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Abstract:A circulant graph𝐶𝑛 (𝑅) is said to have the Cayley Isomorphism (CI) property if whenever 𝐶𝑛 (𝑆)is 

isomorphic to𝐶𝑛 (𝑅), there is some a∈𝑍𝑛
∗ for which S = aR.In this paper, we prove that 𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆)and 

𝐶27𝑛 (𝑇)are isomorphic circulant graphs without CI-property whereR = {1, 9n-1, 9n+1, 3𝑝1, 3𝑝2, . . . , 3𝑝𝑘−2}, 

S = {3n+1, 6n-1, 12n+1, 3𝑝1, 3𝑝2, . . . , 3𝑝𝑘−2},T = {3n-1, 6n+1,12n-1, 3𝑝1, 3𝑝2, . . . ,3𝑝𝑘−2},k ≥ 3, gcd(𝑝1, 

𝑝2,..., 𝑝𝑘−2) = 1 and  𝑛, 𝑝1,𝑝2,...,𝑝𝑘−2ℕand also obtain new abelian groups from these isomorphic circulant 

graphs. 
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I. Introduction 
 Circulant graphs have been investigated by many authors [1]-[16]. An excellent account can be 
found in the book by Davis [3] and in [6]. A circulant graph 𝐶𝑛 (𝑅) is said to have the Cayley Isomorphism 
(CI) property if whenever 𝐶𝑛 (𝑆) is isomorphic to 𝐶𝑛 (𝑅) there is some aℤ𝑛 for which S = aR. Finding 
circulant graphs without CI-property is difficult.  Type-2 isomorphism, a new type of isomorphism of 
circulant graphs, other than already known Adam's isomorphism, was defined and studied in [10,13]. 
Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without 
CI-property. 
Families of isomorphic circulant graphs of Type-2, each circulant graph of a family with 𝑚𝑗  = gcd(n,𝑟𝑗 ) 

number of copies of a circulant subgraph for 𝑚𝑗  = 2, 5 or 7 are obtained in [14]-[16].In this paper, we 

prove that for nℕ,k ≥ 3, R = {1, 9n-1, 9n+1, 3𝑝1 , 3𝑝2 , . . . , 3𝑝𝑘−2}, S = {3n+1, 6n-1, 12n+1, 3𝑝1 , 3𝑝2 , . . . , 
3𝑝𝑘−2} andT = {3n-1, 6n+1,12n-1, 3𝑝1 , 3𝑝2 , ... , 3𝑝𝑘−2}, circulant graphs 𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are 
Type-2 isomorphic with 𝑚𝑖  = 3 where gcd(𝑝1 ,𝑝2 ,...,𝑝𝑘−2) = 1 and 𝑝1 , 𝑝2 ,...,𝑝𝑘−2ℕ and obtain abelian 
groups(𝐴𝑑27𝑛 (𝐶27𝑛 (𝑅)), o)  = (𝑇127𝑛 (𝐶27𝑛 (𝑅)), o), (𝑉27𝑛,3(𝐶27𝑛 (𝑅)), o) and (𝑇227𝑛,3(𝐶27𝑛 (𝑅)), o). 
Through-out this paper, for a set R = {𝑟1 , 𝑟2 , … , 𝑟𝑘 }, 𝐶𝑛 (𝑅) denotes circulant graph 𝐶𝑛 (𝑟1 , 𝑟2 , … , 𝑟𝑘 ) where  
1 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑘 [n/2]. We consider only connected circulant graphs of finite order, V(𝐶𝑛 (𝑅)) = 
{𝑣0 , 𝑣1 , 𝑣2 , … , 𝑣𝑛−1 } with 𝑣𝑖  adjacent to 𝑣𝑖+𝑟 for each rR, subscript addition taken modulo n and all cycles 

have length at least 3, unless otherwise specified,0 in-1. However when 
𝑛

2
R, edge 𝑣𝑖𝑣𝑖+

𝑛

2
 is taken as a 

single edge for considering the degree of the vertex 𝑣𝑖  or 𝑣𝑖+
𝑛

2
 and as a double edge while counting the 

number of edges or cycles in 𝐶𝑛 (𝑅), 0 in-1. 
Circulant graph is also defined as a Cayley graph or digraph of a cyclic group. If a graph G is circulant, then 
its adjacency matrix A(G) is circulant. It follows that if the first row of the adjacency matrix of a circulant 
graph is [𝑎1 , 𝑎2 , … , 𝑎𝑛 ], then 𝑎1= 0 and 𝑎𝑖= 𝑎𝑛−𝑖+2, 2 in [3]. We will often assume, with-out further 
comment, that the vertices are the corners of a regular n-gon, labeled clockwise. Circulant graphs 
𝐶16(1,2,7)and 𝐶16(2,3,5) are shown in Figures 1 and 2, respectively. 
Now, we present a few definitions and results that are required in this paper. 
Theorem 1.1 [10]If𝐶𝑛 (𝑅)𝐶𝑛 (𝑆), then there is a bijectionffromRtoSso that for allrR, gcd(n, r) = gcd(n, 
f(r)).  
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  Fig.1.𝐶16(1,2,7)             Fig.2.𝐶16(2,3,5) 
Definition 1.2 [9] A circulant graph 𝐶𝑛 (𝑅) is said to have the CI-property if whenever 𝐶𝑛 (𝑆) is isomorphic 
to 𝐶𝑛 (𝑅), there is some a∈𝑍𝑛

∗  for which S = aR.  
Lemma 1.3 [13] Let S be a non-empty subset ofℤ𝑛  and xℤ𝑛 . Define a mapping 𝑛,𝑥 : Sℤ𝑛 such 
that𝑛,𝑥 (s) = xsfor every sSunder multiplication modulo n. Then𝑛,𝑥 is bijective if and only ifS = 
ℤ𝑛 andgcd(n, x) = 1.     
Definition 1.4 [1] Circulant graphs, 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) for R = {𝑟1 , 𝑟2 , … , 𝑟𝑘 } and S ={𝑠1, 𝑠2 , … , 𝑠𝑘 } are Adam’s 
isomorphicor Type-1 isomorphicif there exists a positive integer x relatively prime to n with S = 
{𝑥𝑟1 , 𝑥𝑟2 , … , 𝑥𝑟𝑘 }𝑛

∗  where < 𝑟𝑖 >𝑛
∗ , the reflexive modular reductionof a sequence <𝑟𝑖> is the sequence 

obtained by reducing each 𝑟𝑖  modulo n to yield 𝑟𝑖
′  and then replacing all resulting terms 𝑟𝑖

′  which are 

larger than 
𝑛

2
 by n-𝑟𝑖

′ .  

