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Abstract: Parasitism and predation are two ecological interactions that can occur simultaneously in any system 

of species. Specially, predation becomes particularly interesting in host/prey – parasite systems because 

predation can significantly modify the abundance of parasites and their host populations. The combined effect 

of parasites and predator on host/prey population leads to a larger effect on the dynamics of the population 

sizes. In this paper a prey – predator system is considered. The host species or prey population is categorized 

into susceptible and infected due to the presence of parasites. Predators are assumed to consume both the 

susceptible and infected hosts/prey with some partial preference given to susceptible ones. Thus, a mathematical 

model is developed to describing the population dynamics of susceptible prey – Infected prey – Predator system. 

Positivity and boundedness of the model are verified. Disease free equilibrium is found and shown that it is 

locally and asymptotically stable. Interior equilibrium is also identified and shown that it is locally, 

asymptotically and globally stable. Simulation study is conducted so as to verify the results of mathematical 

analysis. Different simulation scenarios are presented by assigning varying values to the parameters of the 

system using mathematical soft ware. Lastly, conclusions of the results are forwarded 

Keywords: eco-epidemiological model; Stability; Predator; numerical simulations. 

    ----------------------------------------------------------------------------------------------------------------------------- ------- 

Date of Submission: 27-07-2018                                                                           Date of acceptance: 11-08-2018 

---------------------------------------------------------------------------------------------------------------------------------------                                                          

 

I. Introduction 
In real systems parasites affect interactions among the species. Parasites influence predatory 

interactions in different ways depending on whether they infect the prey or the predator, or the both. Parasites 

infecting prey and predator are considered as two separate cases and examined. It is assumed that a micro-

parasite harms or injures an established predator–prey interaction depending on the population densities and 

their immunity [1-3]. 

On one hand, the predators may hold the prey population below the threshold density so that the 

parasites cannot spread. At the other extreme, the parasite may regulate the host at the level required to sustain 

the predator and in this case the predator is excluded from direct competition with the parasite. Within these two 

limits, the parasite, prey and predator populations coexist with oscillatory dynamics that would not have 

occurred in absence of the parasite. At the other extreme, if attacks on prey by both parasite and predator were 

introduced then parasite would weaken the prey so that predator would catch more prey and as a result 

predator’s population size would increase [4].  

It is shown that two enemies can have a density dependent differential impact on prey resulting in a 

complex dynamics of the populations. A parasite infecting the predator rather than the prey is also investigated. 

In this case, either the parasite cannot be maintained if the predator, in the absence of the parasite, is at a density 

lower than the threshold or all three species coexist [5-11].  

Historically, emphasis has been placed on the role of parasites in behavioral manipulation of prey, 

intermediate hosts and thereby facilitating parasite transmission to the host [1,4].These systems are examples 

where the parasite infects either one of or both predator and prey.  

Hence, parasitic manipulation may affect Predator–Prey relationships beyond those involved in the life-

cycle of the parasite. Indeed, most theoretical treatments of this problem examine systems in which the 

predators are not part of the parasite lifecycle. 

It is argued that parasites tend to destabilize Predator–Prey dynamics if parasites are introduced in to a 

Lotka–Volterra Predator–Prey model [12–15, 18].  

In light of these studies and results, the effect of disease in ecological system is an important issue from 

a mathematical as well as an ecological point of view.  

Most models for the transmission of infectious diseases originated from the classic work [12]. In the 

last few decades, mathematical models have become extremely important tools in understanding and analyzing 

the spread and control of infectious diseases.  
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To the best of our knowledge, the influence of predation on epidemics has not yet been studied considerably 

except few works [16–20]. Most of these works have dealt with predator-prey models with disease in the prey 

[21-24].  

Recently the effects of a disease affecting a predator on the dynamics of a predator-prey system have 

been studied. In that study two possible asymptotic behaviors are observed: 

 (i) Either the predator population dies out and the prey tends to its carrying capacity, or (ii) the 

predator and prey coexist. In the latter case, the predator population tends either to a disease-free or to a disease-

endemic state. In this issue mathematical epidemiology almost remains silent [2, 7]. 

In ecology the population dynamics with the inclusion of various features like mutualism, 

commensalism, and predation are considered. In epidemiology host – parasite systems are considered. In the 

present study both ecological and epidemiological features are combined and a hybrid system containing 

susceptible prey – infected prey – predator populations is developed. 

The paper is organized as follows: In Section 2, model assumptions are listed out and based on those a 

mathematical model is developed. In Section 3, equilibrium points of the system are found and their stability 

analysis is carried out. In Section 4, simulation study is conducted for some reasonable numerical examples and 

results are presented. The paper ends with concluding remarks in Section 5. 

 

II. Basic assumptions and Model formulation 

The classical form of a prey – predator or PP model is represented as 

                           𝑑𝐻 𝑑𝑡 = 𝐻 𝑔 𝐻 − 𝑃 𝑣(𝐻)                                                                (1) 

                           𝑑𝑃 𝑑𝑡 = 𝑚 𝑃 𝑣 𝐻 − 𝑑 𝑃                                                                    (2) 

Here in (1),  𝐻 and 𝑃 are respectively the densities of prey and predator populations; 𝑔(𝐻) is the per capita 

growth rate of prey in absence of predation;  𝑑  is predator mortality rate; 𝑣(𝐻) is the functional response and 

𝑚𝑣(𝐻) is the numerical response of the predator; and m is the conversion efficiency.  

