On Scalar Quasi weak m-power Commutative Algebras

G.Gopalakrishnamoorthy ${ }^{1}$, M.Kamaraj ${ }^{2}$ and S.Anitha ${ }^{3}$
${ }^{1}$ Principal,Sri krishnasamy Arts and Science College, Sattur - 626203, Tamilnadu.
${ }^{2}$ Dept. of Mathematics,Government Arts and Science College, Sivakasi - 626124.
${ }^{3}$ Lecturer, Raja Doraisingam Government Arts College, Sivagangai - 630 561, Tamil Nadu.
Corresponding Author: G.Gopalakrishnamoorthy

Abstract

A right near-ring N is called Quasi-weak commutative if $x y z=y x z[3] . A$ right near-ring N is called quasi weak m - power commutative if $x^{m} y z=y^{m} x z$ for all $x, y, z \in N$, where $m \geq 1$ is a fixed integer [5].An algebra A over a commutative ring R is called scalar quasi-weak commutative if for every $x, y, z \in A$ there exists $\alpha=\alpha(x, y, z) \in R$ depending on x, y, z such that $x y z=\alpha y x z[8]$.In this paper we generalise the concept of scalar quasi- weak commutative as scalar quasi-weak m - power commutativity and prove many results.

I. Introduction:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exists $\alpha \in \mathrm{R}$ depending on x, y such that $\mathrm{xy}=\alpha \mathrm{yx}$. Rich[11] proved that if A is scalar commutative over a field F,then A is either commutative or anti-commutative. $\mathrm{KOH}, \mathrm{LUH}$ and PUTCHA [9] proved that if A is scalar commutative with 1 and if R is a principal ideal domain ,then A is commutative. A near-ring N is said to be weak-commutative if $\mathrm{xyz}=\mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$ (Definition 9.4, p.289, Pliz[10]. An algebra A over a commutative ring R is called scalar quasi weak commutative, if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{xyz}=\alpha \mathrm{yxz}$ [8]. In this paper we define scalar-quasi weak m-power commutativity and prove many interesting results analogous to our own results[8].

II. Preliminaries:

In this section we give some basic definitions and well known results which we use in the sequel.

2.1 Definition [10]:

Let N be a near-ring. N is said to be weak commutative if $\mathrm{xyz}=\mathrm{xzy}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$.

2.2 Definition:

Let N be a near-ring. N is said to be anti-weak commutative if $\mathrm{xyz}=-\mathrm{xzy}$ for all $x, y, z \in N$.

2.3 Definition [2]:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $\mathrm{x}, \mathrm{y} \in \mathrm{A}$,there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ depending on
x, y such that $\mathrm{xy}=\alpha \mathrm{yx} . \mathrm{A}$ is called scalar anti- commutative if $\mathrm{xy}=-\alpha \mathrm{yx}$.

2.4 Lemma[5]:

Let N be a distributive near-ring.If $\mathrm{xyz}= \pm$ xzy for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$,then N is either weak commutative or weak anti-commutative.

3 Main Results:

3.1 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called an scalar quasi- weak m-power commutative if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, ther exists scalar $\alpha \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}$.

3.2 Definition

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called an scalar quasi- weak m-power anti-commutative if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, ther exists scalar $\alpha \in \mathrm{R}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=-\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}$.

3.3 Theorem:

Let A be an algebra (not necessarily associative) over a field F.Let $\mathrm{m} \in z^{+}$.
Let $(\mathrm{x}+\mathrm{y})^{\mathrm{m}}=\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}}$ holds for all $\mathrm{x}, \mathrm{y} \in$ A.Assume $\alpha^{m}=\alpha \forall \alpha \in \mathrm{R}$.If for each $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists a scalar $\alpha \in \mathrm{F}$ depending on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{x}^{\mathrm{m}} \mathrm{y} \mathrm{z}=\alpha \mathrm{y}^{\mathrm{m}} \mathrm{x} \mathrm{z}$ then A is either quasi weak m-power commutative or quasi-weak m-power anti-commutative.

Proof:

Suppose $x^{m} y z=y^{m} x z$ for all $x, y, z \in A$, there is nothing to prove.Suppose not, we shall prove that $x^{m} y z=-y^{m} x z$ for all $x, y, z \in A$.

First we shall prove that if $x^{m} y z \neq y^{m} x z$, then $x^{m+1} z=y^{m+1} z=0$.
So, assume $\mathrm{x}^{\mathrm{m}} \mathrm{y} \mathrm{z} \neq \mathrm{y}^{\mathrm{m}} \mathrm{x} \mathrm{z}$.
Since A is scalar quasi weak m power commutative, there exists $\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{F}$ such that

$$
\begin{equation*}
\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz} \tag{1}
\end{equation*}
$$

Also there exists a scalar $\gamma=\gamma(\mathrm{x}, \mathrm{x}+\mathrm{y}, \mathrm{z}) \in \mathrm{F}$ such that $\mathrm{x}^{\mathrm{m}}(\mathrm{x}+\mathrm{y}) \mathrm{z}=\gamma(\mathrm{x}+\mathrm{y})^{\mathrm{m}} \mathrm{xz}$.

$$
\begin{equation*}
\text { i.e., } \mathrm{x}^{\mathrm{m}}(\mathrm{x}+\mathrm{y}) \mathrm{z}=\gamma\left(\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}}\right) \mathrm{xz} \tag{2}
\end{equation*}
$$

