma \delta x^{m+1} - \gamma \delta x^{m+1} z = 0$

$$y \delta x^{m+1} = 0$$
Since $O(x^{m+1}) = 0$, we get

$$y = 0 (or) \delta = 0$$
Hence from (6) we get $(1 - \alpha)(1 - \beta) = 0$.
(ie) either $\alpha = 1 (or) \beta = 1$
If $\alpha = 1$, from (2) we get $y^m xz = x^m yz$
If $\beta = 1$, from (1) we get

$$(y^m + x^m)xz = x^m yz + x^{m+1}z$$

$$(y^m + x^m)xz = x^m yz + x^{m+1}z$$

$$(ie) y^m xz = x^m yz + x^{m+1}z$$

$$(ie) y^m xz = x^m yz$$

3.14 Lemma:

Let A be an algebra with identity over a P.I.D R. Let $m\epsilon z^+$. Suppose that $(x + y)^m = x^m + y^m$ for all $x, y\epsilon A$ and that every element of R is m-potent. Suppose that A is scalar quasi weak m-power commutative. Assume further that there exists a prime $p\epsilon R$ such that $p^m A = 0$. Then A is quasi weak m-power commutative.

Proof:

Let $x, y \in A$ such that $O(y^m x) = p^k$ for some $k \in z^+$ We prove by induction on k that $x^m y u = y^m x u$ for all $u \in A$. If k = 0, then $O(y^m x) = p^0 = 1$ and so $y^m x = 0$. So $y^m x u = 0$ for all $u \in A$. By Lemma 3.3 $x^m yu = 0$ for all $u \in A$. So assume that k>0 and that the statements true for all 1 < k. If $y^m xu - x^m yu = 0 \quad \forall u \in A$, then there is nothing to prove. So, let $x^m yu - y^m xu \neq 0$. Since A is scalar quasi weak m-power commutative, there exists scalars $\propto = \propto (x,y,u) \epsilon R$ and $\beta = \beta(x,y+x,u) \epsilon R$ Such that $x^m y u = \bowtie y^m x u$ \rightarrow (1) and $x^{m}(y+x)u = \beta (y+x)^{m} xu$ \rightarrow (2) From (2) we get $x^{m} y u + x^{m+1} u = \beta (y^{m} + x^{m}) xu.$ i.e., $x^m y u + x^{m+1}u - \beta y^m x u - \beta x^{m+1}u = 0$ $\alpha y^m x u + x^{m+1} - \beta y^m x u - \beta x^{m+1}u = 0$ $(\alpha - \beta) y^m x u = (\beta - 1) x^{m+1}u$ \rightarrow (3) \rightarrow (4)

Since $x^{m+1} u \neq 0$, $\beta = 1$.Hence from(3) we get $x^m yu = y^m x u$, contradicting our assumption that $x^m yu \neq y^m x u$. So $(\alpha - \beta)y^m xu \neq 0$. In particular $\alpha - \beta \neq 0$. Let $\alpha - \beta = p^t \delta$. For some t ϵz^+ and $\delta \epsilon R$ with $(\delta, p) = 1$. If t $\geq k$, then since $O(y^m x) = p^k$ we would get $(\alpha - \beta) y^m x u = 0$, again a contradiction. Hence t < k. Since $p^k y^m x u = 0$, by Lemma 3.5 $p^k x^m yu = 0$. From (4) we get $p^{k-t} (\beta - 1) x^{m+1} u = p^{k-t} (\alpha - \beta) y^m x u$ $= p^{k-t} p^t \delta y^m x u$ $= p^k \delta y^m x u$ Let $O(x^{m+1}u) = p^{i}$. If i < k, then by induction hypothesis, $x^{m}yu = y^{m}xu$, a contradiction. So i > k. Now $p^{k} | p^{i} | p^{k-t} (\beta - 1)$ and $p^t | (\beta - 1)$. Let $\beta - 1 = p^t \gamma$ for some $\gamma \in \mathbb{R}$. \rightarrow (5) Then from (4) we get Then from (4) we get $(\alpha - \beta)y^{m} xu = (\beta - 1) x^{m+1} u$ $p^{t} \delta y^{m} xu = p^{t} \gamma x^{m+1} u$ $p^{t} (\delta y^{m} - \gamma x^{m}) xu = 0.$ i.e., $p^{t} (\delta y - \gamma x)^{m} (xu) = 0.$ Hence by induction hypothesis $(\delta y - \gamma x)^m (xu) w = (xu)^m (\delta y - \gamma x) w$ for all $w \in A$. Taking u = 1, we get $(\delta y - \gamma x)^m xw = x^m (\delta y - \gamma x) w$ $(\delta y^{m} - \gamma x^{m}) xw = x^{m} (\delta y - \gamma x) w$ $\delta y^{m} xw - \gamma x^{m+1} w = \delta x^{m} y w - \gamma x^{m+1} w$ $\delta (\mathbf{y}^{\mathrm{m}} \mathbf{x} \mathbf{w} - \mathbf{x}^{\mathrm{m}} \mathbf{y} \mathbf{w}) = 0$ \rightarrow (6) Since $(\delta, p) = 1$, there exists μ , $\delta \in \mathbb{R}$ such that $\mu p^m + \gamma \delta = 1$. $\therefore \mu p^{m} (y^{m} x w - x^{m} yw) + \gamma \delta(y^{m} x w - x^{m} yw) = y^{m} x w - x^{m} yw$ $0 + 0 = y^{m} x w - x^{m} yw (:: p^{m} A = 0 \text{ and } (6))$ $\therefore \quad y^m x w - x^m y w = 0 \quad \forall w \in A.$

Hence the Lemma.

References:

- [1]. R.Coughlin and M.Rich, On Scalar dependent algebras, J.Math 24(1972), 696-702.
- [2]. R.Coughlin,K.Kleinfield and M.Rich,Scalars dependent algebras, Proc.Amer.Math.Soc, 39(1973), 69-73.
- [3]. G.Gopalakrishnamoorthy,M.Kamaraj and S.Geetha,On quasi-weak commutative Near- rings, International Journal of Mathematics Research,Vol5(5),(2013),431-440.
- [4]. G.Gopalakrishnamoorthy,S.Geetha and S.Anitha,On quasi-weak commutative Near-rings-II,Malaya Journal of Mathematik,Vol3(3),(2015),327-337.
- [5]. G.Gopalakrishnamoorthy and S.Geetha, On (m,n) Power Commutativity of rings and Scalar (m,n) Power Commutativity of Algebras, Jour. of Mathermatical Sciences, Vol 24(3), 2013, 97-110.
- [6]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On quasi-weak m- power commutative Near rings and quasi-weak (m,n) power commutative Near-rings, ISOR-Journal of Mathematics, Vol 12(4) VerII, (2016), 87-90.
- [8]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Scalar-weak commutative Algebras, ISOR- Journal of Mathematics, Vol13(2) VerI(2017), 107-114.
- [9]. K.Koh.J.Luh and M.S.Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific Journal of Mathematics 63(2),(1976),423-430.
- [10]. Pliz,Gliner,Near-rings,North Holland,Anater dam(1983).
- [11]. M.Rich, A commutativity theorem for algebras, Amer. Math. Monthly, 82(1975), 377-379.

G.Gopalakrishnamoorthy ." On Scalar Quasi weak m-power Commutative Algebras. IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018) PP: 14-19.