      Similarly, combining the assumptions of susceptible and infected outbreaks with a predator - prey model, a 

typical Susceptible – Infective or SI epidemic model with variable population sizes can be formulated as 

                          𝑑𝑥 𝑑𝑡 = 𝑥 𝑔(𝑥) − (𝑥, 𝑦)                                                                   (3) 

                          𝑑𝑦 𝑑𝑡 =  𝑥, 𝑦 − 𝑑 𝑦                                                                         (4) 

Here in (3) and (4),  𝑥   and  𝑦  are the densities of susceptible and infected population respectively; 𝑔(𝑥) is the 

intrinsic growth rate of the susceptible population, (𝑥, 𝑦) is the rate at which infections occur; and 𝑑 is the sum 

of the death rates due to disease and the natural reasons. 

Now the basic eco-epidemiological model is formulated by combining the predator-prey ecological model (1) – 

(2) and the  𝑆𝐼  epidemic model (3) – (4). In formulation of eco-epidemiological model the basic assumptions 

are made in the following. 

 

2.1.  Assumptions and formulation of the existing model  

(a) Variations in prey population densities are modeled as the influence of parasites. 

(b) Predation is incorporated into this epidemiological structure yielding three differential equations 

representing the densities of the susceptible prey 𝑥, the infected prey  𝑦 and the predator 𝑧.  

(c) The model consists of three spices: susceptible prey, infected prey, and predator. 

(d) Susceptible – Infected epidemic scheme is imposed on prey in prey – predator model that track the 

population dynamics of susceptible prey  𝑥 , infected prey  𝑦 and the predator  𝑧.  

(e) In absence of infected prey and predator populations, the susceptible prey population grows following 

logistic function. 

(f) The susceptible prey population size decreases due to infected prey according to linear functional response. 

(g) The infected prey population size increases due to susceptible prey according to linear functional response. 

(h) The infected prey population size decreases due to predation according to linear functional response and 

also due to natural deaths.  

(i) The predator population grows according to a linear functional response due to infected prey; but reduces 

due to natural deaths.  

(j) On consuming infected prey, the predator is assumed not to suffer from the infection. 

Basing of the foregoing assumptions an existing model is formulated as 

                                                  
𝑑𝑥

𝑑𝑡
= 𝑟𝑥  1 −

𝑥+𝑦

𝑘
 − 𝑎𝑥𝑦                                                    (5) 

                                                
𝑑𝑦

𝑑𝑡
= 𝑎𝑥𝑦 − 𝑚𝑦𝑧 − 𝑑𝑦                                                      (6)                                    

                                                 
𝑑𝑧

𝑑𝑡
= 𝑚𝑎𝑦𝑧 − 𝑒𝑧                                                               (7) 
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2.2.  Assumptions and formulation of the modified model  

The existing model is modified with alteration of some existing assumptions and with the inclusion of some 

reasonable assumptions. The altered and newly included assumptions are listed as follows:                          

(a) Let 𝑚1 be the decay rate of the infected prey due to predation and  𝑚2 be the growth rate of predator 

due to infected prey. In the existing model these parameter are considered to be equal i.e., 𝑚1 = 𝑚2 = 𝑚. But, 

it is reasonable to assume that these parameters need not be equal and thus in the modified model it is 

considered that   𝑚1 ≠ 𝑚2 . 
(b) The predator is assumed to consume both the susceptible and the infected prey with different attack 

rates. 

(c) Predator has different functional responses on susceptible and infected preys.  

Thus, the existing model is modified to formulate a modified model as 

                                              
𝑑𝑥

𝑑𝑡
= 𝑟𝑥  1 −

𝑥+𝑦

𝑘
 − αxy −

𝑎𝑥𝑧

1+𝑎𝑥
                                                  (8) 

                                              
𝑑𝑦

𝑑𝑡
= 𝛼𝑥𝑦 − 𝑚1𝑦𝑧 − 𝜇y                                                                   (9) 

                                               
𝑑𝑧

𝑑𝑡
= 𝑚2𝑦𝑧 − 𝛿𝑧 +

𝛾𝑎𝑥𝑧

1+𝑎𝑥
                                                              (10) 

 The summarized notations and descriptions of the model parameters are given in table1and 2. Model conceptual 

and schematic flow diagram is presented in Figure 1. 

 
                   Figure1. Schematic diagram of population dynamics of the modified model   

 

Here in Figure 1, 𝑔(𝑥) is the per capita growth rate of prey in the absence of predation;  𝑓(𝑦) is linear response; 

and 𝐺(𝑥) is the Monod functional response of predator. 

The variables and parameters appearing in the system of model equations (1) are described and interpreted in 

Table 1 and Table 2 respectively. 

 

Table 1:   Notations and descriptions of the variables used in the model 
Variable Description 

𝑥(𝑡) Density of susceptible prey population at a time t 

𝑦(𝑡) Density of infectious prey population at a time t 

𝑧(𝑡) Density of predator population at a time t 

                  

Table 2:   Notations and descriptions of the parameters used in the model 
parameter Description 

𝑟 Per capita birth rate of prey population 

𝑘 Carrying capacity of the environment for prey population 

𝑎 Predation on susceptible prey  

𝛼 The rate of infection infecting susceptible prey 

𝛾 Growth rate of predator due to susceptible prey 

𝛿  Natural mortality rate of predator  

𝜇 Total death rate due to disease and the natural reasons 

 Predator’s handling time of susceptible prey 

            𝑚1 Predation rate of infected prey 

            𝑚2 Growth rate of predator due to infected prey 

                 

III. Dynamical behavior of the system 
In this section analysis of some mathematical aspects of the model are performed. It is shown that the model 

variables are both positive and bounded. Equilibrium points are identified and stability analysis is conducted.  
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3.1 Positivity and boundedness of the model variables 
 Now it is to be shown that the system is biologically feasible i.e., the model variables are both positive and 

bounded. 