(1) - (2) gives

$$
x^{m} y z-x^{m+1} z-x^{m} y z=\alpha y^{m} x z-\gamma x^{m+1} z-\gamma y^{m} x z
$$

$(1-\gamma) \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=(\gamma-\alpha) \mathrm{y}^{\mathrm{m}} \mathrm{xz} \quad \rightarrow(3)$
Now $y^{m} \mathrm{xz} \neq 0$ for if $\mathrm{y}^{\mathrm{m}} \mathrm{xz}=0$, then from (1) we get $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$ and so $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\mathrm{y}^{\mathrm{m}} \mathrm{xz}$, contradiciting our assumption that $\mathrm{x}^{\mathrm{m}} \mathrm{yz} \neq \mathrm{y}^{\mathrm{m}} \mathrm{xz}$.
Also $\gamma \neq 1$,for if $\gamma=1$, then from(3) we get $\alpha=\gamma=1$.Then from (1) we get $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\mathrm{y}^{\mathrm{m}} \mathrm{xz}$, again a contradiction.
Now from (3) we get

$$
\begin{aligned}
& \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=\frac{\gamma-\alpha}{1-\gamma} \mathrm{y}^{\mathrm{m}} \mathrm{xz} \\
& \text { i.e., } \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=\beta \mathrm{y}^{\mathrm{m}} \mathrm{xz} \text { for some } \beta \in \mathrm{F} . \quad \rightarrow \text { (4) }
\end{aligned}
$$

Similarly $\mathrm{y}^{\mathrm{m}+1} \mathrm{z}=\delta \mathrm{y}^{\mathrm{m}} \mathrm{xz}$ for some $\delta \in \mathrm{F} . \longrightarrow$ (5)
Now corresponding to each choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ in F, there is an $\eta \in F$ such that

$$
\begin{aligned}
& \left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right)^{\mathrm{m}}\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right) \mathrm{z}=\eta\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right)^{\mathrm{m}}\left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right) \mathrm{z} . \\
& \text { i.e., }\left(\alpha_{1}^{\mathrm{m}} \mathrm{x}^{\mathrm{m}}+\alpha_{2}^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}\right)\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right) \mathrm{z}=\eta\left(\alpha_{3}^{\mathrm{m}} \mathrm{x}^{\mathrm{m}}+\alpha_{4}^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}\right)\left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right) \mathrm{z} .
\end{aligned}
$$

Since $\quad \alpha^{\mathrm{m}}=\alpha$ for all $\alpha \in \mathrm{F}$, we get

$$
\begin{aligned}
& \therefore\left(\alpha_{1} \mathrm{x}^{\mathrm{m}}+\alpha_{2} \mathrm{y}^{\mathrm{m}}\right)\left(\alpha_{3} \mathrm{x}+\alpha_{4} \mathrm{y}\right) \mathrm{z}=\eta\left(\alpha_{3} \mathrm{x}^{\mathrm{m}}+\alpha_{4} \mathrm{y}^{\mathrm{m}}\right)\left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{y}\right) \mathrm{z} \text {. } \\
& \therefore \alpha_{1} \alpha_{3} \mathrm{x}^{\mathrm{m}+1} \mathrm{z}+\alpha_{1} \alpha_{4} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{3} \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{2} \alpha_{4} \mathrm{y}^{\mathrm{m}+1} \mathrm{z} \\
& =\eta\left(\alpha_{3} \alpha_{1} \mathrm{x}^{\mathrm{m}+1} \mathrm{z}+\alpha_{3} \alpha_{2} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{4} \alpha_{1} \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{4} \alpha_{2} \mathrm{y}^{\mathrm{m}+1} \mathrm{z}\right. \\
& \alpha_{1} \alpha_{3} \beta \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{1} \alpha_{4} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{3} \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{2} \alpha_{4} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xz} \\
& =\eta\left(\alpha_{3} \alpha_{1} \beta \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{3} \alpha_{2} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{4} \alpha_{1} \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{4} \alpha_{2} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xz}\right) \\
& \left.\alpha_{1} \alpha_{3} \beta \alpha^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{1} \alpha_{4} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{4} \delta \alpha^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{yz}\right) \\
& =\eta\left(\alpha_{3} \alpha_{1} \beta \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{3} \alpha_{2} \alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{4} \alpha_{1} \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\alpha_{4} \alpha_{2} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xz}\right) \\
& \left(\alpha_{1} \alpha_{3} \beta \alpha^{-1}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}+\alpha_{2} \alpha_{4} \delta \alpha^{-1}\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz} \\
& =\eta\left(\alpha_{3} \alpha_{1} \beta+\alpha_{3} \alpha_{2} \alpha+\alpha_{4} \alpha_{1}+\alpha_{4} \alpha_{2} \delta\right) \mathrm{y}^{\mathrm{m} \mathrm{xz}} \quad \rightarrow \text { (7) }
\end{aligned}
$$

In (7) we choose $\alpha_{2}=0, \alpha_{3}=\alpha_{1}=1, \alpha_{4}=-\beta$.
The Right handside of (7) is zero where as the left hand side of (7) is

$$
\begin{aligned}
& \left(\beta \alpha^{-1}-\beta\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0 \\
& \beta\left(\alpha^{-1}-1\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0
\end{aligned}
$$

