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Abstract: A direct sum of simple modules is being splited by every module. There are different  kind of rings 

but special case has been raised in Principal Ideal Domain(PID). PID is considered like as semisimple rings 

that is splited a direct sum. In fact while the integer Z  and the ring of polynomial ][xk  may look like as 

different rings initially but these are very analogous for being both PIDs. 
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I. Introduction 
In this paper, we have tried to focus on few illustrations on commutative rings that will escort up to the 

perception of PID .Besides these, it has been tried to draw on PID namely the integer Z  for which modules are 

just abelian groups. If we follow another type of significant example that will be the ring of polynomials 

denoted by ][xk  in one variable over a field k . 

 

1.1 Integral Domain: 

If a ring follow the condition i.e. 10  , here 0 is an additive identity and 1 is a multiplicative  identity and 

whenever Rba ,  and 0ab either 0a  or 0b  is known as an Integral domain (or in short domain). 

A ring is a field when  10   and every nonzero element is a unit, i.e. has a multiplicative inverse. 

 

1.2 Principal Ideal Domain: 

A principal ideal domain is an integral domain in which every ideal is principal i.e. can be generated by a single 

element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, 

although some author (e.g., Bourbaki) refers to a PIDs as principal rings. 

 

1.3 Semi-simple Ring: 

A ring R  with 1 is Semi-simple, or left semi-simple to be precise, if the free left uleR mod  underlying R  

is a sum of simple uleR mod . 

 

1.4 Direct Sum: 

The direct sum is an operation from abstract algebra, a branch of mathematics. For example, the direct 

sum RR , where R is real coordinate space, is the Cartesian plane 
2R .To see how direct sum is used in 

abstract algebra, consider a more elementary structure in abstract algebra, the abelian group. The direct sum of 

two abelian groups A  and B  is another abelian group BA  consisting of the ordered pairs ),( ba  where 

Aa  and Bb . To add ordered pairs, we define the sum ),(),( dcba   to be ),( dbca  ; in other 

words addition is defined coordinate wise. A similar process can be used to form the direct sum of any two 

algebraic structure such as rings, modules and vector spaces. 

 

II.   Paradigms 

2.1: A ring has no zero-divisor <= > it is a domain. If 0ab  and 0, ba , it would be said that a  and b  are 

zero-divisors. Consider a unit denoted by u  which is never a zero-divisor. 
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Since 0ub  =>  0011   uubub .Hence every field represents a domain. Fields will usually be 

denoted by k  instead of 
2R . 

 

Remark: Multiplication lets cancellation in a domain. If bcac   and 0c  then ba  . In fact  we have 

0)(  cba  since 0c , 0ba . 

2.2: The complex C , the real R and the rational numbers Q  are fields. 

2.3:The integers Z  are not a field but domain. 

2.4: Assume the linear mapping RRf : (with point wise multiplication and addition). So )(RC  be the 

ring of continuous function. Then R  is not a domain. 

To make it clear, it could be constructed continuous function f  and g  such that 0)( xf  for ]1,0[x  and 

0)( xg  for ]3,2[x  but 1)
2

5
()

2

1
(  gf . Then 0fg  but 0, gf . 

2.5: From the number theory it is standard fact that for y  any prime p , the integers mod p denoted by 

)/(pZ , can divided(except by 0 ) ulomod  a prime. 

2.6: In fact express  abn   where 1, ba  when n  is not prime, )/(nZ  is not a domain. Then ulomod

n , a  and b  are nonzero but 0ab . 

 

III. Necessary and sufficient condition of an ideal to be maximal 

3.1 Prime: An ideal I  in a ring R  is prime if the quotient of R and I i.e. IR /  is a domain and maximal if 

IR /  is a field. 

 

3.2: Proposition: Consider an ideal and larger ideal are denoted by I and J respectively. Assume that 

RJI  .Then no strictly larger ideal J  will occur if and only if an ideal I which is also belong to a ring 

R , is maximal. 

 

Proof: Ideals RJ  containing I are equivalent to ideals of IR / .Let IRRr /:   and JRRs /:   be 

the canonical maps.If JI  , then 0)( Is  we can factor s uniquely as tr for some JRIRt //:  , 

which is surjective since s is unique. Then we gain an ideal )ker(tj   in IR / . 

On the contrary if we start with IRJ / , it would be defined an ideal IJ   as the kernel of the 

composition JIRIRR  /)/(/ .These are inverse to each other[1,page-3]. 