Proposition 1 All solutions of model equations (4) are positive. 

            Positivity of  𝒙 𝒕 : Consider the model equation for the susceptible prey which is   𝑑𝑥 𝑑𝑡 =
𝑟𝑥 1 −   𝑥 + 𝑦 𝑘   − αxy −  𝑎𝑥𝑧  1 + 𝑎𝑥   . On integrating the solution is obtained as   𝑥 𝑡 =

 𝑥0  𝑒𝑥𝑝   𝑟 1 −   𝑥 + 𝑦 𝑘   − 𝛼𝑦 −  𝑎𝑧  1 + 𝑎𝑥    𝑑𝑡. It is well known that for any exponential value the 

exponential function is always non – negative. Also, here the initial susceptible prey population is assumed to be 

a positive quantity, i.e.,   𝑥0 > 0 .Therefore, it is straight forward to conclude that   𝑥 𝑡 > 0  for all   𝑡 ≥ 0. 

          Positivity of  𝒚 𝒕 : Consider the model equation for the infected prey which is  𝑑𝑦 𝑑𝑡  = 𝛼𝑥𝑦 − 𝑚1𝑦𝑧 −
𝜇𝑦. The application of variables separable method reduces it to 𝑑𝑦 𝑦 = (𝛼𝑥 − 𝑚1𝑧 − 𝜇)𝑑𝑡. On integrating the 

solution is obtained as  𝑦 𝑡 = 𝑦0𝑒𝑥𝑝   𝑎𝑥 − 𝑚1𝑧 − 𝜇 𝑑𝑡. It is well known that for any exponential value the 

exponential function is always non – negative. Also, here the initial infected prey population is assumed to be a 

positive quantity, i.e.,   𝑦0 > 0 .Therefore, it is straight forward to conclude that   𝑦 𝑡 > 0  for all   𝑡 ≥ 0. 

            Positivity of  𝒛 𝒕 : Consider the model equation for the predator which is  𝑑𝑧 𝑑𝑡 = 𝑚2𝑦𝑧 − 𝛿𝑧 +
 𝛾𝑎𝑥𝑧  1 + 𝑎𝑥   . The application of variables separable method and integration leads to the solution 

as  𝑧 𝑡 =  𝑧0  𝑒𝑥𝑝   𝑚2𝑦 +  𝛾𝑎𝑥  1 + 𝑎𝑥   − 𝛿 𝑑𝑡. As already it is mentioned that for any exponential 

value the exponential function is always non -negative. Also, here the initial predator population is assumed to 

be a positive quantity, i.e.,   𝑧0 > 0 .Therefore, it is straight forward to conclude that   𝑧 𝑡 > 0  for all   𝑡 ≥ 0. 

          Hence, all solutions of the system variables are positive quantities i.e.,  𝑥 𝑡 > 0,   𝑦 𝑡 > 0 ,   𝑧 𝑡 > 0   
for all  𝑡 ≥ 0   with the stated initial conditions. 

Proposition 2 All solutions of model equations (4) are bounded in the region 𝑅3
. 

             Boundedness of  𝒙 𝒕 : Consider the model equation for the susceptible prey which is   𝑑𝑥 𝑑𝑡 =
𝑟𝑥 1 −   𝑥 + 𝑦 𝑘   − αxy −  𝑎𝑥𝑧  1 + 𝑎𝑥   . It can be observed that the expression 

−αxy −  𝑎𝑥𝑧  1 + 𝑎𝑥    is a negative quantity since all the components and members are positives. Thus, 

without loss of generality the equation can be expressed as an inequality as   𝑑𝑥 𝑑𝑡 ≤ 𝑟𝑥 1 −  𝑥 𝑘   . On 

applying the variables separable method and on integrating the solution is obtained 

as     𝑥 𝑡 ≤  𝐶𝑘  𝐶 − 𝑒−𝑟𝑡      , where C is an arbitrary integral constant. The limit as   𝑡 → ∞   leads to the result 

that    𝑥 𝑡 ≤ 𝑘 . Recall that here  𝑘  is the environmental carrying capacity of the population   𝑥 and by 

assumption it is a positive quantity. Thus, it can be concluded that   𝑥 𝑡   is a bounded variable. 

          Boundedness of  𝑴 𝒕 = 𝒙 𝒕 + 𝒚 𝒕 + 𝒛 𝒕 : The differentiation of  𝑀  with respect to   𝑡  and on using 

the model system of equations (4) simplifies to   𝑑𝑀 𝑑𝑡  =  𝑑𝑥 𝑑𝑡  +  𝑑𝑦 𝑑𝑡  +  𝑑𝑧 𝑑𝑡   = 𝑟𝑥 1 −

𝑥+𝑦𝑘+𝑎𝑥𝑧(𝛾−1)1+𝑎𝑥+(𝑚2−𝑚1)𝑦𝑧−(𝜇y+𝛿𝑧). Since the parameters are assumed to satisfy the conditions 

𝑚2 ≤ 𝑚1, 𝛾 ≤ 1 without loss of generality the equation can be expressed as an inequality as   𝑑𝑀 𝑑𝑡 ≤
 𝑟𝑥 1 −  𝑥 𝑘   −  𝜇y + 𝛿𝑧   or equivalently   𝑑𝑀 𝑑𝑡  ≤  2𝑟𝑥 −  𝑟𝑥 + 𝜇y + 𝛿𝑧 . Now introduce a 

parameter   𝑢  satisfying    𝑢 = 𝑚𝑖𝑛  𝑟, 𝜇, 𝛿    and thus   𝑢𝑀 = 𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 .Thus the foregoing inequality of 

 𝑑𝑀 𝑑𝑡   can be expressed in terms of  𝑢  as  𝑑𝑀 𝑑𝑡 + 𝑢𝑀 ≤ 2𝑟𝑥. But 𝑥(𝑡) ≤ 𝑘 and thus obtained    𝑑𝑀 𝑑𝑡  +
𝑢𝑀 ≤  2𝑟𝑘. Integrating both sides and some algebraic simplifications lead to the final result as  𝑀 𝑡 ≤
 2𝑟𝑘 𝑢  .  This implies that the size of total population in the model 𝑀(𝑡) is bounded for all   𝑡 ≥ 0. Thus, each 

population is also bounded. Thus, it can be concluded that the model variables are bounded above. 