Lemma 1.5 [13]Let m,r,tℤ𝑛 such thatgcd(n, r) = m> 1 and 0 t
𝑛

𝑚
 -1.Then the mapping𝑛,𝑟,𝑡 : 

ℤ𝑛ℤ𝑛 defined by𝑛 ,𝑟,𝑡 (x) = x+jtmfor every xℤ𝑛 under arithmetic modulo n is bijective wherex = qm+j,  

0 jm-1, 0 q
𝑛

𝑚
 -1 andj,qℤ𝑛 .        

Theorem 1.6 [13]Let 𝑉(𝐶𝑛 (𝑅)) = {𝑣0 , 𝑣1, 𝑣2 , … , 𝑣𝑛−1}, V(𝐾𝑛 ) = {𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛−1}, R = {𝑟1 , 𝑟2, … , 𝑟𝑘 , 𝑛 −

𝑟𝑘,n−𝑟𝑘−1,…,n−𝑟1}andrRsuch thatgcd(n, r) = m> 1. Thenthe mapping𝑛,𝑟,𝑡: V(𝐶𝑛(𝑅)) 
V(𝐶𝑛 (1,2,…,n-1)) = V(𝐾𝑛 ) defined by𝑛,𝑟,𝑡 (𝑣𝑥 ) = 𝑢𝑥+𝑗𝑡𝑚 and𝑛,𝑟,𝑡 ((𝑣𝑥 ,𝑣𝑥+𝑠)) =(𝑛,𝑟,𝑡 (𝑣𝑥 ),𝑛,𝑟,𝑡 (𝑣𝑥+𝑠)) for 

everyxℤ𝑛 , x = qm+j, 0 jm-1, 0 q,t
𝑛

𝑚
 -1andsR, under subscript arithmetic modulo n, is  

one-to-one, preserves adjacency and 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) 𝐶𝑛 (𝑅)for t = 0,1,2,…,
𝑛

𝑚
 - 1.   

Definition 1.7 [13]For a given circulant graph 𝐶𝑛 (𝑅)and for a particular value of t, 0 t
𝑛

𝑚
 -1 if 𝑛 ,𝑟,𝑡 (𝐶𝑛 (𝑅)) 

= 𝐶𝑛 (𝑆) for some S ⊆ [1,
𝑛

2
]and S xR for all x

𝑛
 under reflexive modulo n, then 𝐶𝑛 (𝑅)and 𝐶𝑛 (𝑆) are 

called Type-2 isomorphic circulant graphs w.r.t. r, rR. In this case, subsets R and S ofℤ𝑛  are called Type-2 
isomorphic subsets ofℤ𝑛  w.r.t.r. 
Thus, clearly Type-2 isomorphic circulant graphs are circulant graphs without CI-property. 
Theorem 1.8 [13]Forn≥ 2, k≥ 3, 1  2s-1  2n-1, n 2s-1, R = {2s-1, 4n-2s+1, 2𝑝1 , 2𝑝2 ,...,2𝑝𝑘−2} and S = 
{2n-2s+1, 2n+2s-1, 2𝑝1 ,2𝑝2 ,...,2𝑝𝑘−2}, circulant graphs𝐶8𝑛 (𝑅)and 𝐶8𝑛 (𝑆)are Type-2 isomorphic (and 
without CI-property) wheregcd(𝑝1 ,𝑝2 ,...,𝑝𝑘−2) = 1 and 𝑛, 𝑠, 𝑝1 ,𝑝2 ,...,𝑝𝑘−2ℕ.    

Theorem 1.9 [13]For R = {2, 2s-1, 2s’-1}, 1 t [ 
𝑛

2
], 1  2s-1  2s’-1  [ 

𝑛

2
] and 

n,s,s’,tℕif𝐶𝑛 (𝑅)and𝑛,2,𝑡 (𝐶𝑛 (𝑅)) are Type-2 isomorphic circulant graphs for somet, thenn 0 (mod 8), 

2s-1+2s’-1 = 
𝑛

2
,  

t = 
𝑛

8
or

3𝑛

8
, 2s’-1 

𝑛

8
, 1  2s-1 

𝑛

4
andn≥ 16.    

Definition 1.10 [13] Let 𝐴𝑑𝑛 (𝐶𝑛 (𝑅)) = 𝑇1𝑛 (𝐶𝑛 (𝑅)) = {𝑛,𝑥 (𝐶𝑛 (𝑅)): x𝑛 }= {𝐶𝑛 (xR): x𝑛 } for a set R= 

{𝑟1 , 𝑟2 , … , 𝑟𝑘 , 𝑛 − 𝑟𝑘 , n − 𝑟𝑘−1 , … , n − 𝑟1}.Define ‘o’ in 𝐴𝑑𝑛 (𝐶𝑛 (𝑅)) such that 𝑛,𝑥 (𝐶𝑛 (𝑅))o𝑛,𝑦 (𝐶𝑛 (𝑅))= 

𝑛,𝑥𝑦 (𝐶𝑛 (𝑅))and 𝐶𝑛 (xR) o 𝐶𝑛 (yR) = 𝐶𝑛 ((xy)R)for every x,y𝑛 , under arithmetic modulo n. Clearly, 
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𝐴𝑑𝑛 (𝐶𝑛 (𝑅)) is the set of all circulant graphs which are Adam’s isomorphic to 𝐶𝑛 (𝑅)and(𝐴𝑑𝑛 (𝐶𝑛 (𝑅)), o)= 
(𝑇1𝑛 (𝐶𝑛 (𝑅)), o)is an abelian group called the Adam’s group or theType-1 group on 𝐶𝑛 (𝑅) under ‘o’. 
Definition 1.11 [13] Let 𝑉(𝐶𝑛 (𝑅)) = {𝑣0 , 𝑣1 , 𝑣2, … , 𝑣𝑛−1}, V(𝐾𝑛 ) = {𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛−1}, rR, 
m,q,t,t’,xℤ𝑛 such thatgcd(n, r) = m> 1, x = qm+j, 0 jm-1 and 0 q,t,t’ 

