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Abstract: Malaria is an infectious disease caused by the Plasmodium parasite and is transmitted between 

humans through bites of female anopheles’ mosquitoes. The disease continues to emerge in developing 

countries and remains as a global health challenge. In this paper, a mathematical model is formulated that 

insights in to some essential dynamics of malaria transmission with environmental management strategy for 

malaria vector control, insecticide treated bed net, indoor residual spray and treatment with antimalaria drugs 

as control strategies for humans so as to minimize the disease transmission or spread. The reproduction 

numbers with single and combined control strategies are calculated and they were compared with each other so 

as to find the one that benefits more the communities. Numerical simulation shows that among single controls 

strategies, insecticide treated bed net yields the best result. Furthermore, controlling results of two strategies 

are better than one; those of three are far better than two and so on. Also, the simulations with all four 

interventions showed that those results are the best among all possible combinations of intervention strategies. 

Furthermore, sensitivity analysis is performed and identified important parameters that drive the disease 

dynamics. Also, their relative importance to disease transmission as well as its prevalence is measured.  
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I. Introduction 
Malaria is an infectious disease caused by the Plasmodium parasite and is transmitted among humans 

through bites of female Anopheles mosquitoes. And also, it is transmitted more infrequently, by blood 

transfusion (needle sharing, surgery, birth) [1].The infection has been one of the most global health challenges 

throughout the world. About 40% of the world's population specially, Africans and some other developing 

countries live in malaria endemic area. Africa shares 80% of the cases and 90% of deaths [2]. 

The environmental conditions of the tropics are the prime factors for the malaria to be endemic. The 

moderate-to-warm temperatures, high humidity and water collection in low land in the tropics area are the main 

factors that allow mosquitoes to reproduce there. The epidemiological patterns of malaria usually vary with 

season because of its dependence on transmission by mosquitoes. Malaria infection can lead to dangerous 

complications such as affecting lungs, brain, kidneys and other organs. Clinical symptoms such as pain, chills, 

fever and sweats may develop some days after infected mosquito bites J. Tumwiine, J.Y.T. Mugisha and L.S. 

Luboobi [3]. 

The main challenging factors of malaria control include: cost of the control programs; complexity of 

disease control process; resistance of the parasite to antimalarial drugs; and resistance of vectors to insecticides. 

There is a variation in disease patterns and transmission dynamics from place to place together with changing 

seasons as well as varying environmental circumstances. The approaches of planning and implementation of 

prevention and control activities also vary based on local realities. Communities have poor sanitation and poor 

drainage, mostly because of poverty. These two factors allow mosquitoes to breed in ever greater numbers.  

Also, people will not be able to afford the simple protection strategies like mosquito nets or even screens for 

their windows. 

World Health organization WHO recommended malaria intervention strategies include the use of long-

lasting insecticide treated bed nets (LLINs), indoor residual spray (IRS), chemoprevention for the most 

vulnerable such as intermittent preventive treatment for pregnant women (IPTP), confirmation of malaria 

diagnostics through rapid diagnostics tests (RDTs) and microscopy for every suspected case, and timely 

treatment with artemisinin-based combination therapies (ACTs) [4,5].Controlling malaria only by drugs and 

insecticides are not sufficient since their sustainability has been undermined by the development of resistance 

and growing concerns about the long-term environmental impact of some insecticides. Environmental 

Management Strategy (EMS) for vector control would strengthen malaria control activities and is the cost-

effective[4,6]. 
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Malaria has for many years been considered as a global issue, and many epidemiologists and other 

scientists invest their effort in learning the dynamics of malaria and to control its transmission. From 

interactions with those scientists, mathematicians have developed a significant and effective tool. Mathematical 

models of malaria, gives an insight into the interaction between the host and vector population, as well as how to 

control malaria transmission. 

 

II. Literature Review 
Mathematical modeling of malaria has flourished since the days of Ronald Ross in 1911 who was 

awarded the Nobel Prize for his work [7].He developed a simple SIS-model (Susceptible -Infected - 

Susceptible) with the assumption that at any time, the total population can be divided into distinct human 

compartments. He used a mathematical model to show that bringing a mosquito population below a certain 

threshold was sufficient to eliminate malaria. This threshold naturally depended on biological factors such as the 

biting rate and vectors capacity. For the purpose of estimating infection and recovery rates, Macdonald G. [8] 

used a model in which he assumed the amount of infective material to which a population is exposed remains 

unchanged. His model shows that reducing the number of mosquitoes is an inefficient control strategy that 

would have little effect on the epidemiology of malaria in areas of strong transmission. Ferreira, M. U., H. M. 

Yang, [9] “Assessing the effects of global warming and local social and economic conditions on the malaria 

transmission The Ross-Macdonald [7, 8] mathematical model involves an interaction between infected human 

hosts and infected mosquito vectors. Aron [10,11] models considered that acquired immunity to malaria 

depends on exposure (i.e. that immunity is boosted by additional infections).Yang,H.M[12]“Malaria 

transmission model for different levels of acquired immunity and temperature-dependent 

parameters(vector)”,Bacaer N. and C. Sokhna.[13] “A reaction-diffusion system modeling the spread of 

resistance to an antimalarial drug Tumwiin et al [3] used SIS and SI models in the human hosts and mosquito 

vectors for the study of malaria epidemics that last for a short period in which birth and immunity to the disease 

were ignored. They observed that the system was in equilibrium only at the point of extinction that was neither 

stable nor unstable. However, some important results were revealed numerically.  Some recent papers have also 

included environmental effects and Ngwa, G. A.  “Modelling the dynamics of endemic malaria in growing 

population [9, 14], and the spread of resistance to drugs [15].Addo, D.E., [16] “Mathematical model for the 

control of Malaria”, Master Thesis. Recently, Tumwiine, Mugisha and Luboobi [3, 17] developed a 

compartment model for the spread of malaria with susceptible-infected-recovered-susceptible (SIRS) pattern for 

human and susceptible-infected (SI) pattern for mosquitoes. , Mugisha and Luboobi [3] .Yang, Wei, and Li [18], 

define the reproduction number, 𝑅0  and show the existence and stability of the disease-free equilibrium and an 

endemic equilibrium and proposed SIR for the human and SI for the vector compartment model. Abadi Abay 

Gebremeskel, Harald Elias Krogstad, “Mathematical Modeling of Malaria Transmission”, American Journal of 

Applied Mathematics [19],  Fekadu Tadege Kobe and Purnachandra Rao Koya “Modeling Controlling of the 

Spread of malaria disease using intervention Strategies’’ [20]. In the previous model that is, [18], [19] and [20] 

the relative impact of individual disease control measure or combined disease control measures on the specific 

important parameter for the diseases transmission or spread, is not taken into consideration. 

In this paper, for the control of dynamics of endemic malaria transmission, environmental management 

strategy for malaria vector control is incorporated on the existing models as a control strategy. Therefore; the 

objective of this study is to understand the impact of  incorporate control strategy on dynamics of endemic 

malaria transmission and to investigate the effect of environmental management strategies for malaria vector 

control as base for other control strategy such as indoor residual spray, insecticide treated bed nets and treatment 

with antimalaria drugs as intermittent prophy active for Infants or intermittent preventive treatment for pregnant 

women or treatment with artemisinin-based combination therapies [6].So, we have four types of controls: 

environmental management strategy (EMS), indoor residual spraying (IRS), insecticide treated bed nets and 

treatment with drugs for all human population according to their age’s categories and others. In general, these 

control measures are functions of time. For the special case with constant controls, we are able to rigorously 

analyze the stabilities of the corresponding autonomous dynamical system. We will then use numerical 

simulation to explore various optimal control solutions involving single and multiple controls. 

 

 2. Model Formulation and Mathematical Analysis 

2.1 Model Formulation 

In this study transmission and spread of malaria disease between two interacting populations of humans 

(the host) and mosquitoes (the vector) has been considered. The model considers that the total human population 

at time  𝑡  denoted by𝑁ℎ(𝑡)is divided into three classes: susceptible humans𝑆ℎ(𝑡), infectious humans𝐼ℎ(𝑡),and 

recovered humans𝑅ℎ(𝑡).Hence, the total human population is given by: 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) +
𝑅ℎ(𝑡).Similarly, the mosquito population is divided into two classes: Susceptible mosquitoes 𝑆𝑣(𝑡) and 

infectious mosquitoes𝐼𝑣(𝑡).Thus, the total mosquito population at any time  𝑡  is denoted and given by: 𝑁𝑣(𝑡) =
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 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡). Since, the infected mosquitoes remain infectious for whole life and thus the mosquitoes do not 

have any recovered class. Individuals are recruited into the susceptible class with a rate of  Λℎ . An infectious 

female anopheles ’mosquito usually attacks susceptible human with a probability 𝛽ℎ [21]. In the process, the 

parasite in the form of sporozoites is injected into the blood and move to the infectious𝐼ℎ(𝑡). It is considered that 

appropriate active antimalaria drugs are provided to the infectious human population. As a result, after some 

time, infectious humans recover due to immunity resistance and treatment with anti-malaria drugs and then 

move to the recovered class 𝑅ℎ(𝑡)with respective rates γ and σ. It is also assumed that these recovered 

individuals with little permanent immunity move to the susceptible class again with respective  rate  θ .Every 

class of humans’ population is decreased by natural death and except for the infectious class additionally which 

has disease-induced death with respective rates𝜇ℎand  𝛿ℎ. 