 

3.2 Existence of Steady states 

To study the dynamical behavior of the system getting the equilibrium points is the first step. Now the fixed 

points are obtained as the solutions of    𝑑𝑥 𝑑𝑡  =  𝑑𝑦 𝑑𝑡  =  𝑑𝑧 𝑑𝑡  = 0.  Using this and the model 

equations (4) it is found that there exist six steady states that are listed as follows: 

(i) E0  0, 0, 0    
(ii) E1  k, 0, 0  

(iii) E2   0,
𝛿

𝑚2
, 0  

(iv) E3   
𝜇

𝛼
,  

𝑟

𝛼
  

𝛼𝑘−𝜇

𝑟+𝑘𝛼
 , 0  

(v) E4  p∗, 0, 𝑞∗p∗ 𝑟(𝑘 − 1)   where  p∗ =  𝛿 𝛼 𝛾 − 𝛿  , q∗ =  𝛾 𝑎𝑘(𝛾 − 𝛿)  

(vi) E5   
𝑝±𝑅

2
,

𝛿

𝑚2
−

𝛾𝑎 𝑥∗

𝑚2(1+𝑎𝑥∗)
,

𝛼𝑥∗−𝜇

𝑚1
  

Note that in  E5  the notations  𝑝, 𝑞  and  𝑅  are used to represent the expressions as follows: 𝑝 =
m1

m2
  m2k +

γh+αkγhr−δ+δαr+m2hα+αkm2hr 

                    𝑞 =  𝑘m2 rm1 + aμ − δm1 r + kα   𝑟𝑎m2   

  𝑅 =  𝑝2 + 4𝑞 
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3.3  Community matrix of the model system 

     Let the model equations (4) be expressed as   𝑑𝑥 𝑑𝑡  = 𝑓 𝑥, 𝑦, 𝑧 ,    𝑑𝑦 𝑑𝑡  = 𝑔 𝑥, 𝑦, 𝑧      and    𝑑𝑧 𝑑𝑡  =
 𝑥, 𝑦, 𝑧   then the variation matrix is defined as 

𝑀 =  

𝑓𝑥 𝑓𝑦 𝑓𝑧

𝑔𝑥 𝑔𝑦 𝑔𝑧

𝑥 𝑦 𝑧

  

    Here  𝑓𝑥   denotes the partial derivative of the function  𝑓 with respect to  𝑥  i.e. 𝑓𝑥 =  𝜕𝑓 𝜕𝑥  and similarly the 

same is true for the remaining elements of the matrix  𝑀. 

In view of the system (4) the elements of the variation matrix  𝑀 can be computed as; 

   𝑓𝑥  = 𝑟 1 −  2𝑥 + 𝑦 𝑘  −  αy + 𝑎𝑧  1 + 𝑎𝑥 2   , 𝑓𝑦 = −𝑥 𝑘α + r 𝑘  , 

  𝑓𝑧 =  − 𝑎𝑥  1 + 𝑎𝑥     ,  𝑔𝑥 = αy,   𝑔𝑦 = − αx + m1z + μ ,      𝑔𝑧 = −𝑚1𝑦; 

   𝑥 = 𝛾𝑎𝑧  1 + 𝑎𝑥 2   ,  𝑦 = 𝑚2𝑧  ,    𝑧 = 𝑚2𝑦 − 𝛿 + 𝛾𝑎𝑥 1 + 𝑎𝑥 . 

 

3.4 Stability analysis of the system  

3.4.1 Local stability of the system 

 In this section, the local stability analyses of the system (4) around each of the equilibrium points are discussed. 

Theorem 1 The trivial steady state  𝐸0   exists and unstable. 

Proof: Let the variation matrix  𝑀  takes the form as  𝑀0  at the equilibrium point  𝐸0. Then the characteristic 

equation of the matrix  𝑀0  can be expressed as   det 𝑀0 − 𝜆𝐼 = 0 and its evaluation reduces to   𝑟 − 𝜆  −𝜇 −
𝜆−𝛿−𝜆=0 giving the three eigenvalues as   𝜆1=𝑟,  𝜆2=−𝜇,𝜆3=−𝛿. It is straight forward to observe that  𝜆1 is 

positive while 𝜆2, 𝜆3 are negative eigenvalues. That is,   𝜆1 > 0,   𝜆2 < 0,   𝜆3 < 0. Thus, the trivial equilibrium 

  𝐸0   is unstable.  