Since $\mathrm{x}^{\mathrm{m}} \mathrm{yz} \neq 0$ and $\alpha \neq 1$, we get $\beta=0$.
Hence from (4) we get $\mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0$.
Also if in (7) we choose $\alpha_{3}=0, \alpha_{4}=\alpha_{2}=1$ and $\alpha_{1}=-\delta$ the right side of (7) is zero where as the left side of (7) is

$$
\begin{aligned}
& \quad\left(-\delta+\delta \alpha^{-1}\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0 \\
& \text { i.e., } \delta\left(\alpha^{-1}-1\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0
\end{aligned}
$$

Since $\mathrm{x}^{\mathrm{m}} \mathrm{yz} \neq 0$ and $\alpha \neq 1$, we get $\delta=0$.
Hence from (5) we get $y^{m+1} z=0$.
Then (6) becomes

$$
\begin{aligned}
& \alpha_{1} \alpha_{4} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{3} \mathrm{y}^{\mathrm{m}} \mathrm{xz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{4} \alpha_{1} \mathrm{y}^{\mathrm{m}} \mathrm{xz}\right) \\
& \text { i.e., } \alpha_{1} \alpha_{4} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{yz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha_{4} \alpha_{1} \alpha^{-1} \mathrm{x}^{\mathrm{m}} \mathrm{yz}\right) \\
& \left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}=\eta\left(\alpha_{3} \alpha_{2}+\alpha_{4} \alpha_{1} \alpha^{-1}\right) \mathrm{x}^{\mathrm{m}} \mathrm{yz}
\end{aligned}
$$

This is true for any choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathrm{~F}$.
Choosing $\alpha_{1}=\alpha_{3}=\alpha_{4}=1$ and $\alpha_{2}=-\alpha^{-1}$ we get

$$
\left(1-\left(\alpha^{-1}\right)^{2}\right) x^{m} y z=0 .
$$

Since $\mathrm{x}^{\mathrm{m}} \mathrm{yz} \neq 0,1-\left(\alpha^{-1}\right)^{2}=0$.
Hence $\left(\alpha^{-1}\right)^{2}=1$ i.e., $\alpha= \pm 1$.
Since $\alpha \neq 1$, we get $\alpha=-1$.
i.e., $x^{m} y z=-y^{m} x z$ for all $x, y, z \in A$.
i.e., A is either quasi weak m power commutative or quasi-weak m power anti-commutative.

3.4 Note:

Taking $\mathrm{m}=1$, we get Theorem 3.2[8].

3.5 Lemma:

Let A be an algebra (not necessarily associative) over a commutative ring R.Let $\mathrm{m} \in z^{+}$.
Suppose A is scalar quasi weak m - power commutative. Then for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \alpha \in \mathrm{R}, \alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$ iff $\alpha y^{\mathrm{m}} \mathrm{xz}=0$. Also $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$ iff $\mathrm{y}^{\mathrm{m}} \mathrm{xz}=0$.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$ and $\alpha \in \mathrm{R}$ such that $\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$. Since A is scalar quasi weak $\mathrm{m}-$ power
commutative there exists $\beta=\beta(\mathrm{y}, \mathrm{x}, \alpha z) \in \mathrm{R}$ such that $\mathrm{y}^{\mathrm{m}} \mathrm{x}(\alpha z)=\beta \mathrm{x}^{\mathrm{m}} \mathrm{y}(\alpha z)$.

$$
\text { i.e., } \alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}=\beta \alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0 \text {. }
$$

Conversely assume $\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}=0$. Since A is scalar quasi weak m - power commutative there exists $\gamma=\gamma(\mathrm{x}, \mathrm{y}, \alpha z) \in \mathrm{R}$ such that

$$
\mathrm{x}^{\mathrm{m}} \mathrm{y}(\alpha z)=\gamma \mathrm{y}^{\mathrm{m}} \mathrm{x}(\alpha z)
$$

$$
\text { i.e., } \quad \alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}=\gamma \alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}=0 \text {. }
$$

Thus $\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$ iff $\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}=0 \forall \alpha \in \mathrm{R}$.
Now assume $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$. Since A is scalar quasi weak m - power commutative, there exists scalar $\delta(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that $\mathrm{y}^{\mathrm{m}} \mathrm{xz}=\delta \mathrm{x}^{\mathrm{m}} \mathrm{yz}=0$.
Conversely assume $\mathrm{y}^{\mathrm{m}} \mathrm{xz}=0$. Then there exists scalar $\eta=\eta(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ such that $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\eta \mathrm{y}^{\mathrm{m}} \mathrm{xz}=0$.
Then $x^{m} y z=0$ iff $y^{m} x z=0$.

3.6 Note:

Taking $\mathrm{m}=1$, we get Lemma3.3[8].

3.7 Lemma:

Let A be an algebra (not necessarily associative) over a commutative ring R.Let $\mathrm{m} \in z^{+}$. $\operatorname{Supppose}(\mathrm{x}+\mathrm{y})^{\mathrm{m}}=\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ and every element of R is $\mathrm{m}-$ potent (i.e., $\alpha^{m}=\alpha \forall \alpha \in \mathrm{R}$). Let $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u} \in \mathrm{A}, \alpha, \beta \in \mathrm{R}$ such that $\mathrm{x}^{\mathrm{m}} \mathrm{u}=\mathrm{u}^{\mathrm{m}} \mathrm{x}, \mathrm{y}^{\mathrm{m}} \mathrm{xz}=\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}$ and $(\mathrm{y}+\mathrm{u})^{\mathrm{m}} \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}}(\mathrm{y}+\mathrm{u}) \mathrm{z}$, then $\left(x^{m} u-\alpha x^{m} u-\beta \quad x^{m} u+\alpha \beta x^{m} u\right) z=0$.