In a similar manner, susceptible individuals of mosquitoes are recruited into the mosquito population by input 

rate  Λ𝑣when a susceptible mosquito𝑆𝑣bites an infectious human 𝐼ℎ(𝑡)  , the susceptible mosquito becomes 

infected with probability𝛽𝑣from infectious human 𝐼ℎ(𝑡), and the mosquito moves from the susceptible to the 

infectious  𝐼𝑣(𝑡) after a given time. Mosquitoes leave the population due to: natural death rate, action taken on 

environmental modification and manipulation, action of indoor residuals praying, insecticide-treated bed nets 

are used and disease-induced death with respective rates 𝜇𝑣, 𝜀, 𝛼 , 𝜓  𝑎𝑛𝑑  𝛿𝑣respectively. 

 

2.1.1 Model Assumptions 

The formulation of the present model is guided by the following assumptions: 

(i) The total population of individuals is not constant. 

(ii) Controls are implemented continuously. 

(iii) Insecticide treated bed net (ITN) is continuously provided as protection to the susceptible human 

population. 

(iv) Treatment with anti-malaria drugs is continuously applied to the infected individuals. 

(v) Spraying insecticide chemicals on the place where mosquitoes reproduce and on the human home walls, 

leads to the death of mosquito populations. 

(vi) On recovery, there is temporary immunity as well as permanent immunity. 

(vii) Environmental modifications and manipulations support other control measures as base for control of 

outbreak of malaria disease.  

(viii) The populations in compartments of both humans and vectors are non-negative and so are all the parameters 

involved in the model 

(ix) malaria is active in a population for a long period of time  

 

Table 1Description of state variables 
State variable Description 

 𝐒𝐡 (𝐭) Number of susceptible humans 

𝐈𝐡 (𝐭) Number of infected humans 

𝐑𝐡(𝐭) Number of recovered humans 

𝐒𝐯(𝐭) Number of susceptible mosquitoes 

𝐈𝐯(𝐭) Number of infected mosquitoes 

 

Table 2Descriptionof model parameters 
Parameter Description 

𝚲𝐡 Recruitment rate of susceptible humans 

𝚲𝐯 Recruitment rate of susceptible mosquitoes 

𝛍𝐡 Natural death rate of humans 

𝛅𝐡 Disease-induced death rate of humans 

𝛃𝐡 Contact rate of infective vector and susceptible humans 

𝜸 Recovery rate of infective humans 

𝛍𝐯 Natural death rate of mosquitoes 

𝛅𝐯 Disease-induced death rate of humans 

𝜽 Rate of loss of immunity in human per capita 

𝛃𝐯 Contact rate of susceptible mosquitoes and infective humans 

 

Table 3 Description of Prevention and control parameters 
 

L.N 

 

Prevention /  

Control 

Parameter 

 

Description 

1 𝝈 Rate of control effort or treatment using drugs on infectious humans  

2 𝜺 Rate of  malaria vector using environmental management 

strategy(EMS) 

3 𝜶 Rate of prevention of malaria vector using Indoor Residual 
Spraying Insecticide(IRS) 
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4 𝝍 Rate of prevention of malaria vector measure using insecticide 

treated bed nets (ITN) 
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Figure 1: Flow of malaria parasite transmission between humans and mosquitoes 

 

2.1.2Model equations 

𝑑𝑆ℎ 𝑑𝑡⁄ = Λℎ + 𝜃𝑅ℎ − [(1 − 𝜓) 𝑁ℎ⁄ ]𝛽ℎ𝑆ℎ𝐼𝑣 − 𝜇ℎ𝑆ℎ                                     2.1a 

𝑑𝐼ℎ 𝑑𝑡⁄ = [(1 − 𝜓 ) 𝑁ℎ⁄ ] 𝛽ℎ𝑆ℎ𝐼𝑣  −   ( 𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ                           2.1b 

𝑑𝑅ℎ 𝑑𝑡⁄ = ( 𝜎 +  𝛾)𝐼ℎ − (𝜇ℎ +   𝜃)𝑅ℎ                                                             2.1c 

𝑑𝑆𝑣 𝑑𝑡⁄ = Λ𝑣 − [(1 − 𝜓) 𝑁𝑣⁄ ] 𝛽𝑣𝑆𝑣𝐼ℎ − ( 𝛼 +  𝜓 +  𝜀 + 𝜇𝑣 )𝑆𝑣                   2.1d 

𝑑𝐼𝑣 𝑑𝑡⁄ = [(1 − 𝜓) 𝑁𝑣⁄ ] 𝛽𝑣𝑆𝑣𝐼ℎ − ( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣  )𝐼𝑣                       2.1e 

With initial conditions: 

 𝑆ℎ(0) =  𝑆0ℎ,   𝐼(0) =  𝐼0ℎ, 𝑅ℎ(0) =  𝑅0ℎ, 𝑆𝑣(0) =  𝑆0𝑣,   𝐼𝑣(0) =  𝐼0𝑣  2.2 

 

 

2.2   Model Analysis 

2.2.1 Existence and Positivity of Solutions 

 In this section, it is shown that the malaria model governed by the system of equations (2.1a-e) is 

epidemiologically and mathematically well posed. Specifically, the feasible region is identified as 

Π = {Πh × Πv}   ⊂   {ℝ+
3  × ℝ+

2 } 
where Πh = {(Sh, Ih, Rh)    ∈   ℝ+

3  ∶  Nh ≤ (Λh μh⁄ )} 
and 

Πv = {(Sv  , Iv)   𝜖  ℝ+
2  ∶  Nv  ≤ [Λv  (α + ψ + ε + μv)⁄ ]}. 

Theorem 2.1: A domainΠ existsin which the solution    {Sh , Ih , Rh , Sv , Iv}is contained and bounded. 

Proof: Let the solutions of the system of equations (2.1) together with positive the initial conditions equation 

(2.2) are   {Sh , Ih , Rh , Sv , Iv}. And also, let  𝑁ℎ(𝑡) =   𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) +   𝑅ℎ(𝑡)and   𝑁𝑣(𝑡) =   𝑆𝑣(𝒕) +
𝐼𝑣(𝑡). Now, in order to show that both the human and mosquito populations are bounded it is enough to show 

that the respective two total populations i.e.,  𝑁ℎ(𝑡)and  𝑁𝑣(𝑡)are bounded. 

Boundedness of 𝑵𝒉(𝒕):Addition of human compartments of the system of equations (2.1) leads to𝑑𝑁ℎ 𝑑𝑡⁄ =
Λh − μh𝑁ℎ(𝑡)− 𝛿ℎ𝐼ℎ(𝑡). After dropping the negative term − 𝛿ℎ𝐼ℎ(𝑡) appearing on the right-hand side the fore 

going equation can be expressed without loss of generality as an inequality as𝑑  𝑁ℎ 𝑑𝑡⁄ ≤ Λh − μh𝑁ℎ(𝑡). 

Equivalently, it can be expressed as 𝑑𝑁ℎ 𝑑𝑡⁄ + μh𝑁ℎ(𝑡) ≤ Λh. It is a first order linear ordinary differential 

equation and has the general solution 𝑁ℎ(𝑡) ≤ (Λh μh⁄ ) + 𝐴 𝑒𝑥𝑝(− μht).Here, the integral constant 𝐴 takes the 

form, on applying the initial condition, as  𝐴 =  [𝑁0 − (Λh μh⁄ )]. And hence, the complete solution is  𝑁ℎ(𝑡) ≤
(Λh μh⁄ ) + [𝑁0ℎ − (Λh μh⁄ )]𝑒𝑥𝑝(− μht). Now, clearly it can be observed that  𝑁ℎ(𝑡) ≤ (Λh μh⁄ )as 𝑡 → ∞ and 

also, according to the initial conditions  𝑁ℎ(𝑡) = 𝑁ℎat the initial time   𝑡 = 0. Hence, the total human population 

is bounded i.e., 𝑁0ℎ ≤  𝑁ℎ(𝑡) ≤ (Λh μh⁄ ). 

