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Abstract: Meningococcal Meningitis disease outbreak is a common phenomenon in the African Meningitis belt. 

The monumental death tolls resulting from the recurring outbreaks call for public health concern. 

Consequently, a deterministic model for the transmission dynamics of the disease which incorporates 

vaccination of the susceptibles and timely treatment of the infectives as control measures is considered. The 

problem is formulated as an optimal control problem with the goal of minimizing the annual incidence of the 

disease as well as the cost of implementing the control measures. Based on Pontryagin’s Maximum Principle 

(PMP), the optimality system to the optimal control problem is derived and it is solved numerically using 

Runge-Kunta of order four scheme with the forward-backward sweep approach. The numerical result is then 

simulated for different scenarios of the disease outbreaks and the findings from our simulations are discussed. 
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I. Introduction 
Meningitis is derived from the Greek word ”Meninx” which means membrane and the medical suffix ”-

itis” which implies inflammation [12]. Thus, Meningococcal Meningitis is a bacterial form of Meningitis causing 

the inflammation of the thin lining surrounding the brain and the spinal cord. It could results into severe brain 

damage and death in about 50% of untreated cases [20]. It is on record that the first Meningococcal disease 

epidemic occurred in the sub-Saharan Africa around late 19th century, although in  2015 alone,  8.7 million cases of 

the disease were recorded globally [9]. These  cases resulted in 379,000 deaths which was significantly lower that the 

casualties of 464,000 deaths recorded in 1990. However, the reduction in death tolls resulting from the 1990 and 

2015 meningitis outbreaks could be attributed to the successful vaccine campaign embarked upon. Nevertheless, 

it is important to note that about 10% to 20% of any given population are carriers of the Meningitis bacteria while 

this proportion may increase to as high as 25% of the population in epidemic situation [20]. Therefore, the 

likelihood of Meningitis outbreak is very high, particularly in an area of sub-Saharan Africa called the 

Meningitis belt, if routine control measures are not put in place to contain the epidemic [20]. 

Unfortunately, Nigeria falls within the Meningitis belt, hence, it cannot but be affected by the recurring 

outbreaks. For instance, Nigeria experienced Meningitis epidemic for the three successive years ending in the 

year 1979 [15]. Although, this recurring epidemic was due to the vaccine supplies short- age. Similarly, in 2017, 

Nigeria suffered another epidemic with a total of 1407 suspected cases reported and 211 deaths (15%) cutting across 

five different states in the country [15]. These scenarios show that the recurring meningitis threat calls for public health 

concern, hence effective control measures should be implemented to forestall frequent recurrence and minimize 

attendant casualties from any of such outbreak. 

Over the years, mathematical models have been deployed to inform effective health policies. 

Essentially, mathematical modelling has been adopted to provide guidelines on measures to be taken to curtail the 

spread of infectious diseases. Some of earlier works in this regards are by Ross, Bernoulli, McKendrick and 

Kermack, just to mention a few [5, 7, 19]. In particular, series of research works on modelling Meningitis 

transmission dynamics and its control have been carried out by different scholars, though their works have different 

emphases and interests [1, 4, 6, 14, 16, 23]. For example, Blyuss proposed and analyzed a deterministic model for 

the spread and control of Meningitis [2]. Based on the finding from their work, he pointed out the crucial factors 

influencing the Meningitis transmission dynamics. Also, he found that the level of temporary immunity enjoyed 

by individuals in the community is very vital in disease surveillance and measuring vaccine efficiency. 

In another related study, Martinez  et al  proposed a model for the dynamics of Meningitis based on 

cellular automata theory. Their simulation results agree with the empirical ones in terms of the role played by the 

carriers in the disease transmission dynamics [13]. Also, Vareen assessed the impact of vaccination program on 
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the spread of the disease in countries prone to Meningitis epidemic. His findings show that countries with high 

Meningitis transmission rate should scale up their vaccination coverage as appropriate to mitigate the alarming 

spread of the disease [17]. It is important to point out here that most of the models on Meningitis dynamics often 

assume total population as a constant or use constant rates for the control measures while outcomes from such 

approaches are usually sub-optimal. However, these shortcomings could be addressed with applications of optimal 

control theory in the management of such epidemic situations. Thus, the disease scenario in the Meningitis belt is 

formulated as an optimal control problem in order to solve the problem optimally. 

In this paper,  a mathematical model for the transmission dynamics and  control of Meningococcal 

Meningitis is considered. The meningitis epidemic situation is formulated as an optimal control  problem with a 

goal to remarkably reduce the incidence and prevalence of the disease in a cost effective manner within a 

specified time interval. The paper is arranged in the following order:  section 2 contains the proposed Meningococcal 

Meningitis model which is  shown  to  be well-posed;  in  section 3, the modeled situation is formulated an optimal 

control problem subject to the proposed model dynamics, the optimal controls are characterized, and the optimality 

system  are  derived using Pontryagin’s maximum principle (PMP); in section 4, the resulting optimality system is 

solved numerically and the results are discussed. 