𝑛

𝑚
 -1. Define 𝑛,𝑟,𝑡 :ℤ𝑛ℤ𝑛 and 

𝑛,𝑟,𝑡 : V(𝐶𝑛 (𝑅)) V(𝐶𝑛 (1,2,…,n-1)) = V(𝐾𝑛 )such that 𝑛 ,𝑟,𝑡 (x) = x+jtm, 𝑛,𝑟,𝑡 (𝑣𝑥 ) = 𝑢𝑥+𝑗𝑡𝑚 and 

𝑛,𝑟,𝑡 ((𝑣𝑥 ,𝑣𝑥+𝑦 )) = (𝑛 ,𝑟,𝑡 (𝑣𝑥 ), 𝑛,𝑟,𝑡 (𝑣𝑥+𝑦 )) for every xℤ𝑛 and yR,under subscript arithmetic modulo n. 

Let sℤ𝑛 , 𝑉𝑛 ,𝑟 = {𝑛,𝑟,𝑡 : t = 0,1,…,
𝑛

𝑚
 -1}, 𝑉𝑛 ,𝑟 (s) = {𝑛 ,𝑟,𝑡 (s): t = 0,1,…,

𝑛

𝑚
 -1} and 𝑉𝑛,𝑟 (𝐶𝑛 (𝑅))= {𝑛 ,𝑟,𝑡 (𝐶𝑛 (𝑅)): t 

= 0,1,…,
𝑛

𝑚
 -1}. Define ‘o’ in 𝑉𝑛 ,𝑟  such that 𝑛,𝑟,𝑡 o 𝑛,𝑟,𝑡′  = 𝑛,𝑟,𝑡+𝑡′ , (𝑛 ,𝑟,𝑡 o𝑛 ,𝑟,𝑡′ )(x) ( = 𝑛,𝑟,𝑡 (𝑛 ,𝑟,𝑡′ (x)) = 

𝑛,𝑟,𝑡 (x+jt’m) = (x+jt’m)+jtm = x+j(t+t’)m ) = 𝑛 ,𝑟,𝑡+𝑡′ (x) and 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅))o 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅)) = 

𝑛,𝑟,𝑡+𝑡′ (𝐶𝑛 (𝑅)) for every 𝑛 ,𝑟,𝑡 ,𝑛,𝑟,𝑡′𝑉𝑛 ,𝑟  where t+t’ is calculated under addition modulo 
𝑛

𝑚
. Clearly, 

(𝑉𝑛,𝑟 (s), o) and (𝑉𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o)are abelian groups for all sℤ𝑛 . 

Properties of 𝒏,𝒓,𝒕(𝑪𝒏(𝑹)) 

1.1 Let 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅))= 𝐶𝑛 (𝑆) and 𝑟𝑖ℤ𝑛  such that gcd(n,𝑟𝑖) = gcd(n,r). Then, 𝑟𝑖𝑅 if and only if 𝑟𝑖𝑆, 

follows from the definition of 𝑛,𝑟,𝑡 . 

1.2 For a given circulant graph 𝐶𝑛 (𝑅) and for a particular value of t, if 𝑛 ,𝑟,𝑡 (𝐶𝑛 (𝑅))= 𝐶𝑛 (𝑆) for some S⊆ [1, 

[
𝑛

2
]], then 𝑛,𝑟,𝑡+𝑡′ (𝐶𝑛 (𝑅)) = 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑆)) for every t', 0 t,t'

𝑛

𝑚
 -1 where gcd(n, 𝑟)  = m> 1. This 

follows from the fact, 𝑛,𝑟,𝑡+𝑡′ (𝐶𝑛 (𝑅)) = 𝑛 ,𝑟,𝑡 ′ +𝑡(𝐶𝑛 (𝑅)) = 𝑛 ,𝑟,𝑡′ (𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅))) = 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑆)). 

1.3 Let 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) be isomorphic circulant graphs. Then 𝐶𝑛 (𝑆) = 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) for some t, 0  t 


𝑛

𝑚
− 1 ifand only if 𝐶𝑛 (𝑅) = 𝑛,𝑟,

𝑛

𝑚
−𝑡 (𝐶𝑛 (𝑆)).This follows from the fact that 𝑛,𝑟,

𝑛

𝑚
−𝑡(𝐶𝑛 (𝑆)) 

=𝑛 ,𝑟,
𝑛

𝑚
−𝑡(𝑛 ,𝑟,𝑡 (𝐶𝑛 (𝑅))) = 𝑛,𝑟,

𝑛

𝑚
−𝑡+𝑡 (𝐶𝑛 (𝑅))= 𝑛 ,𝑟,0(𝐶𝑛 (𝑅))= 𝐶𝑛 (𝑅) if and only if 𝐶𝑛 (𝑆) = 

𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)). 

1.4 For isomorphic circulant graphs 𝐶𝑛 (𝑅)and 𝐶𝑛 (𝑆), 𝐶𝑛 (𝑆)𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)) if and only if𝐶𝑛 (𝑆) = 

𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) for some t, 0  t 
𝑛

𝑚
− 1 and 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are Type-2 isomorphic w.r.t. rif and only if 

𝐶𝑛 (𝑅) = 𝑛,𝑟,
𝑛

𝑚
−1(𝐶𝑛 (𝑆)) for some t, 0  t 

𝑛

𝑚
− 1 and 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are Type-2 isomorphic w.r.t. rif 

and only if𝐶𝑛 (𝑅)𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑆)). 

1.5Let 𝐶𝑛 (𝑅), 𝐶𝑛 (𝑆) be two isomorphic circulant graphs of Type-2 w.r.t. r, rR,S and RS. Then, 
𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)) = 𝑇2𝑛,𝑟 (𝐶𝑛 (𝑆)) follows from Property 1.4. 