Boundedness of 𝑵𝒗(𝒕): Addition of mosquito compartments of the system of equations (2.1a-e) leads 

to𝑑𝑁𝑣 𝑑𝑡⁄ = Λ𝑣 − (α + ψ + ε + μ
v
)𝑁𝑣(𝑡)−𝛿𝑣𝐼𝑣(𝑡).After dropping the negative term −𝛿𝑣𝐼𝑣(𝑡)     appearing on 

the right-hand side, the fore going equation can be expressed without loss of generality as an inequality 

as.𝑑𝑁𝑣 𝑑𝑡⁄ ≤ Λ𝑣 − (α + ψ + ε + μ
v
)𝑁𝑣(𝑡). Equivalently, it can be expressed as  𝑑𝑁𝑣 𝑑𝑡⁄ +(α + ψ + ε +

 

𝜃𝑅ℎ 

Λℎ[(1 − 𝜓) 𝑁ℎ⁄ ]𝛽ℎ𝑆ℎ𝐼𝑣                                          ( 𝜎 +  𝛾)𝐼ℎ                               𝜇ℎ 

 

             𝜇ℎ       𝜀                            𝛽𝑣                     𝛽ℎ    𝜇ℎ   𝛿ℎ                                  𝜀                      

       Λ𝑣[(1 − 𝜓) 𝑁𝑣⁄ ] 𝛽𝑣𝑆𝑣𝐼ℎ                                            𝛼                     

 

  𝜓    𝛼  𝜇𝑣  𝜇𝑣    𝜓   𝛿𝑣 

 

𝑆ℎ 

 

𝑅ℎ 

 

 

𝐼𝑉 𝑆𝑣 

𝐼ℎ 
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μ
v
)𝑁𝑣(𝑡) ≤ Λ𝑣 . It is a first order linear ordinary differential equation and has the general solution   𝑁𝑣(𝑡) ≤

[Λv (α + ψ + ε + μ
v
)⁄ ] + 𝐴  𝑒𝑥𝑝[−(α + ψ + ε + μ

v
)t]. Now, clearly it can be observed that    𝑁𝑣(𝑡) ≤

[Λv (α + ψ + ε + μ
v
)⁄ ] as 𝑡 → ∞ and also according to the initial conditions,  𝑁0(𝑡) = 𝑁𝑣0at the initial 

time   𝑡 = 0. Hence, the total mosquito population is bounded i.e., 𝑁0𝑣 ≤  𝑁𝑣(𝑡) ≤ [Λv (α + ψ + ε + μ
v
)⁄ ]. 

Thus, the solutions of the model variables representing human populations{  𝑆ℎ(𝑡), 𝐼ℎ(𝑡),   𝑅ℎ(𝑡)} are confined 

in the feasible region    Πh = {(Sh, Ih, Rh)    ∈   ℝ+
3  ∶  Nh ≤ (Λh μh⁄ )}. Similarly, the solutions of the model 

variables representing mosquito populations{  𝑆𝑣(𝑡), 𝐼𝑣(𝑡)}only confined in the feasible region    

Πv = {(Sv, Iv)   𝜖  ℝ+
2  ∶  Nv  ≤ [Λv  (α + ψ + ε + μv)⁄ ]}.  

This shows that the feasible region for the model equations (2.1) exists and is given by:  Π =
{𝑆ℎ(𝑡), 𝐼ℎ(𝑡),   𝑅ℎ(𝑡),  𝑆𝑣(𝑡), 𝐼𝑣(𝑡)}  ∈  ℝ+

5 orequivalentlyΠ = {Πh × Πv}   ⊂   {ℝ+
3  × ℝ+

2 }. 
Theorem 2.2: (Positivity of equations (2.1))The solutions {𝑆ℎ(𝑡), 𝐼ℎ(𝑡),   𝑅ℎ(𝑡),   𝑆𝑣(𝑡), 𝐼𝑣(𝑡)} of the 

malaria model given in equations (2.1a-e) together with the non-negative initial conditions given in 

equation(2.2) are all non–negative for all   𝑡 ≥ 0. 

Proof: Consider the equation for susceptible humans, from the system equations (2.1). That is, 

(i) 𝑑𝑆ℎ 𝑑𝑡⁄ = Λℎ + 𝜃𝑅ℎ − [(1 − 𝜓)𝛽ℎ𝐼𝑣/𝑁ℎ] − 𝜇ℎ𝑆ℎ ; after dropping the positive termsΛℎ and     𝜃𝑅ℎ 

appearing on the right-hand side the fore going equation can be expressed without loss of generality as an 

inequality 𝑑𝑆ℎ 𝑑𝑡⁄ ≥ −𝑆ℎ[[(1 − 𝜓)𝛽ℎ𝐼𝑣/𝑁ℎ] + 𝜇ℎ]  ,  but from theorem 2.1 we have also  𝑁ℎ ≤ (𝛬ℎ 𝜇ℎ⁄ ).Thus, 

it can be equivalently expressed as: 𝑑𝑆ℎ 𝑑𝑡⁄ ≥ −𝑆ℎ [[(1 − 𝜓)𝜇ℎ𝛽ℎ𝐼𝑣 Λ⁄
ℎ
] +  𝜇ℎ] .  It is a first order linear 

ordinary differential equation and has the general solution𝑆ℎ(𝑡) =  𝐴 𝑒𝑥𝑝 [−[[𝜇ℎ(1 − 𝜓)𝛽ℎ𝐼0𝑣 𝛬ℎ⁄ ] + μht]] ≥

0. Where 𝐴 = 𝑆0ℎis constant of integration. Therefore; 𝑆ℎ(𝑡) ≥ 0 for all  𝑡 ≥ 0. 
(ii) 𝑑𝐼ℎ 𝑑𝑡⁄ = [(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣 𝑁ℎ⁄ ] − ( 𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)𝐼ℎafter dropping the positive term   

(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣 𝑁ℎ⁄ appearing on the right-hand side the  fore going equation can be expressed without loss of 

generality as an inequality 𝑑𝐼ℎ 𝑑𝑡⁄  ≥  −[ 𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ]𝐼ℎ    ). It is a first order linear ordinary differential 
equation  and has the general solution .𝐼ℎ(𝑡) =  𝐵 𝑒𝑥𝑝[−( 𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)𝑡] ≥ 0 . Where B =  𝐼0ℎis 
constant of indefinite integration. Therefore; 𝐼ℎ(𝑡) ≥ 0  for all  𝑡 ≥ 0. 

(iii) 𝑑𝑅ℎ 𝑑𝑡⁄ = ( 𝜎 +  𝛾)𝐼ℎ − (𝜇ℎ +   𝜃)𝑅ℎ after dropping the positive terms( 𝜎 +  𝛾)𝐼ℎappearing on the 

right-hand side the fore going equation can be expressed without loss of generality as an inequality 𝑑𝑅ℎ 𝑑𝑡⁄ ≥
−(𝜇ℎ +   𝜃)𝑅ℎ . It is a first order linear  ordinary differential equation and has the general 
solution  𝑅ℎ(𝑡) =  𝐶𝑒𝑥𝑝[−(𝜇ℎ + 𝜃)𝑡] ≥ 0 ,   WhereC= 𝑅0ℎis constant of indefinite integration . Therefore; 

𝑅ℎ(𝑡) ≥ 0 for all  𝑡 ≥ 0 

(iv) 𝑑𝑆𝑣 𝑑𝑡⁄ = Λ𝑣 − [(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ] 𝑁𝑣⁄ − (𝛼 +  𝜓 +  𝜀 + 𝜇𝑣)𝑆𝑣after dropping the positive 

term  Λ𝑣appearing on the right-hand side the fore going equation can be expressed without loss of 

generality:  𝑑𝑆𝑣 𝑑𝑡⁄ ≥ −𝑆𝑣[[  𝛽𝑣(α + ψ + ε + μv) (1 − 𝜓)𝐼ℎ 𝑁𝑣⁄ ] + ( 𝛼 +  𝜓 + 𝜀+𝜇𝑣].  

SinceNv ≤ 𝛬𝑣 [𝛼 + 𝜓 + 𝜀 + 𝜇𝑣]⁄ and hence, it can be equivalently expressed as: 

𝑑𝑆𝑣 𝑑𝑡⁄ ≥ −𝑆𝑣[[ 𝛽𝑣(α + ψ + ε + μv) (1 − 𝜓)𝐼ℎ 𝛬𝑣⁄ ] + [𝛼 +  𝜓 +  𝜀 + 𝜇𝑣]].  It is a first order linear 

ordinary differential equation and has the general solution: 

𝑆𝑣(𝑡) = 𝐷 𝑒𝑥𝑝 [−[[  𝛽𝑣(𝛼 + 𝜓 + 𝜀 + 𝜇𝑣) (1 − 𝜓)𝐼0ℎ 𝛬𝑣⁄ ] + [(𝛼 +  𝜓 + 𝜀 +  𝜇𝑣)𝑡]]] ≥ 0WhereD= 𝑆0𝑣is 

constant of integration Therefore; 𝑆𝑣(𝑡) ≥ 0 for all 𝑡 ≥ 0. 

(v) 𝑑𝐼𝑣 𝑑𝑡⁄ = [(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ 𝑁𝑣⁄ ] − ( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣  )𝐼𝑣,after dropping the positive term  

(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ 𝑁𝑣⁄   appearing on the right-hand side the fore going equation can be expressed without loss of 

generality as:   𝑑𝐼𝑣 𝑑𝑡⁄ ≥  − ( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)𝐼𝑣 . It is a first order linear ordinary differential 
equation and has the general solution: 

 𝐼𝑣(𝑡) = 𝑘 exp[−( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣 + 𝛿𝑣)𝑡] ≥ 0 .  Where K =  𝐼0𝑉  is constant of integration . 
Therefore; 𝐼𝑣(𝑡) ≥ 0 for all  𝑡 ≥ 0. 