Theorem 2 The steady state  𝐸1  is locally asymptotically stable if the model parameters satisfy the conditions 

 𝑎 <  𝜇 𝑘    and  𝛾 < 𝛿    1 + 𝑎𝑘 𝑎𝑘  . 
Proof: Let the variation matrix  𝑀  takes the form as  𝑀1  at the equilibrium point  𝐸1 . Then the characteristic 

equation of the matrix  𝑀1  can be expressed as   det 𝑀1 − 𝜆𝐼 = 0 and its evaluation gives the eigenvalues 

as  𝜆1 = −𝑟,   𝜆2 = 𝑎𝑘 − 𝜇,     𝜆3 = −𝛿 +  𝛾𝑎𝑘  1 + 𝑎𝑘   . Here it can be observed that (i)  𝜆1 is 

unconditionally negative since  𝑟 is a positive quantity, i.e.,  𝜆1 < 0 (ii) the Eigenvalue  𝜆2  is negative if the 

condition 𝑎 <  𝜇 𝑘    is satisfied and (iii) the eigenvalue  𝜆3 is negative if the 

condition  𝛾 < 𝛿    1 + 𝑎𝑘 𝑎𝑘     is satisfied. Hence, the statement is proved. 

Theorem 3 The steady state  𝐸2  is locally asymptotically stable if the model parameters satisfy the 

conditions  𝑚2 <  𝑚1 < 𝛿 1 + 𝑎𝑘 . 

Proof Note that at the equilibrium   𝐸2  the susceptible prey and the predator population’s extinct but only 

infected prey population exists. That is, at   𝐸2  infected prey population alone exists. At the equilibrium point  𝐸2 

the variation matrix  𝑀  takes the form as  

𝑀2   =  

𝑢1 0 0

𝑢4 𝑢2 𝑢5

0 0 𝑢3

  

Here in  𝑀2  some notations are used to represent the expressions as 𝑢1 =  𝑟 1 −  𝛿 𝑘𝑚1   −  𝛼𝛿 𝑚1  ;  𝑢2 =
−𝜇;  𝑢3 =  𝛿  𝑚2 𝑚1  − 1 ;   𝑢4 =  𝛼𝛿 𝑚1   and     𝑢5 = −δ. The characteristic equation   det 𝑀2 − 𝜆𝐼 = 0 

can be expressed in a factorization form as   𝑢1 − 𝜆  𝑢2 − 𝜆  𝑢3 − 𝜆 = 0  giving the three eigenvalues 

as 𝜆1 = 𝑢1,  𝜆2 = 𝑢2, 𝜆3 = 𝑢3. Now, it is easy to observe that (i)  𝜆1  is negative if the condition   𝑚1 <
𝛿 1 + 𝑎𝑘  is satisfied (ii)  𝜆2 is unconditionally negative and (iii)   𝜆3 is negative if the condition   𝑚2 <  𝑚1 is 

satisfied. Combining all the above it can be concluded that the steady state  𝐸2  is locally asymptotically stable if 

the model parameters satisfy the conditions  𝑚2 <  𝑚1 < 𝛿 1 + 𝑎𝑘 . 

Theorem 4 The steady state  𝐸3  is locally asymptotically stable if the model parameters satisfy the 

condition    𝑚2  𝛼𝑟𝑘 − 𝑟𝜇  𝛼 𝑟 + 𝑘𝛼    − 𝛿 +  𝛾𝑎𝜇  𝛼 + 𝑎𝜇      < 0. 

Proof: Note that at the equilibrium   𝐸3  both the susceptible and infected prey populations exist but, the 

predator population extinct. At the equilibrium point  𝐸3 the variation matrix  𝑀  takes the form as  

𝑀3 =  

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

0 0 𝑐33

  

Here in  𝑀3  some notations are used to represent the expressions as  𝑐11 = −𝑟 𝜇 𝛼𝑘  ;    𝑐12 = − 𝜇 +
𝑟𝛼𝑘;      𝑐13=−𝑎𝜇𝛼+𝑎𝜇;       
    𝑐21 =    𝛼𝑟𝑘 − 𝑟𝜇  𝑟 + 𝑘𝛼   ;  𝑐22 = −2𝜇;    𝑐23 = −𝑚1  𝛼𝑟𝑘 − 𝑟𝜇  𝛼 𝑟 + 𝛼𝑘     and  
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     𝑐33 =  𝑚2  𝛼𝑟𝑘 − 𝑟𝜇  𝛼 𝑟 + 𝑘𝛼    − 𝛿 +  𝛾𝑎𝜇  𝛼 + 𝑎𝜇     . 

Solving the characteristic equation   det 𝑀3 − 𝜆𝐼 = 0 gives the three eigenvalues as      𝜆1 =  1 2    𝑚 +

𝑚2−4𝐷,   𝜆2=12 𝑚−𝑚2−4𝐷 ,   𝜆3=𝑐33 . Here the notations represent the expressions as   𝑚=𝑐11+𝑐22  and  
𝐷 = 𝑐11𝑐22 − 𝑐12𝑐21 . Observe that the eigenvalues  𝜆1  as well as  𝜆2   are unconditionally negative since 

  𝑚 < 0,   𝐷 > 0   and also  𝑚2 − 4𝐷 > 0. However, the eigenvalues  𝜆3  is negative if the condition 

   𝑚2  𝛼𝑟𝑘 − 𝑟𝜇  𝛼 𝑟 + 𝑘𝛼    − 𝛿 +  𝛾𝑎𝜇  𝛼 + 𝑎𝜇    < 0  is satisfied. Hence, the theorem is proved. 

Theorem 5 The steady state  𝐸4  is locally asymptotically stable if the model parameters satisfy (i) 

  𝑚2𝑟 𝛼𝑘 − 𝜇 𝛼  𝑟 + 𝛼𝑘    +   𝑎𝛾𝜇 − 𝛿  𝛼 + 𝑎𝜇   𝛼 + 𝑎𝜇     < 0 and (ii)  𝑎𝑘 < 𝜇 .  
 