1.6 Let 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) be two isomorphic circulant graphs and RS. Then, at least one of the following 
statements is true. 
(i) 𝐶𝑛 (𝑆)= 𝐶𝑛 (𝑥𝑅), x

𝑛
.That is 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are Adam's isomorphic. 

(ii)𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))= 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑆)).This implies that𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are Type-2 isomorphic circulant 

graphs w.r.t. r. 
(iii)𝐶𝑛 (𝑆)𝐶𝑛 (𝑥𝑅)for all 𝑥

𝑛
 and 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑆)) for any particular𝑟ℤ𝑛 . That is 

circulant graphs 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are neither Adam's isomorphic nor Type-2 isomorphic w.r.t. 
any particular 𝑟ℤ𝑛 . But their isomorphism is connected by a sequence of isomorphic 
transformations involving Type-2 isomorphisms w.r.t. different r's or Type-2 isomorphisms w.r.t. 
different r's as well as Adam's isomorphism.  
As an example the two circulant graphs 𝐶27(1,3,8,10)and𝐶27(2,7,11,12) are isomorphic but they 
are neither Adam's nor Type-2 isomorphic w.r.t. 3 or 12 (or w.r.t. any particular r whose gcd with 
27 is > 1) because of the following. 

a) 
27,𝑥

(𝐶27(1,3,8,10))𝐶27(2,7,11,12)for every 𝑥
27

 (See Table-1). This implies, 

𝐶27(1,3,8,10)and𝐶27(2,7,11,12) are not Adam's isomorphic. 
b) Even though gcd(27, 3) = 3 = gcd(27, 12), the two circulant graphs 

𝐶27(1,3,8,10)and𝐶27(2,7,11,12)don’t have common jump size, say m, such that gcd(27, m) = 3 or 
gcd(27, m) = 12 and so they can’t be Type-2 isomorphic w.r.t. any m.  

c) 
27,2

(𝐶27(2,7,11,12))= 
27,2

(𝐶27(2,7,11,12,15,16,20,25))=𝐶27(4,14,22,24,30,32,40,50) 

=𝐶27(4,14,22,24,3,5,13,23)  =𝐶27(3,4,5,13) which implies that 𝐶27(3,4,5,13) and 
𝐶27(2,7,11,12)are Adam's isomorphic. 

d) 27,3,1(𝐶27(1,3,8,10)) = 27,3,1(𝐶27(1,3,8,10,17,19,24,26))=𝐶27(4,3,14,13,23,22,24,32) 

=𝐶27(4,3,14,13,23,22,24,5)= 𝐶27(3,4,5,13) which implies, 𝐶27(3,4,5,13)≅𝐶27(1,3,8,10). Also, 
27,3,2(𝐶27(1,3,8,10)) =27,3,2(𝐶27(1,3,8,10,17,19,24,26)) =𝐶27(7,3,20,16,2,25,24,11)= 

𝐶27(2,3,7,11). 27,3,3(𝐶27(1,3,8,10)) = 
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27,3,3(𝐶27(1,3,8,10,17,19,24,26))=𝐶27(10,3,26,19,8,1,24,17)=𝐶27(1,3,8,10).Thus, 
𝐶27(3,4,5,13)≅𝐶27(2,7,11,12) and 𝐶27(3,4,5,13)≅𝐶27(1,3,8,10)which implies, 
𝐶27(1,3,8,10)≅𝐶27(2,7,11,12)but theyare not Type-2 isomorphic w.r.t. any particular r. 

Thus, we could see that for a given a circulant graph 𝐶𝑛 (𝑅) one can make sequence of isomorphic 
transformations involving Adam's isomorphism as well as Type-2 isomorphisms w.r.t. different r's 
and obtain an isomorphic circulant graph 𝐶𝑛 (𝑆)which may not be Adam's isomorphic or Type-2 
isomorphic w.r.t. a particular r to 𝐶𝑛 (𝑅). And thus a new study is needed to find the sequence of 
isomorphisms involved among isomorphic circulant graphs. 

 
Table 1.Calculation of xrunder arithmetic modulo 27,𝑥

27
and 𝑟𝑅. 

 Jump Size r 

Multiplier x 1 3 8 10 17 19 24 26 

2 2 6 16 20 7 11 21 25 
4 4 12 5 13 14 22 15 23 
5 5 15 13 23 4 14 12 22 
7 7 21 2 16 11 25 6 20 
8 8 24 10 26 1 17 3 19 
10 10 3 26 19 8 1 24 17 
11 11 6 7 2 25 20 21 16 
13 13 12 23 22 5 4 15 14 

 
Moreover,𝑉𝑛,𝑟 (𝐶𝑛 (𝑅)) contains all isomorphic circulant graphs of Type 2 of 𝐶𝑛 (𝑅) w.r.t. r, if exist. Let 

𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))= {𝐶𝑛 (𝑅)}  {𝐶𝑛 (𝑆): 𝐶𝑛 (𝑆) is Type-2 isomorphic to 𝐶𝑛 (𝑅) w.r.t. r}. Thus, 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)) = 

{𝐶𝑛 (𝑅)} {𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)): 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) = 𝐶𝑛 (𝑆) and 𝐶𝑛 (𝑆) is Type-2 isomorphic to 𝐶𝑛 (𝑅) w.r.t. r, 0 t
𝑛

𝑚
 -

1}𝑉𝑛,𝑟 (𝐶𝑛 (𝑅)) and (𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o) is a subgroup of (𝑉𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o) (See Theorem 1.12.). Clearly, 

𝑇1𝑛 (𝐶𝑛 (𝑅)) 𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)) = {𝐶𝑛 (𝑅)}. 𝐶𝑛 (𝑅)has Type-2 isomorphic circulant graph w.r.t. r if and only if  

𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))  {𝐶𝑛 (𝑅)} if and only if  𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))  {𝐶𝑛 (𝑅)}  if and only if |𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅))| > 1. 

Theorem 1.12 [11]Let𝐶𝑛 (𝑅) be any circulant graph, rR and gcd(n, r) > 1. Then, (𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)), o)is a 

subgroup of (𝑉𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o).  