 

2.3 Existence of Equilibrium solutions 

The point at which differential equations(2.1a-e) is equal to zero is known as equilibrium Points or 

steady state solutions. From the proof of theorem 2.2 above ,it is important to have as remark that there is no 

trivial equilibrium Points since the requirement  Λℎ ≠ 0  𝑎𝑛𝑑  Λ𝑣 ≠ 0  for human population and mosquito 

population respectively, this implies that,{𝑆ℎ
0, 𝐼ℎ

0 , 𝑆𝑣
0, 𝐼𝑣

0} ≠ {0,0,0, 0}.andpopulation will not be exist. 

 

2.3.1 Existence of Disease Free- Equilibrium solutions 

Disease free-equilibrium points are solutions where there is no malaria infection. Thedisease free-

equilibrium points 𝑬𝟎 ,for the malaria model equations (2.1a-e) implies that 𝐼ℎ
0 = 0, 𝐼𝑣

0=0 and solving the 

following from the model equations (2.1a-e) that is, 
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𝑑𝑆ℎ 𝑑𝑡⁄ = 0  ⇒  𝑆ℎ
0 = 𝛬ℎ 𝜇ℎ⁄  , 𝑑𝑆𝑣 𝑑𝑡⁄ = 0  ⇒  𝑆𝑣

0 = 𝛬𝑣  [𝛼 + 𝜓 + 𝜀 + 𝜇𝑣]⁄ .Thus,  

𝐸0 , = {𝛬ℎ 𝜇ℎ⁄ , 0,   𝛬𝑣  [𝛼 + 𝜓 + 𝜀 + 𝜇𝑣]⁄     , 0 }                    2.3 

 

2.3.2Reproduction Number 

The basic reproduction number denoted by 𝑅0 is the average number of secondary infectious infected 

by an infective individual during his or her whole cause of disease in case that all numbers of the population are 

susceptible [22].And which helps us to check whether an infection will spread through the population or die out 

from the population. To obtain  𝑅0of the model equations (2.1) we use the next generation matrix techniques 

designed in [23, 24].Let  𝑋 = (Ih, Iv, Sh, Sv)𝑇, then the model equation (2.1a-e) can be rewritten as 

𝐹(𝑋) =

[
 
 
 
 
(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣 𝑁𝑣⁄

(1 − 𝜓) 𝛽𝑣𝑆𝑣𝐼ℎ 𝑁𝑣⁄

0
0 ]

 
 
 
 

           𝑎𝑛𝑑  𝑉(𝑋) =

[
 
 
 
 
 

(𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ

(𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)𝐼𝑣

𝜇ℎ𝑆ℎ − Λℎ − 𝜃𝑅ℎ

(𝛼 +  𝜓 +  𝜀 + 𝜇𝑣)𝑆𝑣 − Λ𝑣]
 
 
 
 
 

 

Now, the matrices𝐹  and  𝑉 at the disease-free equilibrium point  𝐸0 are defined as 

𝐹 = [
(𝜕 𝜕𝐼ℎ⁄ )[(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣 𝑁ℎ⁄ ] (𝜕 𝜕𝐼𝑣⁄ )[(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣 𝑁ℎ⁄ ]

(𝜕 𝜕𝐼ℎ⁄ )[(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ 𝑁𝑣⁄ ] (𝜕 𝜕𝐼ℎ⁄ )[(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ 𝑁𝑣⁄ ]
]

 𝐸0 

 

 

𝑉 = [
(𝜕 𝜕𝐼ℎ⁄ )(𝜎 + 𝛾 + 𝜇ℎ  +  𝛿ℎ)𝐼ℎ (𝜕 𝜕𝐼𝑣⁄ )(𝜎 + 𝛾 + 𝜇ℎ  +  𝛿ℎ)𝐼ℎ

(𝜕 𝜕𝐼ℎ⁄ )( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)𝐼𝑣 (𝜕 𝜕𝐼𝑣⁄ )( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)𝐼𝑣

]

 𝐸0

 

After computed we have 

𝐹 = [
0 (1 − 𝜓)𝛽ℎ

(1 − 𝜓)𝛽𝑣 0
] 

 

 

𝑉 = [
𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ 0

0 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣 + 𝛿𝑣

] 

Also, after computing the inverse𝑉−1and finding the product i.e.,   𝐹𝑉−1, then we have 

 

𝑉−1  =

[
 
 
 

1

𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ

0

0
1

𝜀 + 𝛼 + 𝜓 + 𝜇𝑣 + 𝛿𝑣]
 
 
 

 

 

𝐹𝑉−1 =

[
 
 
 
 0

(1 − 𝜓)𝛽ℎ

𝜀 + 𝛼 + 𝜓 + 𝜇𝑣 + 𝛿𝑣

(1 − 𝜓)𝛽𝑉

𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ

0
]
 
 
 
 

 

 

Now, the largest eigenvalue 𝜆   of 𝐹𝑉−1is given by evaluating the corresponding characteristic equation 

det(𝐹𝑉−1 − 𝜆Ι) = 0and it can be represented by 𝑅𝑐. Thus, 

 

𝜆 = √(1 − 𝜓)2  𝛽ℎ𝛽𝑉 [(𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄  

 

𝑅𝑐 = √(1 − 𝜓)2  𝛽ℎ𝛽𝑉 [(𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄ (2.4) 

 

Here, 𝑅𝑐 is known as the basic effective reproduction number since it is the basic reproduction number that 

depends on all control measures.  If there are no any control measures i.e.,𝜎 =  𝜀 = 𝛼 = 𝜓 = 0 , then the basic 

effective reproduction number  𝑅𝑐for the model equations (2.1) reduces to the basic reproduction number  𝑅0and 

is given by 

𝑅0 = √𝛽ℎ𝛽𝑉 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜇𝑣  +  𝛿𝑣)]⁄           (2.5) 
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2.4 Analysis of Basic Effective Reproduction Number𝑹𝒄 

2.4.1 Analysis of Basic Effective Reproduction Number𝑅𝑐 with Single Control Strategy 

Here, the effective reproduction number𝑅𝑐given in equation (2.4) is used to compute a variety of reproduction 

numbers for various combinations of individual control strategies or interventions. 

(i)Suppose treatment of humans with anti-malaria drugs is the only control strategy considered i.e. 𝜎 ≠ 0,   𝜀 =
𝛼 = 𝜓 = 0. Then the basic reproduction number with treatment using anti-malaria drugs is given by 

𝑅1  =  √𝛽ℎ𝛽𝑉 [( 𝜎 + 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜇𝑣  +  𝛿𝑣)]⁄        2.6 

 

(ii)Suppose environmental management strategy EMS is the only control strategy considered to control malaria 

vector i.e.𝜀 ≠ 0, 𝜎 = 𝛼 = 𝜓 = 0. Then the basic reproduction number with environmental management 

strategy EMS for malaria vector control is dented and given by 

𝑅2      =        √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝜇𝑣  +  𝛿𝑣)]⁄     2.7 

(iii)Suppose indoor residual spray IRS is the only control strategy that is used to control vector i.e., 𝛼 ≠ 0, 𝜀 = 𝜎 =
𝜓 = 0 . Then the basic reproduction number within door residual spray IRS is denoted and given by 

 𝑅3  =   √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜇𝑣  +  𝛿𝑣)]⁄    2.8 

(iv)Suppose insecticide treated bed nets is the only control strategy that is used to control vector i.e.  𝜓 ≠ 0, 𝜀 =
𝜎 = 𝛼 = 0. Then the basic reproduction number with insecticide treated bed net ITN is denoted and given by 

𝑅4 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄     2.9 

 

 

2.4.2. Analysis of Basic Effective Reproduction Number 𝑅𝑐 with Two Control Strategies 

 

Here, the effective basic reproduction number given in equation (2.4) is further analyzed by computing the 

corresponding reproduction numbers for the combination of two control strategies or interventions. 

(i)Suppose that a combination of environmental management and insecticide treated bed net strategies for 

controlling malaria vector is the only intervention strategy that is considered i.e., 𝜀 ≠ 0, 𝜓 ≠ 0, 𝜎 = 𝛼 = 0. 