Proof:

Given $(y+u)^{m} x z=\beta x^{m}(y+u) z$

$$
\begin{equation*}
\mathrm{y}^{\mathrm{m}} \mathrm{xz} \underset{\mathrm{~m}}{=} \alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz} \tag{1}
\end{equation*}
$$

and $\quad x^{m} u=u^{m} x$
From (1) we get

$$
\begin{equation*}
\left(y^{\mathrm{m}}+\mathrm{u}^{\mathrm{m}}\right) \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}}(\mathrm{y}+\mathrm{u}) \mathrm{z} \tag{3}
\end{equation*}
$$

(ie) $\mathrm{y}^{\mathrm{m}} \mathrm{xz}+\mathrm{u}^{\mathrm{m}} \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}$
$\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\mathrm{u}^{\mathrm{m}} \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}$ (using (2))
$\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\mathrm{x}^{\mathrm{m}} \mathrm{uz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}($ using (3))
$\mathrm{x}^{\mathrm{m}}(\alpha \mathrm{y}+\mathrm{u}-\beta \mathrm{y}-\beta \mathrm{u}) \mathrm{z}=0$
By Lemma 3.5, we get

$$
(\alpha \mathrm{y}+\mathrm{u}-\beta \mathrm{y}-\beta \mathrm{u})^{\mathrm{m}} \mathrm{xz}=0
$$

$\left((\alpha \mathrm{y})^{\mathrm{m}}+\mathrm{u}^{\mathrm{m}}-\quad(\beta \mathrm{y})^{\mathrm{m}}-(\beta \mathrm{u})^{\mathrm{m}}\right) \mathrm{xz}=0$

$$
\left(\alpha^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}+\mathrm{u}^{\mathrm{m}}-\beta^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}-\beta^{\mathrm{m}} \mathrm{u}^{\mathrm{m}}\right) \mathrm{xz}=0
$$

Since R is m - potent, we get

$$
\begin{equation*}
\left(\alpha \mathrm{y}^{\mathrm{m}}+\mathrm{u}^{\mathrm{m}}-\beta \mathrm{y}^{\mathrm{m}}-\beta \mathrm{u}^{\mathrm{m}}\right) \mathrm{xz}=0 \tag{5}
\end{equation*}
$$

(ie) $\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\mathrm{u}^{\mathrm{m}} \mathrm{xz}-\beta \mathrm{y}^{\mathrm{m}} \mathrm{xz}-\beta \mathrm{u}^{\mathrm{m}} \mathrm{xz}=0$
$\alpha y^{m} \mathrm{xz}+\mathrm{u}^{\mathrm{m}} \mathrm{xz}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}-\beta \mathrm{u}^{\mathrm{m}} \mathrm{xz}=0$
From (4) we get

$$
\mathrm{y}^{\mathrm{m}} \mathrm{xz}-\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}-\mathrm{u}^{\mathrm{m}} \mathrm{xz}
$$

Multiply by α

$$
\begin{equation*}
\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}=\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}-\alpha \mathrm{u}^{\mathrm{m}} \mathrm{xz} \tag{6}
\end{equation*}
$$

From (5) and (6), we get

$$
\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{uz}-\alpha \mathrm{u}^{\mathrm{m}} \mathrm{xz}+\mathrm{u}^{\mathrm{m}} \mathrm{xz}-\beta \mathrm{u}^{\mathrm{m}} \mathrm{xz}=0 .
$$

$\left(\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{u}-\alpha \mathrm{u}^{\mathrm{m}} \mathrm{x}+\mathrm{u}^{\mathrm{m}} \mathrm{x}-\beta \mathrm{u}^{\mathrm{m}} \mathrm{x}\right) \mathrm{z}=0$.
i.e., $\left(\mathrm{u}^{\mathrm{m}} \mathrm{x}-\alpha \mathrm{u}^{\mathrm{m}} \mathrm{x}-\beta \mathrm{u}^{\mathrm{m}} \mathrm{x}+\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{u}\right) \mathrm{z}=0$.
i.e., $\left(\mathrm{x}^{\mathrm{m}} \mathrm{u}-\alpha \mathrm{x}^{\mathrm{m}} \mathrm{u}-\beta \mathrm{x}^{\mathrm{m}} \mathrm{u}+\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{u}\right) \mathrm{z}=0$.

3.8 Corrollary:

Taking $\mathrm{u}=\mathrm{x}$, we get
$\left(\mathrm{x}^{\mathrm{m}+1}-\alpha \mathrm{x}^{\mathrm{m}+1}-\beta \mathrm{x}^{\mathrm{m}+1}+\alpha \beta \mathrm{x}^{\mathrm{m}+1}\right) \mathrm{z}=0$.
$\left(\mathrm{x}^{\mathrm{m}}-\alpha \mathrm{x}^{\mathrm{m}}\right)(\mathrm{x}-\beta \mathrm{x}) \mathrm{z}=0$.
i.e., $\mathrm{x}^{\mathrm{m}-1}(\mathrm{x}-\alpha \mathrm{x})(\mathrm{x}-\beta \mathrm{x}) \mathrm{z}=0$.