ProofClearly, 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅))⊆𝑉𝑛 ,𝑟 (𝐶𝑛 (𝑅)).In 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)),𝐶𝑛 (𝑅) = 𝑛,𝑟,0(𝐶𝑛 (𝑅)). If 𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)) = 

{𝑛 ,𝑟,0(𝐶𝑛 (𝑅))= 𝐶𝑛 (𝑅)}, then (𝑇2(𝑛 ,𝑟,0(𝐶𝑛 (𝑅))), o) is a group that contains identity element only.  

 
If 𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)) {𝑛,𝑟,0(𝐶𝑛 (𝑅))= 𝐶𝑛 (𝑅)}, then let 𝐶𝑛 (𝑆)𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)) with RS. This implies, 𝐶𝑛 (𝑆) = 

𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) for some tand 𝐶𝑛 (𝑅) and 𝐶𝑛 (𝑆) are Type-2 isomorphic w.r.t. r, 1 t
𝑛

𝑚
 -1. And 𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)) = 

𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑆)), RS using the Property 1.5.  

This implies, for 1 t,t'
𝑛

𝑚
 -1 and RS, 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) = 𝐶𝑛 (𝑆) and 𝐶𝑛 (𝑅) = 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑆)) = 

𝑛,𝑟,𝑡′ (𝑛 ,𝑟,𝑡 (𝐶𝑛 (𝑅))) = 𝑛,𝑟,𝑡 ′ +𝑡 (𝐶𝑛 (𝑅)) = 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅)) o 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)), using the definition of 𝑛,𝑟,𝑡 . This 

implies, 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅))o𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) = 𝐶𝑛 (𝑅) = 𝑛 ,𝑟,𝑜 (𝐶𝑛 (𝑅)), using the definition of 𝑛,𝑟,𝑡 ,𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) = 

𝐶𝑛 (𝑆),𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑆)) = 𝐶𝑛 (𝑅)𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)), 0 t,t'
𝑛

𝑚
 -1. This implies that t+t'  0 (mod

𝑛

𝑚
) and also 

𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅)) and 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) are inverse elements in (𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o) which implies that 𝐶𝑛 (𝑆) and 

𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅)) are inverse elements in (𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)), o) for some t', 1t,t'
𝑛

𝑚
 -1 and t+t'  0 (mod 

𝑛

𝑚
). This 

implies, t'=
𝑛

𝑚
–tand 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅))𝑇2𝑛 ,𝑟 (𝐶𝑛 (𝑅)), 1t,t'

𝑛

𝑚
 -1. 

Also, we have if 𝐶𝑛 (𝑅) and 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅)) are Type-2 isomorphic for a particular t, then 𝐶𝑛 (𝑅) and 

𝑛,𝑟,
𝑛

𝑚
−𝑡(𝐶𝑛 (𝑅))are also Type-2 isomorphic circulant graphs. This implies, 𝑛 ,𝑟,𝑡′ (𝐶𝑛 (𝑅))𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)) and 

hence 𝐶𝑛 (𝑆) and 𝑛,𝑟,𝑡′ (𝐶𝑛 (𝑅)) are inverse elements in (𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)), o) for some t' where1t,t' 
𝑛

𝑚
 -1 and 

t+t'  0 (mod 
𝑛

𝑚
). 

Other laws of Abelian group are easy to prove. Hence the result follows.  
Definition 1.13 [15] For any circulant graph𝐶𝑛 (𝑅), if group (𝑇2𝑛,𝑟 (𝐶𝑛 (𝑅)), o) exists, then itis called the 
Type-2 group of 𝐶𝑛 (𝑅) w.r.t. runder ‘o’. 
Theorem 1.14 [14] For n≥ 2, k≥ 3, 1  2s-1  2n-1, n 2s-1, R = {2s-1, 4n-2s+1, 2𝑝1 , 2𝑝2 ,...,2𝑝𝑘−2} and S = 
{2n-(2s-1), 2n+2s-1, 2𝑝1 ,2𝑝2 ,...,2𝑝𝑘−2}, 𝑇28𝑛 ,2(𝐶8𝑛 (𝑅)) = 𝑇28𝑛,2(𝐶8𝑛 (𝑆)),(𝑇28𝑛,2(𝐶8𝑛 (𝑅)), o)= 

(𝑇28𝑛,2(𝐶8𝑛 (𝑆)), o) is a Type-2 group of order 2 and (𝑇28𝑛 ,2(𝐶8𝑛 (𝑅  8𝑛 − 𝑅)), o)= (𝑇28𝑛,2(𝐶8𝑛 (𝑆  8𝑛 −

𝑆)), o)where gcd(𝑝1 ,𝑝2 ,...,𝑝𝑘−2) = 1 and 𝑛, 𝑠, 𝑝1 ,𝑝2 ,...,𝑝𝑘−2ℕ.    
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Obtaining new families of circulant graphs without CI-property is the motivation for this work. For all 
basic ideas in graph theory, we follow[5]. 
 
 
2 Family of Type-2 Isomorphic Circulant Graphs and Abelian Groups 
Theorem2.1For 𝑛ℕ, R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}, 
𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are isomorphic circulant graphs.    
Proof: Here, we prove, 27𝑛,3,𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑆) and  27𝑛,3,2𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑇) when R = {1, 3, 9n-1, 

9n+1}, S = {3, 3n+1, 6n-1, 12n+1}and T = {3, 3n-1, 6n+1, 12n-1}. To simplify our calculation let us 
consider R = {1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1}, S = {3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 
24n-1, 27n-3}and T = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-1, 24n+1, 27n-3}. 
Clearly, 𝑛 ,𝑟,𝑡 : 𝑉(𝐶𝑛 (𝑅))𝑉(𝐾𝑛 ) is a bijective function andbythe definition of𝑛,𝑟,𝑡 , we get 27𝑛,3,𝑛 (3)= 3, 

27𝑛,3,𝑛 (27𝑛 − 3) =  27n-3, 27𝑛,3,𝑛 (1) =  3n+1, 27𝑛,3,𝑛 (9n+1) = 12n+1, 27𝑛,3,𝑛 (18n+1) = 21n+1, 

27𝑛,3,𝑛 (9n-1) = 15n-1, 27𝑛,3,𝑛 (18n-1) = 24n-1 and 27𝑛,3,𝑛 (27𝑛 − 1) = 6n-1. This implies, 

27𝑛,3,2𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑆)and𝐶27𝑛 (𝑅)≅𝐶27𝑛 (𝑆). 