 

Proof Note that at the equilibrium point   𝐸4 susceptible prey and predator populations present but the infected 

prey population is absent. Hence,  𝐸4 may be termed as disease free equilibrium point. At the equilibrium 

point  𝐸4 the variation matrix  𝑀  takes the form as  

𝑀4 =  

𝑎11 𝑎12 𝑎13

𝑎21 0 𝑎23

0 0 𝑎33

  

Here in  𝑀4, some notations are used and they are     𝑎11 =  𝑟𝜇 𝑟 − 1  𝑟 + 𝑘𝛼   ;   
 𝑎12 = −𝜇   𝑟 𝛼𝑘  + 1 ;   𝑎13 = − 𝑎𝜇  𝛼 + 𝑎𝜇   ;    𝑎21 =   𝛼𝑟𝑘 − 𝑟𝜇  𝑟 + 𝑘𝛼   ;    

      𝑎23 = −𝑚1  𝛼𝑟𝑘 − 𝑟𝜇  𝛼 𝑟 + 𝑘𝛼     ;   

      𝑎33 =    𝑚2𝑟 𝛼𝑘 − 𝜇 𝛼  𝑟 + 𝛼𝑘    +   𝑎𝛾𝜇 − 𝛿  𝛼 + 𝑎𝜇   𝛼 + 𝑎𝜇   . 
Now, the characteristics equation     det 𝑀4 − 𝜆𝐼 = 0 reduces to the factorized form as  𝑎21 − 𝜆  𝑎12 −
𝜆𝑎33−𝜆=0 giving the three eigenvalues as  𝜆1=𝑎21, 𝜆2=𝑎12 ,  𝜆3=𝑎33  . It is straight forward to observe that 

(i)  𝜆1 is negative if the condition  𝑎𝑘 < 𝜇    is satisfied (ii) 𝜆2 is negative unconditionally and (iii) (i)  𝜆3 is 

negative if the condition       𝑚2𝑟 𝛼𝑘 − 𝜇 𝛼  𝑟 + 𝛼𝑘    +   𝑎𝛾𝜇 − 𝛿  𝛼 + 𝑎𝜇   𝛼 + 𝑎𝜇     < 0    is 

satisfied. Since all the three eigenvalues are negative values under the stated conditions, the statement of the 

theorem is proved. 

Theorem 6 The interior equilibrium point  𝐸5   is locally asymptotically stable if the model parameters satisfy 

the condition     𝑎 >  𝑚1𝛿 𝛼 + 𝑟 𝛾  . 
Proof: Note that at the interior equilibrium point   𝐸5  all the three populations of the model viz., susceptible 

prey, infected prey and predator are present. 

At the equilibrium point  𝐸5 the variation matrix  𝑀  takes the form as  

𝑀5 =  

A B C

G H J

D E F

  

Here in  𝑀5, some notations are used and they are represented as: 

   𝐴 =  r 1 −  2x∗ + y∗ k  −  αy∗ + az∗  1 + ahx∗ 2   ,   𝐵 = −  α + r x∗ k  ,   
  G = αy∗, 𝐶 = − 𝑎𝑥∗ 1 + 𝑎𝑥∗  ,   𝐷 = γaz∗  1 + ahx∗ 2 ;  𝐸 = 𝑚2z∗  ,  
 𝐹 = 𝑚2y∗ − δ + γax∗ 1 + ahx∗ ;   𝐻 = − αx + m1z∗ + μ ;  𝐽 = −m1y∗. 

The characteristic equation in this case  det 𝑀5 − 𝜆𝐼 = 0  reduces to the form as: 

   𝜆3 + 𝑤𝜆2 + 𝑣𝜆 + 𝑢 = 0. Here  𝑤 = − 𝐴 + 𝐻 + 𝐹  ;    𝑣 =  𝐴𝐻 + 𝐴𝐹 + 𝐻𝐹 − 𝐶𝐷 − 𝐸𝐽 − 𝐵𝐽      and 

 𝑢 =  𝐴𝐸𝐽 + 𝐵𝐺𝐹 + 𝐶𝐷𝐻 − 𝐴𝐻𝐹 − 𝐵𝐷𝐽 − 𝐶𝐺𝐹 .  Here it can be observed here that (i)  𝑤 is a positive quantity 

if the condition     𝑎 >  𝑚1𝛿 𝛼 + 𝑟 𝛾   is satisfied and (ii)  𝑣 and 𝑢 are unconditionally positive quantities. Thus 

following Routh–Hurwitz criterion it can be concluded that all the three eigenvalues are negative quantities if 

the condition     𝑎 >  𝑚1𝛿 𝛼 + 𝑟 𝛾   is satisfied. Thus, the interior equilibrium point is asymptotically stable, 

for the assumed condition. Hence, the theorem is proved 

3.3.1 Global stability of the system. 

Here, the stability analysis of the model (8)-(10) is conducted using suitable Lyapunov functions and the results 

are presented in the form of theorems followed by their proofs. 

Theorem 7: The equilibrium point  𝐸1 is globally asymptotically stable. 

Proof: Consider the Lyapunov function  𝑣 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑥∗ − 𝑥∗𝑙𝑛 𝑥 𝑥∗   . On differentiating 𝑣 with 

respect to  𝑡, substituting expression for  𝑑𝑥/𝑑𝑡 and after some simplification it is obtained as      
𝑑𝑣

𝑑𝑡
=

  
x−x∗

x
  

dx

dt
 =  

x−x∗

x
  𝑟𝑥  1 −

𝑥+𝑦

𝑘
 − αxy −

𝑎𝑥𝑧

1+𝑎𝑥
 =  x − x∗   − r k  (x − x∗) = − r k    x − x∗ 2 < 0. 