Then the basic reproduction number with environmental management strategy and insecticide treated bed nets 

are applied to control malaria vector is denoted and given by 

 𝑅2𝑅4   =  √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝜇𝑣  +  𝛿𝑣)]⁄   2.10 

(ii)Suppose that the combination of environmental management strategy and indoor residual spray is the only 

intervention strategy that is considered to control the vector i.e. 𝜀 ≠ 0, 𝛼 ≠ 0, 𝜎 = 𝜓 = 0. Then the basic 

reproduction number with environmental management strategy and indoor residual spray for controlling malaria 

vector is denoted and given by 

 𝑅2𝑅3 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜀 + 𝜇𝑣  +  𝛿𝑣)]⁄  2.11 

(iii)Suppose that the combination of environmental management strategy for controlling malaria vector and 

treatment of humans with anti-malaria drugs is the only intervention strategy that is considered i.e.𝜀 ≠ 0, 𝜎 ≠
0, 𝛼 = 𝜓 = 0 . Then the basic reproduction number with environmental management strategy for controlling 

malaria vector and treatment of humans with anti-malaria drugs is denoted and given by 

 𝑅2𝑅1    =   √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝜇𝑣  +  𝛿𝑣)]⁄ 2.12 

(iv)Suppose that the combination of insecticide treated bed net and indoor residual spray for controlling malaria 

vector is the only intervention strategy that is considered i.e.   𝛼 ≠ 0,   𝜓 ≠ 0,   𝜎 = 𝜀 = 0. Then the basic 

reproduction number with insecticide treated bed net and indoor residual spray is denoted and given by 

 𝑅4𝑅3   =   √(1 − 𝜓)2𝛽ℎ𝛽𝑉 [( 𝛾+𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄ 2.13 

(v)Suppose that the combination of insecticide treated bed nets to control malaria vector and anti-malaria drugs for 

treatment of humans is the only   intervention strategy that is considered i.e.𝜓 ≠ 0, 𝜎 ≠ 0, 𝜎 = 𝜀 = 0 . Then 

the basic reproduction number with treatment with anti-malaria drugs for treating humans and insecticide treated 

bed net to control malaria vector is denoted and given by 

 𝑅4𝑅1 =  √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝜎 + 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄      2.14 

 

 

(vi)Suppose that the combination of treatment of humans with anti-malaria drugs and indoor residual spray to 

control malaria vector is the only intervention strategy that is considered i.e.   𝜎 ≠ 0, 𝛼 ≠ 0,   𝜓 = 𝜀 = 0. Then 

the basic reproduction number with treatment with anti-malaria drugs and indoor residual sprays is denoted and 

given by 

 𝑅1𝑅3 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜇𝑣  +  𝛿𝑣)]⁄        2.15 
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2.4.3. Analysis of Basic Effective Reproduction Number 𝑅𝑐 with Three Control Strategies 

Here, the effective basic reproduction number given in equation (2.4) is further analyzes by computing 

corresponding reproduction numbers for various combinations of three control strategies or interventions. 

 

(i)Consider the combination of three control strategies for controlling malaria vector: environmental management 

strategy, insecticide treated bed nets and indoor residual spray   i.e. 𝜀 ≠ 0, 𝜓 ≠ 0 , 𝛼 ≠ 0, 𝜎 = 0. Then the 

basic reproduction number with environmental management strategy, insecticide treated bed net and indoor 

residual spray for controlling malaria vector  is denoted and given by 

 𝑅2𝑅4𝑅3 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄    2.16 

(ii)Consider the combination of environmentalmanagementstrategy and Insecticide Treated bed net for controlling 

malaria vector andtreatment of humans with anti-malaria drugs is the only intervention strategy that is 

considered i.e.𝜀 ≠ 0,   𝜓 ≠ 0 , 𝜎 ≠ 0, 𝛼 = 0. Then the basic reproduction number with environmental 

management strategy and insecticide treated bed nets for controlling malaria vector and treatmentof humans 

with anti-malaria drugs is denoted and given by 

 𝑅2𝑅4𝑅1 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝜇𝑣 + 𝛿𝑣)]⁄         2.17 

(iii)Consider the combination of environmental management strategy and indoor residual spray for controlling 

malaria vector and treatment of humans with anti-malaria drugs is the only intervention strategy that is 

considered i.e.𝜀 ≠ 0,   𝜓 ≠ 0 , 𝜎 ≠ 0, 𝛼 = 0. Then the basic reproduction number with environmental 

management strategy and indoor residual spray for controlling malaria vector, and treatment of humans with 

anti-malaria drugs is denoted and given by 

 

 𝑅2𝑅3𝑅1 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄ 2.18 

 

(iv)Consider the combination of insecticide treated bed nets and indoor residual spray to control malaria vector and 

treatment of humans with anti-malaria drugs i.e.    𝛼 ≠ 0, 𝜓 ≠ 0, 𝜎 ≠ 0, 𝜀 = 0. then the basic reproduction 

number with insecticide treated bed nets, and indoor residual spray for controlling malaria vector and treatment 

of humans with anti-malaria drugs is denoted and given by 

 𝑅4𝑅3𝑅1 = √(1 − 𝜓)2𝛽ℎ𝛽𝑉 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄          2.19 

 

 

Table 1 List of Reproduction Numbers with various combinations of control strategies 
Malaria control Strategies Reproduction Number 

Anti-malaria drugs 𝑅1 = √𝛽ℎ𝛽𝑉 [( 𝜎 + 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜇𝑣  +  𝛿𝑣)]⁄  

Environmental management  𝑅2 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝜇𝑣  +  𝛿𝑣)]⁄  

Indoor residual spray IRS  𝑅3  =   √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜇𝑣  +  𝛿𝑣)]⁄  

Insecticide treated bed nets 𝑅4 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄  

Environmental management  

Insecticide treated bed nets 
 𝑅2𝑅4 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Environmental management  
Indoor residual spray 

 𝑅2𝑅3 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜀 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Environmental management 

Anti-malaria drugs 
 𝑅2𝑅1 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Insecticide treated bed net 
Indoor residual spray 

 𝑅4𝑅3 = √(1 − 𝜓)2𝛽ℎ𝛽𝑉 [( 𝛾+𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜓 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Insecticide treated bed nets 

Anti-malaria drugs 
 𝑅4𝑅1 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝜎 + 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Anti-malaria drugs and Indoor residual spray  𝑅1𝑅3 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝛼 + 𝜇𝑣  + 𝛿𝑣)]⁄  

Environmental management Insecticide treated 
bed nets Indoor residual spray 

 𝑅2𝑅4 𝑅3 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄  

Environmental management  

Insecticide Treated bed net 

Anti-malaria drugs 

 𝑅2𝑅4 𝑅1 = √(1 − 𝜓)2𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝜀 + 𝜇𝑣 + 𝛿𝑣)]⁄  

Environmental management Indoor residual 

spray  

Anti-malaria drugs 

 𝑅2𝑅3 𝑅1 = √𝛽ℎ𝛽𝑣 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄  

Insecticide treated bed nets Indoor residual spray  

Anti-malaria drugs 
 𝑅4𝑅3𝑅1 = √(1 − 𝜓)2𝛽ℎ𝛽𝑉 [( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ)(𝜓 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]⁄  

Environmental management 

Insecticide treated bed nets Indoor residual spray  
Anti-malaria drugs 

𝑅𝑐 = √(1 − 𝜓)2  𝛽ℎ𝛽𝑉 [(𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  + 𝛿𝑣)]⁄  

2.5 Stability of the Disease-Free and Endemic Equilibrium points 

2.5.1. Local stability of the Disease-Free Equilibrium point 
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Here, the stability analysis of the disease-free Equilibrium point𝐸0 = {𝑆ℎ
0, 𝐼ℎ

0, 𝑆𝑣
0, 𝐼𝑣

0}of model equations 

(2.1) is investigated by computing its Jacobian matrix. The Jacobian matrix is computed by differentiating the 

left hand side function of each equation in the system with respect to the state variables𝑆 ℎ, 𝐼 ℎ, 𝑆 𝑣 , 𝐼 𝑣. 

However, the equation   𝑑𝑅ℎ 𝑑𝑡⁄ = (𝜎 + 𝛾)𝐼ℎ − (𝜃 + 𝜇ℎ)𝑅ℎis not included in this analysis since permanent 

immunity is assumed [25, 26]. That is, the following system of four model equations only will be considered to 

construct Jacobian matrix and to conduct further analysis. 

𝑑𝑆ℎ 𝑑𝑡⁄ = Λℎ + 𝜃𝑅ℎ − [(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣] 𝑁ℎ⁄ − 𝜇ℎ𝑆ℎ                                            2.20a 

𝑑𝐼ℎ 𝑑𝑡⁄ = [(1 − 𝜓)𝛽ℎ𝑆ℎ𝐼𝑣] 𝑁ℎ⁄  −  ( 𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ                                   2.20b 

𝑑𝑆𝑉 𝑑𝑡⁄ = Λ𝑣 − [(1 − 𝜓)𝛽ℎ𝑆𝑣𝐼ℎ] 𝑁𝑣⁄ − ( 𝛼 +  𝜓 +  𝜀 + 𝜇𝑣 )𝑆𝑣  2.20c                2.20c 

𝑑𝐼𝑣 𝑑𝑡⁄  = [(1 − 𝜓)𝛽𝑣𝑆𝑣𝐼ℎ] 𝑁𝑣⁄ − ( 𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣  )𝐼𝑣                         2.20d 

The stability analysis and the results are stated and proved in Theorem 2.3. 

 

Theorem2.3: The Disease-free Equilibrium point 𝐸0 is locally asymptotically stableif   𝑅 𝑐 < 1 but unstable 

if𝑅 𝑐 > 1. 