 

II. The Mathematical Model 
Considering the different stages involved in the transmission and progression of Meningitis disease, a 

model qfor the disease dynamics across a given population is considered. The model divides the population of 

interest into four mutually exclusive compartments, namely: S(t) - Susceptibles, C(t) - Carriers, I(t) - Infected 

individuals, and R(t) - Recovered individuals. Here, S(t), C(t), I(t), R(t) represents the number of 

individuals in each of the respective compartments per unit time, while the total population N (t) = S(t) + C(t) 

+ I(t) + R(t). Thus, the model is a system of non-linear ordinary differential equation below: 
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 where RICSN   . 

 

The model schematic diagram is as below: 

 

 
Figure 2.1: Proposed model schematic diagram. 

 

while the description of the  model parameters  are given in the table  that follows: 

 

Table 2.1: Description of the model parameters. 
Parameter Parameter Description 

∧ Constant recruitment into the S class per unit time 

β Transmission Rate 

u1 Vaccine Rate 

σ Waning Rate (Immunity Lost) 
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ρ Progression Rate (Disease Carrier) 

γ Spontaneous Recovery Rate 

u2 Treatment Recovery Rate 

δ Disease Induced Death Rate 

µ Natural Death Rates 
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Similarly, we can show that .0)(,0)(,0)(  tRandtItC  This completes the proof. 

It is It is salient to mention that this lemma ensures that the model predicts only positive values for each of the 

model  variables. This is sensible because number of individuals in each of the compartments can not be negative. 

 

Lemma 2 :  The region    is an attractor and  it attracts all solutions  starting  in the interior of the positive  

orthant 
4

 . 

Proof: 

Using the non-negativity of the model state variables established in the preceeding lemma and the fact that  
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  , the trajectory lies in Ω. Thus, the system is 

well-posed. Moreover, the basic reproduction number 0  of the disease with re- spect to the proposed model is 

obtained using the Next–Generation Matrix approach by Van Driessche and Watmough (See [5]) as expressed 

below: 
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This threshold parameter 0 , is  an essential quantity in epidemiological studies  because  it  provides  an indicator on 

disease spread pattern and factors that should be addressed to curtail the alarming spread of an infectious dis- ease 

[23]. Conventionally, 0  is defined as the average number of secondary infections produced by a single infected 

individual when introduced into an host population where everyone is susceptible [5]. 

 

III. Formulation Of Optimal Control Problem 
Here,  an optimal control problem is formulated with the goal of minimizing new cases and prevalence of 

the disease as well as the cost of implementing the deployed control measures. The  objective functional is defined as 

below: 

 
while the admissible control set U is Lebesgue measurable and it is defined as: 

 

Thus,  the  target  is  to  find Uuu ),( *

2

*

1 that  minimizes  the  associative  cost of the  vaccination and treatment 

over the specified time interval as well as the total number of infected individuals. In addition, 01 w  and 

02 w  are weight constants to maintain balance in the size of C(t) and I(t) while 03 w  and 04 w  are 

weights associated with cost of vaccination (u1) and treatment (u2) respectively. 

 

3.1 Existence of the Optimal Controls 

The sufficient condition for the existence of a solution to the optimal control problem will  be established following 

the approach adopted in the work by Yusuf and Benyah [22]. 

Theorem 1  There  exist  an  optimal  control  pair  u∗
1(t), u∗

2(t)  with  a  corre- sponding solution (S∗, C∗, I∗, 

R∗) to the system (2.1) such that 

 
Proof 1 According to Flemming and Rishel, the existence of the optimal controls is guaranteed by the 

compactness of the control and the state space and the convexity in the problem [8]. Nevertheless, the non-

trivial requirements from Fleming and Rishel’s theorem need to be stated and verified. These requirements 

are as follows: 

i. The set of all solutions to the proposed model equations (2.1) and the associated initial conditions 

together with the corresponding control func- tions in U is non-empty. 
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ii. The state variables dynamical system can be written as a linear func- tion of the control variables with 

coefficient dependent on time and state variables. 

iii. The integrand E in the objective functional (3.1) 

 
is convex on the control set U and satisfies : 

 
Based on the theorem proposed by Picard-Lindelof in [3], if the solutions to the state equations are a priori 

bounded and if the state equations are continuous and Lipschitz in the state variables, then there exists a 

unique so- lution corresponding to every admissible control set in U. In addition, using the fact that for all 

),,,( RICS  all the model  states are  bounded  below  and above, then the solutions to the state 

equations are bounded. Also, the boundedness of the partial derivatives with respect to each of the state vari- 

ables in the system can be shown directly, hence the system is Lipschitz with respect to the state variables. 