Thus a proper ideal is 0 if and only if IRk /  is a field. If k  is a field and kI   is an ideal and Ia  is 

nonzero, then Iaa  11 , from which it follows that kI  , a contradiction. Conversely, if k  is not a field 

and ka  is non zero and not a unit, then )(1 a  so )(a  is a nonzero proper ideal. 

 

IV.PIDs and prime factorization 
4.1: Definition: 

An ideal I in a ring R is principal if it is equal to )(a  for some Ra  .A principal ideal domain is a domain 

in which every ideal is principal. 

 

4.2: Proposition: PID is belonged in integers. 

Proof: 

Assume an ideal denoted by I  which is also belonged to integers i.e. ZI  .It is necessary to prove that I is 

principal. If 0I , this is trivial. If 0I , let n  be the smallest positive integer in I (if Im , then 

Im , so some positive integer is in I ). We claim that )(nI  . Now Im , we can divide m  by n  with 

remainder to write rqnm   where the remainder r  satisfies nr 0 . But then Iqnmr  , so 

minimality of n  forces r  to be 0 . Hence )(nqnm  . Since Im  was arbitrary nI  . 
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4.3: Let R be a domain and Rnm , . Then m divides n  or nm  if there exists Rl such that mln  . 

Equivalently, nm if )()( mn  . We say Rm is irreducible if m is not a unit and whenever mnm   

either mm or nm . We say m is prime if the ideal )(m  is a prime ideal. 

 

4.4: Theorem: Assume a Principal Ideal Domain is R and m is a nonzero element in R  i.e. Rm . Then 

from the theorem of fundamental arithmetic equation expounds that  

(1) m is prime 

(2) m  is irreducible 

(3)the ideal )(m is maximal. 

 

Proof: (2=>3): Let m is irreducible. Then whenever mm  , n  is either a unit or an associate of m . Since 

)()( mm   if and only if  mm  . It is obtained that )()( mm   only holds for )()( mm   or Rm )( . 

Since a Principal Ideal Domain is R , every ideal is )(m for some m , so this represents that exactly )(m  is 

maximal according the proposition of 3.2. 

(3=>1): To be prime, ideal  must be maximal ideal individually.  

(1=>2): Consider mbe prime and let mnm  . Then modulo )(m , 0mn .Since the quotient of ring and 

nonzero element i.e. )/(mR   is a domain, it follows that either 0m  or 0n  i.e. )(mm   or )(mm 

.This is equivalent to either mm  or nm  as required[1, theorem;2.5,page:6]. 

 

4.5: Corollary: Consider a PID R whose every non zero element of R can be factorized as id

iup where u is a 

unit and ip are primes, )0,0(  idi .Then id

iup is unique up to permuting the ip . 

 

Proof: To prove the above corollary we need to prove first the existence of the factorization. If a  is a unit, this 

is zero. Otherwise, let P be any maximal ideal containing )(a . Then )( 1pP   for some chosen prime 1p , and 

ap1  since )()( 1pa  .Write 11apa  . The argument is repeated with 1a  in place of a to write 221 apa   

if 1a  is not a unit. Continue by induction. If we ever get uan   to be a unit, we are done, since 

upppappapa n....... 2122111  . If we never get a unit, we get an infinite ascending chain of ideals 

......)()()()( 321  aaaa Let  )( naI  ; then I is an ideal. But then )(bI   since R  is a PID, 

and )( nab  for some n . But  then )()( 1 nn aaI , so )()( 1 nn aa , a contradiction. Hence the 

process must eventually stop with na  a unit, and we get the desired factorization. 

Now to prove uniqueness by induction on  id . If 0 id (i.e., 0n ), then ua   is just a unit, and 

uniqueness is obvious. Now suppose 0 id and mn e

m

eed

n

dd
qqvqppupa ....... 2121

2121  are two different 

factorizations. Then 1p  divides the product on the right-hand side and is prime, so 1p  must divide one of the 

factors. Since no two chosen primes are associate, this implies that iqp 1 for some i . Cancelling these 

common factors, we get min e

m

e

i

eeeed

n

dd
qqqqqvqppupb ...............

1

43212

1

1
432121 

 .We have decreased  id  

by one, so by induction the factorization of b is unique, so these two factorizations are the same up to 

permutation. It follows that the two original factorization of a  were the same up to permutation. 

 

V. Conclusion 
In fact this paper highlights on the Principal Ideal Domains paradigms .To focus on those property it forces 

that 4.1 gives the concept of ideal i.e. PID. 

4.2 elaborates between PID and Integers and 4.4 represents when the PID is prime, irreducible and maximal 

ideal. Hence finally 4.5 says that PID can be factorized and it is unique up to permuting. 
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