Proof: the Jacobian matrix of the system of equations(2.20a-d) can be constructed as 

𝐽 =

[
 
 
 
 
 
 −(𝛽ℎ(1 − 𝜓)𝐼𝑣 𝑁ℎ⁄ ) − 𝜇ℎ 0 0

−𝛽ℎ(1 − 𝜓)𝑆ℎ

𝑁ℎ

−𝛽ℎ(1 − 𝜓)𝐼𝑣 𝑁ℎ⁄ −( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ) 0
𝛽ℎ(1 − 𝜓)𝑆ℎ

𝑁ℎ

0 −𝛽ℎ(1 − 𝜓)𝑆𝑣 𝑁𝑣⁄ −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣) 0

0 𝛽ℎ(1 − 𝜓)𝑆𝑣 𝑁𝑣⁄ 0 −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]
 
 
 
 
 
 

 

The Jacobian matrix of the system of equations (2.20) evaluated at the disease-free equilibrium point 𝐸0is given 

by 

𝐽(𝐸0) =

[
 
 
 
 
 
 
−μℎ 0 0 −(1 − 𝜓)𝛽ℎ𝛬ℎ 𝑁ℎ𝜇ℎ⁄

0 −(𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ) 0 (1 − 𝜓)𝛽ℎ𝛬ℎ 𝑁ℎ𝜇ℎ⁄

0 −(1 − 𝜓)𝛽𝑣𝛬𝑣 [𝑁𝑣(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣)]⁄ −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣) 0

0 (1 − 𝜓)𝛽𝑣𝛬𝑣 𝑁𝑣(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣)⁄ 0 −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)]
 
 
 
 
 
 

 

In order to prove the statement it is required to show that all the eigenvalues of   𝐽(𝐸0)are negative. Since the 

first and third columns contain only diagonal terms they give two negative eigenvalues𝜆1 = −μℎ ,   𝜆2 = −(𝜓 +
𝜀 + 𝛼 + 𝜇𝑣). The other two eigenvalues can be computed from the sub-matrix𝐽1(𝐸0) formed by excluding the 

first and the third rows and columns of  𝐽(𝐸0). Hence 𝐽1(𝐸0) is given by 

 

 

𝐽1(𝐸0) = [
−( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ) (1 − 𝜓)𝛽ℎ𝛬ℎ 𝑁ℎ𝜇ℎ⁄

−(1 − 𝜓)𝛽𝑣𝛬𝑣 𝑁𝑣(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣)⁄ −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣)
] 

 

Now, the characteristic equationdet[𝐽1(𝐸0) − 𝜆Ι] = 0takes the form as 

|
−( 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ) − 𝜆 [(1 − 𝜓)𝛽ℎ𝛬ℎ] 𝑁ℎ𝜇ℎ⁄

−[(1 − 𝜓)𝛽𝑣𝛬𝑣 𝑁𝑣⁄ ][(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣)] −(𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣) − 𝜆
| =   0 

Also, the characteristic equation can be expressed in a quadratic form as 

 𝜆2 + (𝑎 + 𝑏)𝜆 + 𝑎𝑏 + 𝑐2𝑑 = 0 

Here, the three quantities𝑎, 𝑏, 𝑐 represent the following parametric expressions:  𝑎 = 𝛾 + 𝜎 + 𝜇ℎ + 𝛿ℎ;    
 𝑏 = 𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 + 𝛿𝑣 ;  𝑐 = 𝜓 + 𝜀 + 𝛼 + 𝜇𝑣 ;   𝑑 = (1 − 𝜓)2𝛽ℎ𝛽𝑣 and  𝑁ℎ ≈ 𝛬ℎ 𝜇ℎ⁄   ,  𝑁𝑣 ≈ 𝛬𝑣 𝑐⁄  

Here it can be observed that the quantities 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑  𝑑 areall positives i.e. 𝑎 > 0, 𝑏 > 0, 𝑐 > 0,  d > 0. 

Upon solving the quadratic equation, the3rdand 4th eigenvalues  𝜆3 and𝜆3 are obtained as  

𝜆3 = − {(𝑎 + 𝑏) + √[(𝑎 + 𝑏)2 − 4(𝑎𝑏 + 𝑐2𝑑)]} 2⁄  

𝜆4 = − {(𝑎 + 𝑏) − √[(𝑎 + 𝑏)2 − 4(𝑎𝑏 + 𝑐2𝑑)]} 2⁄  

Here, it can be observed that the eigenvalue 𝜆3is absolutely a negative quantity.However, the eigenvalue 𝜆4is a 

negative quantity if the condition  𝑎𝑏 + 𝑐2𝑑 > 0 is valid. 

Thus, all the eigenvalues of the Jacobian matrix at the disease-free equilibrium 𝐽(𝐸0) arenegative provided that 

the condition  𝑎𝑏 + 𝑐2𝑑 > 0 or equivalently  𝑅𝑐 < 1  is valid. 

Therefore,the disease-free equilibrium point is locally asymptotically stableif  𝑅𝑐 < 1  and unstableif𝑅 𝑐 > 1. 
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2.5.2. Local Stability of the Endemic Equilibrium Solution 

              A disease is endemic in a given population if it continues to persist in thatpopulation. The stability of 

endemic equilibrium of the model is studied in Theorem 2.4. 

Theorem2.4: The endemic equilibrium solution 𝐸∗of the model equations (2.20a-d) is locally asymptotically 

stable if  𝑅𝑐 > 1  and unstable if𝑅 𝑐 < 1. 

Proof: let 𝐸∗ = (𝑆ℎ
∗, 𝐼ℎ

∗ , 𝑆𝑣
∗, 𝐼𝑣

∗)be non-trivial equilibrium of the model equations (2.20a-d). That is, all 

components of 𝐸∗ are obtained by setting the left hand sides of all equations (2.20 a-d) equal to zero i.e. 

( 𝑑𝑆ℎ 𝑑𝑡⁄ ) = ( 𝑑𝐼ℎ 𝑑𝑡⁄ ) = (𝑑𝑆𝑣 𝑑𝑡⁄ ) = ( 𝑑𝐼𝑣 𝑑𝑡⁄ ) = 0. Solutions of the resultant equations are the components 

of 𝐸∗ and they are obtained as 

𝑆ℎ
∗ = {𝑏𝛬𝑣𝛬ℎ(1 − 𝜓)(𝛬ℎ − 𝑎)} {𝛬𝑣𝛽ℎ𝛽𝑣(1 − 𝜓)2(𝛬ℎ − 𝑎) + 𝑏Λℎ[𝛽𝑣(1 − 𝜓)(𝛬ℎ − 𝑎) − 𝑎𝑏𝑐𝛬𝑣]}⁄  2.21a 

𝐼ℎ
 ∗ = {[𝛽ℎ𝛬𝑣(𝛬ℎ − 𝑎)] 𝑏𝑎𝛬ℎ⁄ } − {𝛬𝑣 [𝛽𝑣(1 − 𝜓)]⁄ }2.21b 

𝑆𝒗
 ∗ = 𝑏𝑎Λ𝑣𝛬ℎ [𝑏𝛽ℎ𝛽𝑣(1 − 𝜓)2(𝛬ℎ − 𝑎)]⁄ 2.21c 

𝐼𝑣
 ∗ = {𝛬𝑣𝛽𝑣𝛽ℎ(1 − 𝜓)2(𝛬ℎ − 𝑎) − 𝑎𝑏ΛℎΛ𝑉} {𝑏𝛽ℎ𝛽𝑣𝜇ℎ (1 − 𝜓)2(𝛬ℎ − 𝑎)}⁄ 2.21d 

Here the quantities  𝑎, 𝑏, 𝑐   represent the following parametric expressions: 𝑎 = 𝜎 + 𝛾 + 𝜇ℎ + 𝛿ℎ, 𝑏 = 𝛼 +
𝜓 + 𝜀 + 𝜇𝑣 + 𝛿ℎ,    𝑐 =  𝛼 + 𝜓 + 𝜀 + 𝜇𝑣, 

Now, the Jacobian matrix of model equations (2.20a-d)at endemic equilibrium𝐸∗reduces to the form as 

 
Recall that the endemic equilibrium solution 𝐸∗of the model equations (2.20a-d) is locally asymptotically stable 

if the trace of the Jacobian matrix at that solution is negative and its determinant is positive i.e. 𝑇𝑟𝐽(𝐸∗) <

0 and  𝑑𝑒𝑡(𝐽(𝐸∗)) > 0. Now, let us show that the trace is negative and the determinant is positive as follows: 

 

The trace of theJacobian matrix at endemic equilibrium 𝐽(𝐸∗)is given by 

𝑇𝑟𝐽(𝐸∗) = − [
𝑎𝑏Λ𝑣Λℎ

𝑐𝛽𝑣(1 − 𝜓)(𝛬ℎ − 𝑎)
+ 𝜇ℎ + 

μℎ(1 − 𝜓)

𝑏
] − [

𝑎𝑏Λℎ

𝛽ℎ(1 − 𝜓)(Λℎ − 𝑎) 
] + [

𝑏𝛽ℎ(1 − 𝜓)