Therefore, the first requirement is met.  Also,  the state equations are linearly dependent on the controls u1(t) 

and u2(t); this is obvious by inspection. Thus, the second requirement is fulfilled too. Since, the objective 

functional is quadratic in the control variables u1(t) and u2(t); then  it is convex. So, the only  left to be 

satisfied  is to show that  there is no bound on . This is shown below: 

Therefore, the above establishes the required bound on . Thus, there exists a unique solution to the 

optimality system for small time intervals due to the opposite time orientations of the state equations and 

the adjoint equations. Also, the uniqueness of the solution of the optimality system guarantees the 

uniqueness of the optimal control if it exists. 

 

3.2: Optimal control Variable characterization. 

In order to determine the optimal levels of each of the control measures (u∗
1) and  (u∗

2),   and  the  associated   

state  variables  (S∗,  C ∗ ,  I ∗,  R∗)  that  would yield optimal  value for the objective functional, the  

 Pontryagin’s maximum principle (PMP) is applied [8, 11]. Thus, an Hamiltonian (H) is constructed as below: 

 

 

 
 

Thereafter,  the dynamics  of the adjoint variables  are obtained  using the following relations:  

 

 
These give 

 

 
 

Based on the transversality condition, we have λ1(T ) = 0; λ2(T ) = 0; λ3(T ) = 0; λ4(T ) = 0. 

In addition,  the optimal controls (set) U  =  (u1, u2) U are obtained  by invoking the  optimality condition. This 

is achieved by differentiating the Hamiltonian ( ) in (3.3) with respect to each of the controls u1 and u2. Thus, 
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we have 

 
and 

 
 

Therefore,  the optimal control pair ),( *

2

*

1 uu is given by  

 

 
 

Since the control  measures  ),( *

2

*

1 uu are bounded with lower bound as zero and upper bound as 

.2,1max iwhereui
 Then, we  have  

 

 
and  

 
Hence, the resulting optimality system follows: 
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IV. Numerical Results And Discussion 
4.1 Estimation of model parameters 

The model parameter values were estimated using the Nigeria demographic data and the disease 

epidemiological data gotten from reliable sources (where possible) while those that could not be estimated were 

obtained from re- search articles. For instance, the Meningitis disease induced death rate was estimated based on 

the information that the disease is fatal in 50% of the untreated cases, hence, the disease induced death rate (δ ) 

of the infected individuals was taken to be 0.5 [20]. Also, there is effective treatment  for Meningococcal 

Meningitis; thus, it was assumed that a patient who undergoes early treatment has 50% chance of survival. 

Hence, the disease  treatment success rate (u2max) is taken to be 0.5.  Conservatively,  it was assumed that not more 

than 50%  of the population can be vaccinated. Hence,  u1max = 0.5.  In addition, the constant recruitment per unit 

time (∧ ) into the susceptible  class was  estimated using the annual increase in  the Nigeria’s population from year 

2000 - 2015 and the average of the annual population increase was estimated to be 3.922 million per year [18], 

while the average life expectancy of a Nigerian at birth is taken to be years5.54
2

5653  [20]. 

Thus,  the natural death rate (µ) is estimated 018.0
5.54

1   . However, the  remaining parameter values  

were  sourced  from [2, 10] as  presented in Table 4.1 

 

Table 4.1: Model Parameter Values 
Parameter Value Source 

∧ 3.922 [18] and Estimate 

β 2.5 Estimate 

u1max 0.5 Estimate 

σ 0.1 [2, 10] 

ρ 0.8 [2, 10] 

γ 0.25 Estimate 

u2max 0.5 Estimate 

δ 0.5 [20]and Estimate 

µ 0.018 [20] and Estimate 

 

Table 4.2: Model Variables Initial Conditions [23] 

Variables (Population in Million) Value 

Susceptible S(0) 136.5 

Carrier C(0) 27.3 

Infected I(0) 9.1 

Recovery R(0) 9.1 

 

4.2 Numerical Results. 

The optimality system is solved using Runge-Kunta of order four scheme with forward-backward 

sweep approach. Starting with an initial guess for the control variables u1(t) and u2(t), the state equations are 

solved forward in time with initial conditions given in table 4.2 while the results are then used to solve the adjoint  

variables backward in time with  terminal conditions λi(t) = 0,  for i = 1   4 .  Thereafter, the control variables are 

updated based on their characterization in equations (3.7). This  procedure is repeated until results for each of the 

variables converge sufficiently. Moreover, this entire is coded  in computer program  written  and executed  with 