3.9 Note:

Taking $\mathrm{m}=1$,we get Lemma 3.4 [8] and corrollary 3.5 [8].

3.10 Theorem:

Let A be an algebra (not necessarily associative) over a commutative ring R. Let $m \in z^{+}$.
Suppose $(\mathrm{x}+\mathrm{y})^{\mathrm{m}}=\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ and that A has no zero divisors. Assume every element of R is m - potent. If A is scalar quasi weak m-power commutative, then A is quasi weak m-power commutative.

Proof:

$$
\text { Let } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{~A} \text {. }
$$

Since A is scalar quasi weak m -power commutative there exists scalars $\alpha=\alpha(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{y}+\mathrm{x}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{gather*}
(\mathrm{y}+\mathrm{x})^{\mathrm{m}} \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}}(\mathrm{y}+\mathrm{x}) \mathrm{z} \tag{1}\\
\mathrm{y}^{\mathrm{m}} \mathrm{xz}=\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz} \tag{2}
\end{gather*}
$$

From (1) we get

$$
\left(y^{\mathrm{m}}+\mathrm{x}^{\mathrm{m}}\right) \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}
$$

(ie) $y^{m} x z+x^{m+1} z=\beta x^{m} y z+\beta x^{m+1} z$

$$
\begin{align*}
& \alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \quad(\text { using (2) }) \tag{3}\\
& \mathrm{x}^{\mathrm{m}}(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta \mathrm{x}) \mathrm{z}=0
\end{align*}
$$

By Lemma 3.3 we get

$$
(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta \mathrm{x})^{\mathrm{m}} \mathrm{xz}=0
$$

$\left(\alpha^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}+\mathrm{x}^{\mathrm{m}}-\beta^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}-\beta^{\mathrm{m}} \mathrm{x}^{\mathrm{m}}\right) \mathrm{xz}=0$
$\left(\alpha \mathrm{y}^{\mathrm{m}}+\mathrm{x}^{\mathrm{m}}-\beta \mathrm{y}^{\mathrm{m}}-\beta \mathrm{x}^{\mathrm{m}}\right) \mathrm{xz}=0 \quad$ (since R is m potent)
(ie) $\alpha y^{m} x z+x^{m+1} z-\beta y^{m} x z-\beta x^{m+1} z=0$

$$
\begin{equation*}
\alpha y^{m} \mathrm{xz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \tag{4}
\end{equation*}
$$

Multiply (3) by α

$$
\begin{equation*}
\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha \mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \tag{5}
\end{equation*}
$$

From (4) and (5) we get,

$$
\begin{aligned}
& \mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \mathrm{x}^{\mathrm{m}+1} \mathrm{z}+\alpha \beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \\
& \mathrm{x}^{\mathrm{m}-1}\left(\mathrm{x}^{2}-\alpha \mathrm{x}^{2}-\beta \mathrm{x}^{2}+\alpha \beta \mathrm{x}^{2}\right) \mathrm{z}=0 \\
& \mathrm{x}^{\mathrm{m}-1}(\mathrm{x}-\alpha \mathrm{x})(\mathrm{x}-\beta \mathrm{x}) \mathrm{z}=0
\end{aligned}
$$

Since A has no zero divisors,

$$
\mathrm{x}=0 \text { (or) } \mathrm{x}-\alpha \mathrm{x}=0 \text { (or) } \mathrm{x}-\beta \mathrm{x}=0
$$

If $x=0$, then $x^{m} y z=y^{m} x z$
If $\mathrm{x}=\alpha \mathrm{x}$, then from (2) we get

$$
y^{\mathrm{m}} \alpha \mathrm{xz}=\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}
$$

$$
\alpha\left(y^{m} x z-x^{m} y z\right)=0
$$

Since $\alpha \neq 0, y^{m} x z=x^{m} y z$
If $x=\beta x$, then from (3) we get

$$
\begin{aligned}
y^{m} \mathrm{xz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z} & =\mathrm{x}^{\mathrm{m}} \mathrm{yz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z} \\
\mathrm{y}^{\mathrm{m}} \mathrm{xz} & =\mathrm{x}^{\mathrm{m}} \mathrm{yz} \quad\left(\text { since } \beta=\beta^{\mathrm{m}}\right)
\end{aligned}
$$

This A is quasi weak m-power commutative.

3.11Note:

Taking $\mathrm{m}=1$, we get Lemma 3.6 [8]

3.12Definition:

Let R be any ring.Let $m>1$ be a fixed integer.An element $a \in R$ is said to be m-potent if $a^{m}=a$.

3.13Lemma:

Let A be an algebra with unity over a P.I.D R. Let $m \in z^{+}$. Assume $(x+y)^{m}=x^{m}+y^{m}$
for all $x, y \in A$ and that every element of R is m - potent.If A is scalar quasi weak m - power commutative, $\mathrm{x} \in \mathrm{A}$ such that $\mathrm{O}\left(\mathrm{x}^{\mathrm{m}+1}\right)=0$, then $\mathrm{x}^{\mathrm{m}} \mathrm{yz}=\mathrm{y}^{\mathrm{m}} \mathrm{xz}$ for all $\mathrm{y}, \mathrm{z} \in \mathrm{A}$.