Λ𝑣

− (𝑐 + 𝑏)] 

Now, the negative trace i.e. 𝑇𝑟𝐽(𝐸∗) < 0 leads to the following condition: 

[
𝑏𝛽ℎ(1−𝜓)

Λ𝑣
] < [

𝑎𝑏Λ𝑣Λℎ

𝑐𝛽𝑣(1−𝜓)(𝛬ℎ−𝑎)
+ 𝜇ℎ + 

μℎ(1−𝜓)

𝑏
] + [

𝑎𝑏Λℎ

𝛽ℎ(1−𝜓)(Λℎ−𝑎) 
] + (𝑐 + 𝑏)  

This condition is equivalent to   𝑅𝑐 > 1    If     (𝑎1− 𝑎0) > 𝑎2 and    𝑅𝑐 < 1  if     (  𝑎1− 𝑎0) < 𝑎2 Here, 𝑎0 =

[𝑎𝑏𝛬𝑣𝛬ℎ 𝑐𝛽𝑣⁄ (𝛬ℎ − 𝑎)],    𝑎1 = (𝑐 + 𝑏 + 𝜇ℎ)(√𝑎𝑏 𝛽ℎ𝛽𝑣⁄ ),    𝑎2 = (𝑎𝑏 𝛽ℎ𝛽𝑣⁄ )[𝑏𝛽ℎ 𝛬𝑣⁄ − 𝜇ℎ 𝑏⁄ ]      and 

𝑅𝑐 = √(1 − 𝜓)2  𝛽ℎ𝛽𝑉 [(𝜎 +  𝛾 + 𝜇ℎ + 𝛿ℎ)(𝜀 + 𝛼 + 𝜓 + 𝜇𝑣  +  𝛿𝑣)]⁄ . 

 

The determinant of Jacobian matrix at endemic equilibrium of the model equation (2.20a-d) is given by 

det    𝐽(𝐸∗) = |

−(𝑚 + 𝜇ℎ + 𝑛) 0 0 𝑟 − 𝑠
𝛽ℎ𝑛 −𝑎 0 𝑠 − 𝑟

0 −𝑝 −(𝑞 + 𝑐) 0
0 𝑝 0 −𝑏

| 

 

The positive quantities 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠   appearing in the det    𝐽(𝐸∗) represent the following parametric 

expressions: 

 𝑚 =    𝑎Λ𝑣Λℎ [𝛽𝑣(1 − 𝜓)(𝛬ℎ − 𝑎)]⁄  

𝑛 =  𝜇ℎ(1 − 𝜓) 𝑏⁄  

𝑝 = 𝑎𝑏Λℎ [𝛽ℎ(1 − 𝜓)(𝛬ℎ − 𝑎)]⁄  

𝑞 =   𝑐𝛽ℎ(1 − 𝜓) Λ𝑣⁄  

𝑟 = 𝑐𝑎Λℎ [𝛽ℎ(1 − 𝜓)(𝛬ℎ − 𝑎)]⁄ > 0 

𝑠 = 𝑐𝛬ℎ𝛽𝑣(1 − 𝜓) 𝑏Λ𝑣⁄  

𝑑𝑒𝑡(𝐽(𝐸∗)) = 𝑎𝑏𝑞 + 𝑎𝑏𝑐𝑛 + 𝑝𝑞𝑛𝑟𝛽ℎ + 𝑝𝑛𝑟𝑐𝛽ℎ + 𝑎𝑏𝑞𝑚 + 𝑎𝑏𝑞𝜇ℎ + 𝑏𝑐𝑐𝑚 + 𝑎𝑏𝑐𝜇ℎ + (−𝑝𝑞𝑛𝑠𝛽ℎ𝑝𝑛𝑠𝑐𝛽ℎ) >

0  if 𝑎𝑏𝑞 + 𝑎𝑏𝑐𝑛 + 𝑝𝑞𝑛𝑟𝛽ℎ + 𝑝𝑛𝑟𝑐𝛽ℎ + 𝑎𝑏𝑞𝑚 + 𝑎𝑏𝑞𝜇ℎ + 𝑏𝑐𝑐𝑚 + 𝑎𝑏𝑐𝜇ℎ>𝑝𝑞𝑛𝑠𝛽ℎ + 𝑝𝑛𝑠𝑐𝛽ℎ.This is true 

for  𝑅𝑐 > 1  if     −(𝑏1+𝑏0) > 𝑏2  and    𝑅𝑐 < 1  if     −(𝑏1+𝑏0) < 𝑏2 ; where, 𝑏0 = (𝑎𝑐𝛬ℎ)
2, 

  𝑏1 = [𝑎2𝑏𝑐𝛽ℎ𝛬ℎ 𝛽𝑣(𝛬ℎ − 𝑎)⁄ ] + 𝑎𝑏𝑐𝜇ℎ + (𝑎𝑐𝛬ℎ)
2 𝛬𝑣⁄ (𝛬ℎ − 𝑎)2 

  𝑏2 = [𝑎2𝑏𝑐 𝛽𝑣⁄ ][(𝑏 𝛬𝑣⁄ + 𝜇) − (𝛽ℎ𝛬ℎ𝜇ℎ 𝛬𝑣(𝛬ℎ − 𝑎)⁄ )] 
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Since, the conditions for 𝑇𝑟 𝐽(𝐸∗) < 0  and det  𝐽(𝐸∗) > 0  above are satisfied  
  𝑅𝑐 > 1 it can be concluded that the model equations (2.20a-d) has locally asymptotically stableendemic 

equilibrium solution if 𝑅𝑐 > 1  1 and unstable if𝑅 𝑐 < 1. 

 

III. Simulation and Discussion 
In the present study an SIR-SI model has been formulated and mathematically analyzed. The main 

objective of this study is to understand the impact of the incorporated control strategies on the transmission 

dynamics of the malaria disease. Here, simulation study is conducted in support of mathematical analysis. 

Numerical simulation of model system equations (2.1a-e) is carried out using a set of parameter values given in 

Table 5using DEDiscover. Graphical representations showing the variations in reproduction numbers with 

respect to contact rate between the infected humans and the infected mosquitoes are provided in Figures (5) – 

(7). Since values of the most parameters are not available in the real world, data from literature is used for some 

parameters and for others estimated values are assigned. Tables 4 and 5 show the values assigned to state 

variables and parameters respectively and these values have been used in conducting Simulation study. 

 

Table4Estimated values of state variables 
State variable Initial value Source 

𝐒𝒉 631 Estimated 

𝐈𝒉 276 Estimated 

𝐑𝒉 40 Estimated 

𝑺𝒗 924 Estimated 

𝐈𝒗 560 Estimated 

 

Table 5 Estimated values of parameters 
Parameter Value Source 

Λℎ 0.0280 [20] 

μℎ 0.0000391 [20] 

𝛿ℎ 0.0040 [20] 

βℎ 0.115 Estimated 

Λ𝑣 6.000 [20] 

μv 0.0010 Estimated 

δv 0.0014 Estimated 

β𝑣 0.0200 Estimated 

𝜃 0.014 Estimated 

𝛾 0.0035 [20] 

𝛼 0.0270 Estimated 

𝜓 0.1030 Estimated 

𝜀 0.009 Estimated 

𝜎 0.0200 Estimated 
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Figure2: Time graph of Human populations  

 

In Figure 2, it is observed that the population size of susceptible humans slightly decreases while that of 

recovered humans slightly increases, as time progresses. However, the population size of infected humans drops 

down drastically. 

 

 
Figure3: Time graph of Mosquitoes populations 

 

In Figure 3, it can be shown that the population sizes of both susceptible and infected vectors decrease as time 

progresses. 
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Figure 4: Temporal variations of state variables of human and mosquito populations after control measures are 

implemented 

 

 In Figure 4, it is observed that when control measures are continuously used with time, each class of 

human and mosquito populations are decreased relatively except the recovery class of human population. The 

population size of recovered class increases by some constant rate. The mosquito populations are exponentially 

decreased. This simulation study implies that when malaria vector control measures are used continuously with 

time the speed of transmission or spread of malaria disease among the communities will become slower. 

 

 

 
Figure 5: Comparison of single control reproduction numbers with respect to human-mosquito contact rate at 

time  𝑡 
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Recall here that the reproduction numbers with no or one control strategy are given by 𝑅0, 𝑅1, 𝑅2, 𝑅3,
𝑅4. Here, 𝑅0 for no control; 𝑅1 for Anti-malaria drugs; 𝑅2 for Environmental management; 𝑅3 for Indoor 

residual spray IRS; and  𝑅4 for Insecticide treated bed nets. 

Figure 5 shows the increasing order of the reproduction numbers as𝑅4 < 𝑅3 < 𝑅2 < 𝑅1 < 𝑅0.It can be 

classified from these graphs that the numbers  𝑅0, 𝑅1and 𝑅2are the worst cases. These numbers   𝑅0, 𝑅1and 𝑅2 

occur when there is no any control, only treatment with anti-malaria drugs and only environmental management 

strategy for malaria vector control respectively. 