MATLAB software. The results  are simulated  for two different  scenarios of the epidemic; taking  the weights  

constants in the optimal control problem  as 11 w , 10002 w , 103 w , and 10004 w  while  the 

parameters values  are as given in Table (4.2). The first scenario depicts a situation with parameter set resulting in 

10   and the second scenario depicts a situation with parameter set resulting in 10   . 
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Figure 4.1: Population of S(t) for different values of β 

 

 
Figure 4.2: Population of C(t) for different values of β 

 

 
Figure 4.3: Population of I(t) for different values of β 
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Figure 4.4: Population of R(t) for different values of β 

 

 
Figure 4.5: Profile of the Control U1(t) for different values of β 

 

 
Figure 4.6: Profile of the Control U1(t) for different values of β 
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Figure 4.7: New cases of the disease for different values of β  

 

 
Figure 4.8: Prevalence of the disease for different values of β 

 

Figures 4.1 - 4.4 show the population profiles for each of the four compart- ments with respect to the two 

scenarios. Also, Figures 4.5, 4.6, 4.7, and 4.8 give the profile of the vaccination control , treatment control, the new 

cases, and prevalence of disease as regards the two scenarios. These graphs portray that if appropriate control 

measures  can be put  in  place to reduce the disease transmission rate such that 10  ; the disease epidemic can 

be driven towards eradication in about ten  years. However, in order to achieve this feat, the vaccination control has 

to be deployed continuously at the maximum  effective level for about four and a half years while the treatment 

control have to be deployed maximally over the ten year period. Nevertheless, some of the control measures that 

could be adopted to reduce the transmission rate (β) is to embark on public educational and enlightenment 

campaign which would equip people with the right information about how the disease spread and what can be 

done to prevent infection. This would enable people to take necessary precaution against getting infected with 

the disease. Moreover, timely detection of infected individuals could also help to reduce the transmission rate if 

identified infected individuals are isolated to forestall further spread of the disease while possible contacts of the 

infected individuals should be screened immediately to ascertain their infection status with appropriate medical 

steps taking. 
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Figure 4.9: Population of S(t) for different values of σ 

 

 
Figure 4.10: Population of C(t) for different values of σ 

 

 
Figure 4.11: Population of I(t) for different values of σ 
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Figure 4.12: Population of R(t) for different values of σ 

 

 
Figure 4.13: Profile of the Control U1(t) for different values of σ 

 

 
Figure 4.14: Profile of the Control U1(t) for different values of σ 
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Figure 4.15: New cases of the disease for different values of σ 

 

 
Figure 4.16: Prevalence of the disease for different values of σ 

 

Similarly,  Figures  4.9 - 4.12 show the population profile of the four compartments under the two scenarios 

with varying values  of  the  immunity waning rate.  Moreover, Figures 4.13, 4.14, 4.15, and 4.16 give the profile of 

the vaccination control, treatment control, the new cases , and prevalences of the disease respectively with 

respect to the two scenarios. Just as in the instances with the change in the transmission rate, the epidemic 

situation gradually dies out in the scenario with The implication of this is that if research can be intensified to 

develop a meningitis vaccine that would confer lifelong immunity on vaccinated individuals, the disease would 

eventually be wiped out in no distant time. Although, there may be need to scale up the vaccination coverage 

appropriately so that it can confer herd immunity on the populace at that time. It is important to mention that in 

order to minimize the incidence and prevalence of the disease as depicted in the graphs the treatment control has to 

be deployed at its maximal effective level all through while the vaccination control is utilized at its maximal 

effective level for about 4.5 years before it is 

 discontinued. 

 

V. Concluding Remarks 
In this paper, a deterministic model of an SCIR Meningococcal Meningitis transmission dynamics was 

considered. This model was used as the constraint equations for the optimal control problem (OCP) formulated to 

depict the  Meningitis  epidemic  situation  in  the Meningitis belt. The goal of the optimal control problem was to 

determine the optimal levels of each of the control measures that should be deployed to minimize the incidence and 

prevalence of the disease together with the cost of adopted control measures within a specified time frame. 

Thereafter, the appropriate optimality system to the OCP was derived using the Pontryagin’s Maximum Principle 

(PMP) and the resulting optimality system was solved numerically. The simulation results show that control 

measures that can reduce the disease transmission rate and vaccination immunity waning rate as well as enhance the 

treatment success rate would be useful in the strive towards the eradication of the recurring epidemic. Also, 
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findings from the simulations indicate that the disease would persist as long as the control measures do not bring 

down the disease basic reproduction number below unity. In general, the simulation results demonstrate how 

modelling and simulation could help provide guidelines for the implementation of disease control measures in a 

cost-effective way without jeopardizing the set epidemiological target. 
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