Proof:

Let $\mathrm{x} \in \mathrm{A}$ such that $\mathrm{O}\left(\mathrm{x}^{\mathrm{m}+1}\right)=0$.
Let $\mathrm{y}, \mathrm{z} \in \mathrm{A}$.
Then there exists scalars $\alpha=\alpha(\mathrm{y}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{y}+\mathrm{x}, \mathrm{x}, \mathrm{z}) \in \mathrm{R}$ such that

$$
\begin{equation*}
(y+x)^{m} x z=\beta x^{m}(y+x) z \tag{1}
\end{equation*}
$$

and
$\mathrm{y}^{\mathrm{m}} \mathrm{xz}=\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}$
From (2) we get
$\left(y^{m}+x^{m}\right) \mathrm{xz}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}$

$$
\begin{gathered}
\mathrm{y}^{\mathrm{m}} \mathrm{xz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z}=\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z} \\
\alpha \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \\
\mathrm{x}^{\mathrm{m}}(\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta \mathrm{x}) \mathrm{z}=0
\end{gathered}
$$

By Lemma 3.3 we get

$$
\begin{aligned}
& (\alpha \mathrm{y}+\mathrm{x}-\beta \mathrm{y}-\beta \mathrm{x})^{\mathrm{m}} \mathrm{xz}=0 \\
& \quad\left(\alpha^{m} \mathrm{y}^{\mathrm{m}}+\mathrm{x}^{\mathrm{m}}-\beta^{m} \mathrm{y}^{\mathrm{m}}-\beta^{m} \mathrm{x}^{\mathrm{m}}\right) \mathrm{xz}=0 \\
& \left(\alpha \mathrm{y}^{\mathrm{m}}+\mathrm{x}^{\mathrm{m}}-\beta \mathrm{y}^{\mathrm{m}}-\beta \mathrm{x}^{\mathrm{m}}\right) \mathrm{xz}=0 \\
& \alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}+\mathrm{x}^{\mathrm{m+1}} \mathrm{z}-\beta \mathrm{y}^{\mathrm{m}} \mathrm{xz}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 .
\end{aligned}
$$

$$
\alpha y^{m} \mathrm{xz}+\mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 . \quad \text { (using (2) } \quad \rightarrow \text { (4) }
$$

Multiply (3) by α,

$$
\begin{equation*}
\alpha \mathrm{y}^{\mathrm{m}} \mathrm{xz}-\alpha \beta \mathrm{x}^{\mathrm{m}} \mathrm{yz}+\alpha \mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \tag{5}
\end{equation*}
$$

From (4) and(5) we get
$\mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}-\alpha \mathrm{x}^{\mathrm{m}+1} \mathrm{z}+\alpha \beta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0$
(1- $\quad \alpha-\beta+\alpha \beta) \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0$

$$
\text { i.e }(1-\alpha)(1-\beta) x^{m+1} \mathrm{z}=0 \quad \rightarrow(6)
$$

Thus for each $\mathrm{z} \epsilon \mathrm{A}$, there exists scalars $\gamma \in \mathrm{R}$ and $\delta \in \mathrm{R}$ such that

$$
\begin{equation*}
\gamma \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \delta \mathrm{x}^{\mathrm{m}+1}(\mathrm{z}+1)=0 \tag{8}
\end{equation*}
$$

$\gamma \times(8)-\delta \times(7)$ gives
Therefore $\gamma \delta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}+\gamma \delta \mathrm{x}^{\mathrm{m}+1}-\gamma \delta \mathrm{x}^{\mathrm{m}+1} \mathrm{z}=0$

$$
\gamma \delta \mathrm{x}^{\mathrm{m}+1}=0
$$

Since $\mathrm{O}\left(\mathrm{x}^{\mathrm{m}+1}\right)=0$, we get

$$
\gamma=0 \text { (or) } \delta=0
$$

Hence from (6) we get $(1-\alpha)(1-\beta)=0$.
(ie) either $\alpha=1$ (or) $\beta=1$
If $\alpha=1$, from (2) we get $y^{m} x z=x^{m} y z$
If $\beta=1$, from (1) we get

$$
\begin{aligned}
& (y+x)^{m} x z=x^{m}(y+x) z \\
& \left(y^{m}+x^{m}\right) x z=x^{m} y z+x^{m+1} z \\
& y^{m} x z+x^{m+1} z=x^{m} y z+x^{m+1} z
\end{aligned}
$$

(ie) $y^{m} x z=x^{m} y z$
Hence the Lemma.

3.14 Lemma:

Let A be an algebra with identity over a P.I.D R. Let $m \in z^{+}$. Suppose that $(x+y)^{m}=x^{m}+y^{m}$ for all $x, y \in A$ and that every element of R is m-potent. Suppose that A is scalar quasi weak m-power commutative. Assume further that there exists a prime $\mathrm{p} \in \mathrm{R}$ such that $\mathrm{p}^{\mathrm{m}} \mathrm{A}=0$. Then A is quasi weak m-power commutative.