Similarly, 27𝑛,3,2𝑛 (3) = 3, 27𝑛,3,2𝑛 (27𝑛 − 3)= 27n-3, 27𝑛,3,2𝑛 (1) = 6n+1, 27𝑛,3,2𝑛 (9n+1) = 15n+1, 

27𝑛,3,2𝑛 (18n+1) = 24n+1, 27𝑛,3,2𝑛 (9n-1) = 21n-1, 27𝑛,3,2𝑛 (18n-1) = 3n-1 and 27𝑛,3,2𝑛 (27𝑛 − 1) = 12n-

1. This implies, 27𝑛,3,2𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑇)and𝐶27𝑛 (𝑅)≅𝐶27𝑛 (𝑇).This implies 
that𝐶27𝑛 (𝑅)≅𝐶27𝑛 (𝑆)≅𝐶27𝑛 (𝑇). Hence the result. 
Theorem 2.2For 𝑛ℕ, R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-
1},27𝑛,3,𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑆), 27𝑛,3,𝑛 (𝐶27𝑛 (𝑆)) = 𝐶27𝑛 (𝑇)and 27𝑛,3,𝑛 (𝐶27𝑛 (𝑇)) = 𝐶27𝑛 (𝑅)and𝐶27𝑛 (𝑅), 
𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are Type-2 isomorphic circulant graphs. 
Proof: For 𝑛ℕ,R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-
1},27𝑛,3,𝑛 (𝐶27𝑛 (𝑅)) = 𝐶27𝑛 (𝑆), 27𝑛,3,𝑛 (𝐶27𝑛 (𝑆)) = 𝐶27𝑛 (𝑇), 27𝑛,3,𝑛 (𝐶27𝑛 (𝑇)) = 𝐶27𝑛 (𝑅)and 

𝐶27𝑛 (𝑅)≅𝐶27𝑛 (𝑆)≅𝐶27𝑛 (𝑇)using Theorem 2.1.Also, for a given 𝑛ℕ, the set of jump sizes of the three 
circulant graphs are different. Here, RS = {3} and so if 𝐶27𝑛 (𝑅) and𝐶27𝑛 (𝑆)are Type-2 isomorphic, then 
they are Type-2 isomorphic w.r.t. m = 3 only.  
Claim: For R={1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1}and𝑛ℕ,𝐶27𝑛 (𝑅)and 𝐶27𝑛 (𝑆) are Type-2 
isomorphic w.r.t. m = 3. 
If not, they are of Adam's isomorphic. This implies, there exists 𝑠ℕ such that gcd(27n, s) = 1 and 
𝐶27𝑛 (𝑠𝑅) = 𝐶27𝑛 (𝑆)where s = 3x-2 or s = 3x-1, 𝑥ℕ. Now, let s = 3x-2 such that gcd(27n, 3x-2) = 1, 
𝐶27𝑛 ((3𝑥 − 2)𝑅) = 𝐶27𝑛 (𝑆)and 𝑠ℕ.This implies, (3x-2){1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1} = 
{3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 27n-3}, under arithmetic modulo 27n. This implies, 3(3x-2), 
(3x-2)(27n-3), 3+27𝑛𝑝1  and 27n-3+27𝑛𝑝2  are the only numbers, each is a multiple of 3, in the two sets 
for some 𝑝1 , 𝑝2ℕ0 . Thus the following two cases arise. 
Case i. 3(3x-2) = 3+27𝑛𝑝1 ,𝑝1ℕ0, 1  3x-2  27n-1. 
In this case, 𝑝1  = 0 or 1 or 2 since 1  3x-2  27n-1 and n,xℕ. When 𝑝1= 0, 3x-2 = 1; 𝑝1  = 1, 3x-2 = 
9n+1; 𝑝1  = 2, 3x-2 = 18n+1 and in each case, the two graphs are the same. The jump sizes of the 
circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n+1 and s = 3x-2 = 18n+1 are 
given in Table 2.  
Case ii. 3(3x-2) = 27n-3+27𝑛𝑝2 ,𝑝2ℕ0 , xℕ, 1  3x-2  27n-1. 
In this case, 𝑝2  = 0 or 1 or 2 since 1  3x-2  27n-1 and n,xℕ. When 𝑝2= 0, 3x-2 = 9n-1; 𝑝2= 1, 3x-2 = 
18n-1; 𝑝2  = 2, 3x-2 = 27n-1 and in each case, the two graphs are the same. The jump sizes of the circulant 
graph corresponding to Adam's isomorphism when s = 3x-2 = 9n-1, s = 3x-2 = 18n-1 and s = 3x-2 = 
27n-1 are given in Table 2. 

Table 2.Calculation of rs under arithmetic modulo 27n where s = 3x-2 or 3x-1 

Now, consider the case when s = 3x-1 with gcd(27n, 3x-1) = 1, 𝐶27𝑛 (𝑠𝑅)= 𝐶27𝑛 (𝑆)and 𝑥ℕ. This implies, 
(3x-1){1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1} = {3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 