Thus, 
𝑑𝑣

𝑑𝑡
< 0 i.e., 𝑣 is positive definite and also  𝑣(𝑥∗, 𝑦∗, 𝑧∗) = 0. 
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Therefore  𝐸1 is globally asymptotically stable. 

Theorem 8: The steady state  𝐸3  is globally asymptotically stable if the condition  𝑚 ≤ 1 is satisfied. 

Proof: Consider the Lyapunov functions as    𝑣 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑥∗ −   𝑥∗𝑙𝑛 𝑥 𝑥∗   + 𝑚 𝑦 − 𝑦∗ −
𝑦∗𝑙𝑛𝑦𝑦∗ . Now, the differential of   𝑣  with respect to t and after some algebraic manipulations reduces to the 

following form: 

 

    𝑣 =     x − x∗ x   dx dt   +  𝑚   y − y∗ y    dy dt  

= 𝑙    x − x∗ 𝑥    𝑟𝑥  1 −
𝑥 + 𝑦

𝑘
 − αxy −

𝑎𝑥𝑧

1 + 𝑎𝑥
   

+ 𝑚   y − y∗ y    𝛼𝑥𝑦 − 𝑚1𝑦𝑧 − 𝜇y)  
= − 𝑟 𝑘   𝑥 − 𝑥∗ 2 − α y − y∗  x − x∗ + 𝑚𝛼 y − y∗   𝑥 − x∗     
=  − 𝑟 𝑘   𝑥 − 𝑥∗ 2 +  𝛼 y − y∗  x − x∗ (𝑚 − 1)   

 

Observe that in the expression for   𝑣 , the term   − 𝑟 𝑘     𝑥 − 𝑥∗ 2   is negative and the expression  𝛼 y −
y∗x−x∗ is positive. Thus, it is straight forward to conclude that    𝑑𝑣𝑑𝑡<0   if the condition 0≤𝑚≤1    holds true. 

 

Therefore,  𝐸3   is globally asymptotically stable. 

Theorem 9: The interior steady state  𝐸5   is globally asymptotically stable if the model parameters satisfy the 

condition  𝛾𝑎𝑚1 < 𝛼𝑚2. 

Proof: Consider the Lyapunov function as 𝑣 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑥∗ −  𝑥∗𝑙𝑛 𝑥 𝑥∗   + 𝑙 𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛 𝑦 𝑦∗   +
𝑛 𝑧 − 𝑧∗ −  𝑧∗𝑙𝑛 𝑧 𝑧∗   .  
On differentiating  𝑣  with respect to  𝑡  gives the result as 

   𝑣 =  
x−x∗

x
  

dx

dt
 +   𝑙  

y−y∗

y
  

dy

dt
 +  𝑛  

z−z∗

z
  

dz

dt
 . 

Now substituting the expressions for 𝑑𝑥/𝑑𝑡,   𝑑𝑦/𝑑𝑡, 𝑑𝑧/𝑑𝑡  and after some algebraic manipulations, it reduces 

to 

 

  𝑣 =    x − x∗ x     𝑟𝑥  1 −   𝑥 + 𝑦 k    − αxy −   𝑎𝑥𝑧  1 + 𝑎𝑥     

+ 𝑚  y − y∗ 𝑦     𝛼𝑥𝑦 − 𝑚1𝑦𝑧 − 𝜇y + n   z − z∗ z     𝑚2𝑦𝑧 − 𝛿𝑧 +  𝛾𝑎𝑥𝑧  1 + 𝑎𝑥       
 

   = −  𝑥 − 𝑥∗ 2  r k  + 𝑑1  +  𝑦 − 𝑦∗   𝑥−𝑥∗   𝑙𝛼 − 𝛼 +  𝑧 − z∗   𝑦 − y∗   n𝑚2 − 𝑙 𝑚1 +
 𝑧 − 𝑧∗   𝑥 − 𝑥∗    𝑛𝛾𝑎 − 𝛼  1 + 𝑎𝑥     
Here in 𝑣   , the notations used are 𝑛 = 𝑚1 𝑚2   and   𝑑1 =  𝛼𝑧∗  1 + 𝑎𝑥  1 + ahx∗   .  
Now fixing the parameter at  𝑙 = 1, the expression for  𝑣  reduces to 

𝑣 = −  𝑥 − 𝑥∗ 2   r k  + 𝑑1  +  𝑧 − 𝑧∗   𝑥 − 𝑥∗    (𝑛𝛾𝑎 − 𝛼)  1 + 𝑎𝑥     . 
Since in 𝑣 , the term  −  𝑥 − 𝑥∗ 2    r k  + 𝑑1   is negative and the expression 

  𝑧 − 𝑧∗  𝑥 − 𝑥∗   1 + 𝑎𝑥    is positive it can be concluded that    𝑑𝑣 𝑑𝑡 <  0   if the condition on 

parameters   𝛾𝑎𝑚1  <  𝛼𝑚2 holds true. 

Therefore, by LaSalle invariant principle the theorem holds. 

 

IV. Numerical simulations 
In this section, numerically simulation study is conducted to understand the dynamics of the deterministic 

model. For that purposed, certain values are assigned to the parameters taken from their reasonable ranges. 

 
Figure 1 Population dynamics around 𝑬𝟏 with 𝒎𝟐 = 𝟎. 𝟕𝟗𝟐, 𝜹 = 𝟏. 𝟎𝟏𝟔, 𝜸 = 𝟎. 𝟑𝟐𝟖 
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Figure 2 Population dynamics around 𝑬𝟏 with 𝒎𝟐 = 𝟏. 𝟐𝟐𝟒, 𝜹 = 𝟎. 𝟗𝟔𝟒, 𝜸 = 𝟏. 𝟎𝟎𝟒  

 

In, Figures1and 2, Numerical examples of the model around 𝐸1 are presented. In both the figures other variables 

are set as  𝑟 = 0.72, 𝑘 = 1.44, 𝛼 = 1.71,  𝑚1 = 0.06,  = 0.435, 𝜇 = 0.74, 𝑎 = 3.08. It can be observed that 

the Predator population initially grows because sufficient prey is available and later it decreases and finally all 

the populations will die out. 