Proof:

We prove by induction on k that $x^{m} y u=y^{m} x u$ for all $u \in A$.
If $\mathrm{k}=0$, then $\mathrm{O}\left(\mathrm{y}^{\mathrm{m}} \mathrm{x}\right)=\mathrm{p}^{0}=1$ and so $\mathrm{y}^{\mathrm{m}} \mathrm{x}=0$.
So $y^{\mathrm{m}} \mathrm{xu}=0$ for all $\mathrm{u} \in \mathrm{A}$.
By Lemma $3.3 x^{\mathrm{m}} \mathrm{yu}=0$ for all $\mathrm{u} \epsilon \mathrm{A}$.
So assume that $k>0$ and that the statements true for all $1<k$.
If $y^{m} x u-x^{m} y u=0 \quad \forall u \in A$, then there is nothing to prove.
So, let $x^{m} y u-y^{m} x u \neq 0$. Since A is scalar quasi weak m-power commutative, there exists scalars
$\alpha=\alpha(\mathrm{x}, \mathrm{y}, \mathrm{u}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}, \mathrm{y}+\mathrm{x}, \mathrm{u}) \in \mathrm{R}$
Such that

$$
\begin{equation*}
x^{m} y u=\alpha y^{m} x u \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{x}^{\mathrm{m}}(\mathrm{y}+\mathrm{x}) \mathrm{u}=\beta(\mathrm{y}+\mathrm{x})^{\mathrm{m}} \mathrm{xu} \tag{2}
\end{equation*}
$$

From (2) we get

$$
\begin{align*}
& x^{m} y u+x^{m+1} u=\beta\left(y^{m}+x^{m}\right) x u . \\
& \text { i.e., } \quad x^{m} y u+x^{m+1} u-\beta y^{m} x u-\beta x^{m+1} u=0 \tag{3}\\
& \alpha y^{m} x u+x^{m+1}-\beta y^{m} x u-\beta x^{m+1} u=0 \\
& (\alpha-\beta) y^{m} x u=(\beta-1) x^{m+1} u \tag{4}
\end{align*}
$$

Since $\mathrm{x}^{\mathrm{m}+1} \mathrm{u} \neq 0, \beta=1$.Hence from(3) we get
$x^{m} y u=y^{m} x u$, contradicting our assumption that $x^{m} y u \neq y^{m} x u$.
So $(\alpha-\beta) \mathrm{y}^{\mathrm{m}} \mathrm{xu} \neq 0$.In particular $\alpha-\beta \neq 0$.
Let $\alpha-\beta=p^{\mathrm{t}} \delta$.
For some $\mathrm{t} \epsilon z^{+}$and $\delta \in \mathrm{R}$ with $(\delta, p)=1$.If $\mathrm{t} \geq \mathrm{k}$, then since $\mathrm{O}\left(\mathrm{y}^{\mathrm{m}} \mathrm{x}\right)=\mathrm{p}^{\mathrm{k}}$ we would get $(\alpha-\beta) \mathrm{y}^{\mathrm{m}} \mathrm{xu}=0$,
again a contradiction.
Hence $\mathrm{t}<\mathrm{k}$.
Since $\mathrm{p}^{\mathrm{k}} \mathrm{y}^{\mathrm{m}} \mathrm{xu}=0$, by Lemma $3.5 \mathrm{p}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}} \mathrm{yu}=0$.
From (4) we get

$$
\begin{aligned}
\mathrm{p}^{\mathrm{k}-\mathrm{t}}(\beta-1) \mathrm{x}^{\mathrm{m}+1} \mathrm{u}= & \mathrm{p}^{\mathrm{k}-\mathrm{t}}(\alpha-\beta) \mathrm{y}^{\mathrm{m}} \mathrm{xu} \\
=\mathrm{p}^{\mathrm{k}-\mathrm{t}} \mathrm{p}^{\mathrm{t}} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xu} & =\mathrm{p}^{\mathrm{k}} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xu}
\end{aligned}
$$

$$
=0
$$

Let $\mathrm{O}\left(\mathrm{x}^{\mathrm{m}+1} \mathrm{u}\right)=\mathrm{p}^{\mathrm{i}}$.If $\mathrm{i}<\mathrm{k}$,then by induction hypothesis, $\mathrm{x}^{\mathrm{m}} \mathrm{yu}=\mathrm{y}^{\mathrm{m}} \mathrm{xu}$, a contradiction.
So $\mathrm{i} \geq \mathrm{k}$.
Now $\mathrm{p}^{\mathrm{k}}\left|\mathrm{p}^{\mathrm{i}}\right| \mathrm{p}^{\mathrm{k}-\mathrm{t}}(\beta-1)$
and $\mathrm{p}^{\mathrm{t}} \mid(\beta-1)$.
Let $\beta-1=\mathrm{p}^{\mathrm{t}} \gamma$ for some $\gamma \in \mathrm{R}$.
Then from (4) we get

$$
\begin{align*}
& \quad(\alpha-\beta) \mathrm{y}^{\mathrm{m}} \mathrm{xu}=(\beta-1) \mathrm{x}^{\mathrm{m}+1} \mathrm{u} \tag{5}\\
& \mathrm{p}^{\mathrm{t}} \delta \mathrm{y}^{\mathrm{m}} \mathrm{xu}=\mathrm{p}^{\mathrm{t}} \gamma \mathrm{x}^{\mathrm{m}+1} \mathrm{u} \\
& \mathrm{p}^{\mathrm{t}}\left(\delta \mathrm{y}^{\mathrm{m}}-\gamma \mathrm{x}^{\mathrm{m}}\right) \mathrm{xu}=0 .
\end{align*}
$$

i.e., $\mathrm{p}^{\mathrm{t}}(\delta \mathrm{y}-\gamma \mathrm{x})^{\mathrm{m}}(\mathrm{xu})=0$.