 Jump Size r 

Multiplier s 1 9n-1 9n+1 18n-1 18n+1 27n-1 

9n-1 9n-1 9n+1 27n-1 1 18n-1 18n+1 

9n+1 9n+1 27n-1 18n+1 9n-1 1 18n-1 

18n-1 18n-1 1 9n-1 18n+1 27n-1 9n+1 

18n+1 18n+1 18n-1 1 27n-1 9n+1 9n-1 

27n-1 27n-1 18n+1 18n-1 9n+1 9n-1 1 
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27n-3}, under arithmetic modulo 27n. This implies, 3(3x-1), (3x-1)(27n-3), 3+27n𝑝1  and 27n-3+27n𝑝2  
are the only numbers, each multiple of 3, in the two sets for some 𝑝1 , 𝑝2ℕ0 . The following two cases 
arise.  
Case i. 3(3x-1) = 3+27𝑛𝑝1 ,𝑝1ℕ0, xℕ, 1  3x-1  27n-1. 
In this case, 𝑝1  = 0 or 1 or 2 since 1  3x-1  27n-1 and n,xℕ. When 𝑝1= 0, 3x-1 = 1; 𝑝1  = 1, 3x-1= 9n+1; 
𝑝1  = 2, 3x-1 = 18n+1 and in each case, 𝐶27𝑛 (𝑠𝑅)= 𝐶27𝑛 ((3𝑥 − 1)𝑅) = 𝐶27𝑛 (𝑆). The jump sizes of the 
circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n+1 and s = 3x-1 = 18n+1 are 
given in Table 2.  
In this case, 𝑝2  = 0 or 1 or 2 since 1  3x-1  27n-1 and n,xℕ. When 𝑝2= 0, 3x-1 = 9n-1; 𝑝2= 1, 3x-1 = 
18n-1; 𝑝2  = 2, 3x-1 = 27n-1 and in each case, 𝐶27𝑛 (𝑠𝑅)= 𝐶27𝑛 ((3𝑥 − 1)𝑅)= 𝐶27𝑛 (𝑆). The jump sizes of the 
circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n-1, s = 3x-1 = 18n-1 and s = 
3x-1 = 27n-1 are given in Table 2. 
Case ii. 3(3x-1) = 27n-3+27𝑛𝑝2,𝑝2ℕ0, xℕ, 1  3x-1  27n-1. 
This shows that the isomorphic circulant graphs 𝐶27𝑛 (𝑅)and 𝐶27𝑛 (𝑆) for R = {1, 3, 9n-1, 9n+1} and S = {3, 

3n+1, 6n-1, 12n+1} are not of Type-1, nℕ. 
Now consider isomorphic circulant graphs𝐶27𝑛 (𝑆)and 𝐶27𝑛 (𝑇) for S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 
3n-1, 6n+1, 12n-1}, nℕ.Here, ST = {3} and so if 𝐶27𝑛 (𝑆) and𝐶27𝑛 (𝑇)are Type-2 isomorphic, then they 
are Type-2 isomorphic circulant graphs w.r.t. m = 3 only. 
Claim: For𝑛ℕ,S = {3, 3n+1, 6n-1, 12n+1} andT = {3, 3n-1, 6n+1, 12n-1},𝐶27𝑛 (𝑆)and 𝐶27𝑛 (𝑇) are Type-2 
isomorphic. 
If not, they are of Adam's isomorphic. This implies, there exists 𝑠ℕ such that gcd(27n, s) = 1 and 
𝐶27𝑛 (𝑠𝑆) = 𝐶27𝑛 (𝑇)where s = 3x-2 or s = 3x-1, 𝑥ℕ. Now, let s = 3x-2 such that gcd(27n, 3x-2) = 
1,𝐶27𝑛 (𝑠𝑆) =𝐶27𝑛 ((3𝑥 − 2)𝑆) = 𝐶27𝑛 (𝑇),𝑥ℕ.This implies, (3x-2){3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 
24n-1, 27n-3} = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-1, 24n+1, 27n-3}, under arithmetic modulo 27n. Now, 
3(3x-2), (3x-2)(27n-3), 3+27𝑛𝑝1  and 27n-3+27𝑛𝑝2  are the only numbers, each is a multiple of 3, in the 
two sets for some 𝑝1 , 𝑝2ℕ0 . Thus the following two cases arise. 
Case i. 3(3x-2) = 3+27𝑛𝑝1 ,𝑝1ℕ0, xℕ, 1  3x-2 27n-1. 
In this case, 𝑝1  = 0 or 1 or 2 since 1  3x-2 27n-1 and n,xℕ. This implies,when 𝑝1= 0, 3x-2 = 1; 𝑝1  = 1, 
3x-2= 9n+1; 𝑝1  = 2, 3x-2 = 18n+1 and in each case, 𝐶27𝑛 (𝑠𝑆)= 𝐶27𝑛 ((3𝑥 − 2)𝑆) = 𝐶27𝑛 (𝑇). The jump 
sizes of the circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n+1 and s = 3x-2 = 
18n+1 are given in Table 3.  
Case ii. 3(3x-2) = 27n-3+27𝑛𝑝2 ,𝑝2ℕ0 , xℕ, 1  3x-2  27n-1. 
In this case, 𝑝2  = 0 or 1 or 2 since 1  3x-2  27n-1 and n,xℕ. When 𝑝2= 0, 3x-2 = 9n-1; 𝑝2= 1, 3x-2 = 
18n-1; 𝑝2  = 2, 3x-2 = 27n-1 and in each case, 𝐶27𝑛 (𝑠𝑆)= 𝐶27𝑛 ((3𝑥 − 2)𝑆)= 𝐶27𝑛 (𝑇). The jump sizes of the 
circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n-1, s = 3x-2 = 18n-1 and s = 
3x-2 = 27n-1 are given in Table 3. 
 

Table 3.Calculation of rs under arithmetic modulo 27n where s = 3x − 2 or 3x– 1. 

 Jump Size r 

Multiplier s 3n+1 6n-1 12n+1 15n-1 21n+1 24n-1 
9n-1 6n-1 12n+1 24n-1 3n+1 15n-1 21n+1 
9n+1 12n+1 24n-1 21n+1 6n-1 3n+1 15n-1 
18n-1 15n-1 3n+1 6n-1 21n+1 24n-1 12n+1 
18n+1 21n+1 15n-1 3n+1 24n-1 12n+1 6n-1 
27n-1 24n-1 21n+1 15n-1 12n+1 6n-1 3n+1 
 

This shows that the isomorphic circulant graphs 𝐶27𝑛 (𝑅)and 𝐶27𝑛 (𝑆) for R = {1, 3, 9n-1, 9n+1} and S = {3, 