Particularly, graph of the basic reproduction number𝑅0grows exponentially with respect to an increase 

in human-mosquito contact rate. Such an increase in 𝑅0 above one unit implies that there is a high spread or 

eruption of malaria in the community.  

The best case occurs when the strategy called Insecticide treated bed nets (ITN) is used as shown in the 

graph of   𝑅4. It is the only intervention strategy offered to susceptible human individuals. It can be noticed that 

the reproduction number with ITN is less than unity. ITNs can reduce the number mosquito-bites as they 

provide physically a barrier between mosquitoes and the humans. Furthermore, ITNs can reduce population size 

of the mosquitoes by killing them after they land on the treated bed nets. 

The next case occurs at the graph of  𝑅3which corresponds to the control strategy known as indoor 

residual spray. Its effect reflects in killing the mosquito population as the latter interact with the sprayed walls 

and reducing the mosquito population.  

The next case occurs as shown by the graph of  𝑅2, which corresponds to the strategy known as 

environmental management strategy for malaria vector control. 

Since the environmental management strategy for malaria vector control provides only a base for other 

control measures, it has the lowest power in reducing malaria vector compared to other control measures. In 

similar way intervention with treatment with anti-malaria drugs has little impact to reduce malaria disease 

transmission compared to other control strategy. 

 

 
Figure 6: Comparison of reproduction numbers of two-control-strategies with respect to human-mosquito 

contact rate  

 

Clearly, we observe in Figure 6 that, there is a reduction in disease as compared to simulations with single 

control and which leads to the inequality:𝑅2𝑅4 < 𝑅1𝑅3 < 𝑅4𝑅1 < 𝑅2𝑅1 < 𝑅2𝑅3 < 𝑅4𝑅3. 

 

It is obvious that𝑅4𝑅3, 𝑅2𝑅3, 𝑅2𝑅1,  and 𝑅4𝑅1are the worst case, it occurs when a combination of insecticide 

treated bed net and indoor residual spray, environmental management strategy for malaria vector control and 

indoor residual spray, environmental management strategy for malaria vector control and treatment with anti-

malaria drugs , and  insecticide treated bed net and treatment with anti-malaria drugs respectively, this 

increasing reproduction number shows the eruption of malaria in the community. The best case occurs at 

graph  𝑅2𝑅4 here, the twostrategyareenvironmental management strategy for malaria vector control and 
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insecticide treated bed net incorporated. The next to best case occurs at graph  𝑅1𝑅3in which the combination of 

treatment with anti-malaria drugs and indoor residual spray were considered, from this we conclude that   

increasing the number of controls together with their associated parameters values yields rapid decay of the 

reproduction number curves. 

 

 
Figure 7: Variations of tri-control reproduction number with respect to human-mosquito contact rate at time𝑡 

 

Clearly, we observe in Figure 7 that there is a drastic reduction in disease as compared to both Figure 5 

and Figure 6, where all of the reproduction numbers are far less than unity. This implies that there is a control of 

the disease. The simulations with tri-controls and with all four control measures lead to the inequality: 

  𝑅𝐶 <  𝑅4𝑅3𝑅1 < 𝑅2𝑅4𝑅1 < 𝑅2𝑅4𝑅3 < 𝑅2𝑅3𝑅1.Threecontrols give results that a remarked obtained with 

single control and a combination of two interventions. Therefore, increasing the number of controls together 

with their associated parameters values yield a rapid decay of the reproduction number curves 

 

IV.  Sensitivity Analysis 
Sensitivity analysis is helps to determine extent to what “sensitive” a model is to vary in the value of 

the given parameters of the model and to changes in the base of the model. Sensitivity analysis to rises up 

confidence in the model dealing with the uncertainties that are often related with parameters in models is 

conducted. Sensitivity indices enable us to measure the relative change in a state variable while a parameter 

change. Thus, we use it to deal parameters that have a high degree impact on the reproduction number𝑅𝑐and 

should be emphasized by intervention strategies. If the result is negative, then the relationship between the 

parameters and  𝑅𝑐 isinversely proportional. In this case, we will take the modulus of the sensitivity index so 

that we can reduce the size of the effect of changing that parameter. On the other hand, a positive sensitivity 

index means an increase in the value of a parameter. The parameter values displayed in Table 5 are taken as the 

baseline values and they are used to evaluate the sensitivity indices of some parameters which are responsible 

for the transmission and management of malaria disease to four places of decimal in relation to the effective 

reproduction number, using equation(2.4) as a guide, the result of which is presented in Table 6.Since 𝑅𝑐 

depends only on six parameters, we derive an analytical expression for its sensitivity to each parameter using the 

normalized sensitivity indices by Chitins [27]  

as follows: 

Υ𝛽ℎ

𝑅𝑐   =   
𝜕𝑅𝑐

𝜕𝛽ℎ

  ×   
𝛽ℎ 

𝑅𝑐

   =   +0.5          

Υ𝛽𝑣

𝑅𝑐    =   
𝜕𝑅𝑐

𝜕𝛽𝑣

 ×  
𝛽𝑣

𝑅𝑐  
 =  +0.5   

The other sensitivity induces for all parameters used are computed in similar approach and their values given in 

the following Table 6. 
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Table6: Sensitivity index of 𝑅𝑐 with respect to each parameter 
    Parameter sensitivity index 

𝛽ℎ +0.5000 

𝛽𝑣 + 0.5000 

𝜎 -0.3636 

𝜀 -0.0318 

𝛼 -0.3636 

𝜓 -0.3642 

𝛾 -0.0630 

𝜇ℎ -0.0007 

𝛿ℎ -0.0720 

𝜇𝑣 -0.0053 

𝛿𝑣 -0.0037 

  

From Table 6 it is obtained that Υ𝛽ℎ

𝑅𝑐  =  
𝜕𝑅𝑐

𝜕𝛽ℎ
 ×  

𝛽ℎ

𝑅𝑐 
= +0.5  . This means that an increase in 𝛽ℎ   or 

𝛽𝑣    will cause an increase of exactly the same proportion in  𝑅𝑐. Similarly, a decrease in 𝛽ℎ or 𝛽𝑣  will cause a 

decrease in  𝑅𝑐, as they are directly proportional. It can also be noted that   𝛶𝜎
𝑅𝑐 = −0.36 this means that an 

increase in 𝜎 will cause a decrease of exactly the same proportion in  𝑅𝑐. Similarly, a decrease in 𝜎 will cause an 

increase in   𝑅𝑐, as they are inversely proportional. We also note that  𝜎 < 0, 𝜓 < 0,   𝛼 < 0  , 𝜀 < 0,   𝛾 < 0   

hence these parameters are inversely proportional to  𝑅𝑐. We can arrange these parameters in the order of their 

magnitude from the smallest to the largest as follows:  𝜓, 𝜎, 𝛼, 𝜀, 𝛾,   𝛽ℎ  = 𝛽𝑣.This implies that insecticide 

treated bed net has high power of reducing mosquitoes or transmission of malaria than the other control 

measures.  

 

V. Conclusion and Recommendation 
In this paper, we have formulated a deterministic mathematical model for transmission dynamics of 

malaria that incorporates four control strategies namely, environmental management strategy for malaria vector 

control, insecticide treated bed net, indoor residual spray and treatment with antimalaria drugs. The effective 

reproduction number for the model is calculated from which the basic reproduction number, and the 

reproduction numbers with combination of two, and three control strategies are also deduced. The effective 

reproduction number has been used to measure the relative impact for individual or combined intervention for 

effective disease control.  

Both the disease-free equilibrium  𝐸0  and the endemic equilibrium   𝐸∗  for the model are derived. 

Also, proved that the disease-free equilibrium  𝐸0  is locally asymptotically stable when   𝑅𝑐 < 1 and the 

endemic equilibrium point  𝐸∗ is locally asymptotically stable when   𝑅𝑐 > 1. 

Numerical simulations of the model have been conducted and the observations include the following: 

(i) if the control strategies are introduced independently then the insecticide treated bed nets is the best 

alternative to reduce the malaria vectors and also to increase the number of susceptible human populations, (ii) 

if combinations two strategies are considered then the best combination is environmental management strategy 

for malaria vector control and insecticide treated bed net, (iii) Among the combinations of three control 

strategies the best one comprises of insecticide treated bed nets, indoor residual spray and treatment with anti-

malaria drugs (iv) Furthermore, it has been noted that the best of all possible combinations is the one that is 

incorporated all four control strategies. Thus, it can be concluded that more the number of control strategies that 

are used quicker it will be   to eradicate the malaria from the community.  

Also, sensitivity analyses have been performed on the basic reproduction number with respect to all the 

individual control strategies, from which it is noted that the most sensitive parameter is the insecticide treated 

bed net. Therefore, in order to reduce malaria transmission in a population, this study recommends that 

insecticide treated bed nets should be given high emphasis which reduces mosquito to human contact rate and so 

is advisable. 
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