.  

 
Figure 3 Population dynamics around 𝑬𝟑 with  𝒓 = 𝟓. 𝟐𝟓, 𝒌 = 𝟐. 𝟓𝟐𝟓, 𝜶 = 𝟏. 𝟔𝟗𝟐𝟑, 𝜹 = 𝟏. 𝟏𝟕𝟔𝟎, 𝜸 =

𝟎. 𝟏𝟒𝟓𝟎, 𝝁 = 𝟎. 𝟖𝟗𝟏   
 

 
Figure 4 Population dynamics around 𝑬𝟑 with  𝒓 = 𝟏. 𝟎𝟓𝟎𝟎, 𝒌 = 𝟒. 𝟐𝟒𝟓𝟎, 𝜶 = 𝟑. 𝟐𝟔𝟖𝟔, 𝜹 = 𝟎. 𝟔𝟗𝟒𝟎, 𝜸 =

𝟎. 𝟐𝟎𝟔𝟎, 𝝁 = 𝟎. 𝟕𝟐𝟎𝟎 

 

In Figures 3 and 4, Numerical simulations of the model around the equilibrium point E3 are presented. 

The population sizes of both infected and uninfected preys experience some fluctuations initially and then they 

would stabilize over a period of time. However, the predator population decreases continuously till it reaches its 

equilibrium value. The values of the fixed parameters used in both the simulations are  𝑚1 = 0.2744, a =
0.3600, h = 0.0954, m2 = 1.8800. 
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Figure 5 Population dynamics around  𝑬𝟒  with 𝒎𝟐 = 𝟏. 𝟓𝟎𝟔𝟎, 𝐡 = 𝟎. 𝟓𝟐𝟐𝟎, 𝛍 = 𝟐. 𝟓𝟏 

 

 
Figure 6 Population dynamics around 𝑬𝟒 with 𝒎𝟐 = 𝟏. 𝟏𝟑𝟕, 𝝁 = 𝟑. 𝟑𝟒𝟓, 𝒉 = 𝟎. 𝟑𝟓𝟏  

 
In figures 5 and 6, Numerical simulations of the model around E4 are presented. The initial population 

sizes of both susceptible and infected preys are chosen to be higher than that of the predator. However, over a 

period of time all the populations will reach their equilibrium values.  

It is observed that the equilibrium values of susceptible prey and predator are positive quantities and are very 

close to each other. However, the equilibrium value of the infected prey is zero.  The values of the fixed 

parameters used in both the simulations are 𝑟 = 8.26, 𝑘 = 2.16, 𝛼 = 1.098, 𝑚1 = 4.016, 𝛿 = 2.96, 𝛾 =
0.784, 𝑎 = 3.08. 

 

 
Figure 7 Population dynamics around  𝑬𝟓  with   𝒎𝟐 = 𝟏. 𝟓𝟐𝟓𝟎 
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Figure 8 Population dynamics around  𝑬𝟓  with, 𝒎𝟐 = 𝟏. 𝟔𝟗𝟎𝟎  

 

In Figures 7 and 8, numerical examples of the model around the interior point  𝐸5   are considered. The 

populations are observed regulating one other. In both the figures, the susceptible prey population lies higher 

than both the infected prey and the predator. However, in Figure 7 the infected prey population dominates the 

predator population but the reverse occurs in Figure 8. The values of the fixed parameters used in both the 

simulations are 𝑟 = 2.5600, 𝑘 = 1.4650, 𝛼 = 2.7180,   𝑚1 = 0.0763, 𝛿 = 0.6560, 𝛾 = 0.5140, 𝑎 =
0.2990,  = 0.2745, 𝜇 = 0.1000. 

 

V. Conclusion 
In this study a mathematical model is developed to describe the population dynamics of susceptible prey – 

Infected prey – Predator system taking into account that the functional response and interaction coefficients of 

predator population are different.  

It is verified that the model variables are both positive and bounded and thus the model is biologically 

meaningful. Further, disease free equilibrium is shown to be locally and asymptotically stable. Also, the Interior 

equilibrium is locally, asymptotically and globally stable. Moreover, the dynamical behavior of the system has 

been investigated locally as well as globally by considering certain conditions. 

To understand the effects of varying parameters on the dynamics of the system, simulation study is conducted in 

support of the mathematical analysis and which the following conclusions are drawn:  

(i) If the predator prefers to consume infected prey then the susceptible prey population size will increase. 

(ii) If the predator prefers to consume susceptible prey and since the infected prey decrease due to disease 

then the combined prey population size will decrease. 

(iii)  If the predator has no preference to consume either susceptible or the infected prey i.e., the predator 

prefers susceptible and infected prey equally, the joint population size of the prey remains unaltered.  

(iv)  From figure 6 it is observed that if the predator holds the prey population below the threshold the 

transmission of disease can’t spread. Moreover, when the infected prey is regulated, the predator is excluded 

from the interaction figure (3) and (4), so that inclusion of predator in either linear response or type II functional 

response both in infected and susceptible prey interactions respectively would be considered as indicated in 

figure (7) and (8) to stabilize the whole population dynamics.  

(v) Moreover, based on some parametric values the functional response of the predator interaction is differ 

for both free living and infected prey as per the assumption. 
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