3n+1, 6n-1, 12n+1} are not of Type-1, nℕ. 
Now consider the case when s = 3x-1 with gcd(27n, 3x-1) = 1, 𝐶27𝑛 ((3𝑥 − 1)𝑆)= 𝐶27𝑛 (𝑇)and 𝑥ℕ. This 
implies, (3x-1){3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 27n-3} = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-
1, 24n+1, 27n-3}, under arithmetic modulo 27n. This implies, 3(3x-1), (3x-1)(27n-3), 3+27n𝑝1  and 27n-
3+27n𝑝2  are the only numbers, each is a multiple of 3, in the two sets for some 𝑝1 , 𝑝2ℕ0 . The following 
two cases arise. 
Case i. 3(3x-1) = 3+27𝑛𝑝1 , 𝑝1ℕ0 , xℕ, 1  3x-1  27n-1. 
In this case, 𝑝1  = 0 or 1 or 2 since 1  3x-1  27n-1 and n,xℕ. When 𝑝1= 0, 3x-1 = 1; 𝑝1  = 1, 3x-1 = 
9n+1; 𝑝1  = 2, 3x-1 = 18n+1 and in each case, 𝐶27𝑛 (𝑠𝑆)= 𝐶27𝑛 ((3𝑥 − 1)𝑆) = 𝐶27𝑛 (𝑇). The jump sizes of 
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the circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n+1 and s = 3x-1 = 18n+1 
are given in Table 3. 
Case ii. 3(3x-1) = 27n-3+27𝑛𝑝2 ,𝑝2ℕ0 , xℕ, 1  3x-1  27n-1. 
In this case, 𝑝2  = 0 or 1 or 2 since 1  3x-1  27n-1 and n,xℕ. When 𝑝2= 0, 3x-1 = 9n-1; 𝑝2= 1, 3x-1 = 
18n-1; 𝑝2  = 2, 3x-1 = 27n-1 and in each case, 𝐶27𝑛 (𝑠𝑆)= 𝐶27𝑛 ((3𝑥 − 1)𝑆)= 𝐶27𝑛 (𝑇). The jump sizes of the 
circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n-1, s = 3x-1 = 18n-1 and s = 
3x-1 = 27n-1 are given in Table 3. 
This shows that the isomorphic circulant graphs 𝐶27𝑛 (𝑆)and 𝐶27𝑛 (𝑇) for S= {3, 3n+1, 6n-1, 12n+1} and 

T= {3, 3n-1, 6n+1, 12n-1} are not of Type-1, nℕ. 
Similarly, we can prove that isomorphic circulant graphs 𝐶27𝑛 (𝑅)and 𝐶27𝑛 (𝑇) for R = {1, 3, 9n-1, 9n+1} 

and T= {3, 3n-1, 6n+1, 12n-1} are not of Type-1, nℕ. 
Thus, all the 3 different isomorphic circulant graphs𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆)and 𝐶27𝑛 (𝑇)  for R = {1, 3, 9n-1, 
9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1} are not of Type-1. Moreover, 
27𝑛,3,𝑛 (𝐶27𝑛 (𝑅))= 𝐶27𝑛 (𝑆), 27𝑛,3,𝑛 (𝐶27𝑛 (𝑆)) = 𝐶27𝑛 (𝑇)and 27𝑛,3,𝑛 (𝐶27𝑛 (𝑇)) = 𝐶27𝑛 (𝑅), 𝑛ℕ.Hence the 

result follows. 
Theorem 2.3 For k ≥ 3, R = {1, 9n-1, 9n+1, 3𝑝1 , 3𝑝2 , . . . , 3𝑝𝑘−2}, S = {3n+1, 6n-1, 12n+1, 3𝑝1 , 3𝑝2 , . . . , 
3𝑝𝑘−2} andT = {3n-1, 6n+1,12n-1, 3𝑝1 , 3𝑝2 , . . . , 3𝑝𝑘−2}, circulant graphs 𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are 
Type-2 isomorphicwith 𝑚𝑖  = 3and without CI-property where gcd(𝑝1 , 𝑝2 ,...,𝑝𝑘−2) = 1 and 
𝑛, 𝑝1 ,𝑝2 ,...,𝑝𝑘−2ℕ. 
Proof:When R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} andT = {3, 3n-1, 6n+1,12n-1},𝐶27𝑛 (𝑅), 
𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are Type-2 isomorphiccirculant graphs, using Theorem 2.2,nℕ.  Lemma 1.5 helps us 
while searching for possible value(s) of t such that the transformed graph 𝑛,𝑟,𝑡 (𝐶𝑛 (𝑅))is circulant of the 

form 𝐶27𝑛 (𝑆) for some S⊆[1, 
𝑛

2
], the calculation on 𝑟𝑗 s which are integer multiples of m = gcd(n, r) need 

not be done as there is no change in these 𝑟𝑗 s under the transformation 𝑛,𝑟,𝑡 . This implies whenR = {1, 

9n-1, 9n+1, 3𝑝1, 3𝑝2 , . . . , 3𝑝𝑘−2}, S = {3n+1, 6n-1, 12n+1, 3𝑝1, 3𝑝2 , . . . , 3𝑝𝑘−2} andT = {3n-1, 6n+1,12n-1, 
3𝑝1 , 3𝑝2 , . . . , 3𝑝𝑘−2}, circulant graphs 𝐶27𝑛 (𝑅), 𝐶27𝑛 (𝑆) and 𝐶27𝑛 (𝑇) are Type-2 isomorphicwhere k ≥ 
3,gcd(𝑝1 ,𝑝2 ,...,𝑝𝑘−2) = 1 and  𝑛, 𝑝1,𝑝2 ,...,𝑝𝑘−2ℕ. Type-2 isomorphic circulant graphs are graphs without CI-
property. Hence the result follows. 
Type 2 isomorphic circulant graphs 𝐶27(1,3,8,10), 𝐶27(3,4,5,13) and 𝐶27(2,3,7,11) are given in Figures 
3,4,5, respectively. 

 
Fig.3.𝐶27(1,3,8,10).Fig.4.  𝐶27(3,4,5,13).Fig.5.𝐶27(2,3,7,11) 

 

II. Conclusion 
 The results derived in this paper and in [13] on circulant graphs of Type-2 isomorphism and without 

CI-property are based on circulant graphs with three and two copies of isomorphic circulant subgraphs, 

respectively. One can try similar results on circulant graphs with m = gcd(n, r) is odd and > 3. 
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