Hence by induction hypothesis
$(\delta \mathrm{y}-\gamma \mathrm{x})^{\mathrm{m}}(\mathrm{xu}) \mathrm{w}=(\mathrm{xu})^{\mathrm{m}}(\delta \mathrm{y}-\gamma \mathrm{x}) \mathrm{w}$ for all $\mathrm{w} \epsilon \mathrm{A}$.
Taking $\mathrm{u}=1$, we get

$$
\begin{aligned}
& (\delta \mathrm{y}-\gamma \mathrm{x})^{\mathrm{m}} \mathrm{xw}=\mathrm{x}^{\mathrm{m}}(\delta \mathrm{y}-\gamma \mathrm{x}) \mathrm{w} \\
& \left(\delta \mathrm{y}^{\mathrm{m}}-\gamma \mathrm{x}^{\mathrm{m}}\right) \mathrm{xw}=\mathrm{x}^{\mathrm{m}}(\delta \mathrm{y}-\gamma \mathrm{x}) \mathrm{w} \\
& \delta \mathrm{y}^{\mathrm{m}} \mathrm{xw}-\gamma \mathrm{x}^{\mathrm{m}+1} \mathrm{w}=\delta \mathrm{x}^{\mathrm{m}} \mathrm{yw}-\gamma \mathrm{x}^{\mathrm{m}+1} \mathrm{w} \\
& \delta\left(\mathrm{y}^{\mathrm{m}} \mathrm{xw}-\mathrm{x}^{\mathrm{m}} \mathrm{y} w\right)=0
\end{aligned}
$$

Since $(\delta, \mathrm{p})=1$, there exists $\mu, \delta \in \mathrm{R}$ such that $\mu \mathrm{p}^{\mathrm{m}}+\gamma \delta=1$.
$\therefore \mu \mathrm{p}^{\mathrm{m}}\left(\mathrm{y}^{\mathrm{m}} \mathrm{x} \mathrm{w}-\mathrm{x}^{\mathrm{m}} \mathrm{yw}\right)+\gamma \delta\left(\mathrm{y}^{\mathrm{m}} \mathrm{xw}-\mathrm{x}^{\mathrm{m}} \mathrm{yw}\right)=\mathrm{y}^{\mathrm{m}} \mathrm{x} \mathrm{w}-\mathrm{x}^{\mathrm{m}} \mathrm{yw}$

$$
0+0=\mathrm{y}^{\mathrm{m}} \mathrm{x} w-\mathrm{x}^{\mathrm{m}} \mathrm{yw}\left(\because \mathrm{p}^{\mathrm{m}} \mathrm{~A}=0 \text { and (6) }\right)
$$

$\therefore \quad y^{\mathrm{m}} \mathrm{xw}-\mathrm{x}^{\mathrm{m}} \mathrm{yw}=0 \quad \forall \mathrm{w} \in \mathrm{A}$.
Hence the Lemma.

References:

[1]. R.Coughlin and M.Rich,On Scalar dependent algebras,J.Math 24(1972),696-702.
[2]. R.Coughlin,K.Kleinfield and M.Rich,Scalars dependent algebras,Proc.Amer.Math.Soc,39(1973),69-73.
[3]. G.Gopalakrishnamoorthy,M.Kamaraj and S.Geetha,On quasi-weak commutative Near- rings, International Journal of Mathematics Research,Vol5(5),(2013),431-440.
[4]. G.Gopalakrishnamoorthy,S.Geetha and S.Anitha,On quasi-weak commutative Near-rings-II,Malaya Journal of Mathematik,Vol3(3),(2015),327-337.
[5]. G.Gopalakrishnamoorthy and S.Geetha,On (m,n) - Power Commutativity of rings and Scalar (m,n) - Power Commutativity of Algebras,Jour. of Mathermatical Sciences, Vol 24(3),2013, 97-110.
[6]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha,On quasi-weak m- power commutative Near - rings and quasi-weak (m,n) power commutative Near-rings,ISOR-Journal of Mathematics,Vol 12(4) VerII, (2016),87-90.
[7]. G.Gopalakrishnamoorthy,M.Kamaraj,S.Anitha,On Scalar Quasi-weak Commutative Algebras, ISOR Journal of Mathematics,Vol.............(2018).
[8]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha,On Scalar-weak commutative Algebras,ISOR- Journal of Mathematics,Vol13(2) $\operatorname{VerI}(2017), 107-114$.
[9]. K.Koh.J.Luh and M.S.Putcha,On the associativity and commutativity of algebras over commutative rings,Pacific Journal of Mathematics 63(2),(1976),423-430.
[10]. Pliz,Gliner,Near-rings,North Holland,Anater dam(1983).
[11]. M.Rich,A commutativity theorem for algebras,Amer.Math.Monthly,82(1975),377-379.

G.Gopalakrishnamoorthy ." On Scalar Quasi weak m-power Commutative Algebras. IOSR

 Journal of Mathematics (IOSR-JM) 14.4 (2018) PP: 14-19.