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Abstract: In this work we considered nonlinear ordinary differential equations to study the dynamics of 

hepatitis B virus (HBV) epidemics within the host. We proved that the invariant and bounded ness of the 

solution of the dynamical system. We used a nonlinear stability analysis method for proving the local and global 

stability of the existing equilibrium points. We found that the diseases free equilibrium point and endemic 

equilibrium point exist for some conditions.We proved that the disease free equilibrium point is locally 

asymptotically stable and also globally asymptotically stable. We found that the basic reproduction number for 

the system is 

𝑅0 =
𝑝𝜃

 𝛿+𝜔  𝜇+𝜋+𝜃 
+

𝑞𝜋

 𝜆+𝜂  𝜇+𝜋+𝜃 
 which depends on nine parameters. Using standard parameter estimation we 

found that the numerical value of the basic reproduction number is 𝑅0 = 2.944234214. From this numerical 

value we conclude that the disease spreads in the host. Out of these nine parameters we identified four effective 

parameters which contribute significant role in the spread of the disease; and these are the death rate of free 

virus𝜇, rate of infection of healthy blood cell 𝜋, the rate of cure of infected blood cell 𝜆and the death rate of 

infected blood cell𝜂. Out of these four effective parameters we identified thatthe most influential parameter is 

the death rate of free virus 𝜇. We also conduct numerical simulations which support the finding in the sensitivity 

analysis.  

Key words:-Hepatitis B virus (HBV), local stability, global stability, reproduction number, sensitivity, 𝐶𝐷8+ 𝑇   
cells, numerical simulation. 
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I. Introduction 
Hepatitis refers to inflammation of the liver. Such inflammation can be caused by alcohol, certain 

medications and chemicals or by viral infection. Possible forms of transmission include sexual contact, blood 

transfusions and transfusion with other human blood products and possibly from mother to child during 

childbirth. HBV is such viral pathogens which infect liver cells (hepatocytes) and blood cells 
[4, 10]

.HBV is 

known to be the most common causes of hepatocellular carcinoma in the world 
[15]

.More than 780, 000 people 

die every year due to the acute or chronic consequences of hepatitis B virus 
[14]. 

Hepatitis B is a potentially life-

threatening liver infectioncaused by the hepatitis B virus. It is a major global health problem. It can cause 

chronic liver disease and chronic infection and puts people at high risk of death from cirrhosis of the liver and 

hepatocellular carcinoma (liver cancer) 
[13]

. Infections of hepatitis B occur only if the virus is able to enter the 

blood streamand reach the liver. Once in the liver, the virus reproduces and releases large numbers of 

newviruses into the blood stream 
[1]

. 

HBV – specific 𝐶𝐷8+ 𝑇 cells are believed to play a critical role in the control of HBV replication but 

are also implicated in the pathogenesis of the disease by destruction of infected liver cells 
[16, 11, 1, and 4]

. This Ag- 

specific killing of infected hepatocytes was initially believed to be the main mechanism by which 𝐶𝐷8+ 𝑇   cells 

control HBV infection. However, this concept was challenged by a series of studies in HBV transgenic mice 
[3, 

12]
 and HBV-infected chimpanzees which revealed the mechanism of non-cytolytic inhibition of HBV 

replication. HBV specific 𝐶𝐷8+ 𝑇 cells could inhibit HBV replication without lysis of infected hepatocytes. 

Upon activation these immune cells were shown to produce cytokines such asinterferon  

(IFN – 𝛾)and lamivudine (TNF – 𝛼), which suppressed HBV gene expression and replication without 

destroying the infected hepatocytes and blood cells. This key antiviral mechanism of non-cytolytic HBV control 

mediated by 𝐶𝐷8+ 𝑇 cells has not been fully examined using human effector and target cells 
[6, 8].

 . 

Mathematical Models in Epidemiology plays an important role to predict how the disease spread and 

gives strategies how to control it. The earliest account of mathematical modeling of spread of disease was 

carried out in 1766 by Daniel Bernoulli. Trained as a physician, Bernoulli created a mathematical model to 

defend the practice of inoculating against smallpox 
[5]. 

The modeling of infectious diseases is a tool which has 
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been used to study the mechanisms by which diseases spread, to predict the future course of an outbreak and to 

evaluate strategies to control an epidemic 
[2]

.  

In the study of Global analysis of a general HBV infection model, Xinjian Zhuo
[18, 17]

 considered a 

model which included the loss of free virus particles when free virus infected an uninfected cell and the loss of 

infected cells due to a non-cytolytic cure process. They showed that an endemic equilibrium point of their model 

was globally asymptotically stable. In their research on sensitivity and stability analysis of Hepatitis B Virus 

Model with Non-Cytolytic cure process and Logistic Hepatocyte Growth Koonprasert S, Moore EJ, 

Banyatlersthaworn .S. 
[7]

, includes a logistic growth term for uninfectedcells, a mass action term for infection of 

uninfected cells, a free virus term, a loss of free viruses on infection of a cell, and a non-cytolytic cure process. 

In this paper, we consider a Mathematical model which includes a logistic growth term for both healthy 

liver and blood cells, a mass action term for infection of uninfected cells, a free virus term, a loss of free viruses 

on infection of a cell, and a non-cytolytic cure process with specific 𝐶𝐷8+ 𝑇 cells that could inhibit HBV 

replication. We study the equilibrium points of the model, prove their global asymptotic stability, and study their 

sensitivity to changes in parameter values. 

 

II. The Mathematical Model 
Our initial model 

[7]
 is represented by three ordinary differential equations which considered three 

compartments. The extended model considers five compartments and is represented by five ordinary differential 

equations by adding the following basic assumptions. Let 𝐿𝑕 (𝑡) is the number of healthy liver cell (hepatocyte), 

𝐿𝑖(𝑡) is the number of infected liver cell, 𝑣(𝑡)is the concentration of free viruses in the liver and blood, 𝐵𝑕 (𝑡) is 

the number of healthy blood cell and 𝐵𝑖(𝑡) is the number of infected blood cell at a time t.HBV attacks both 

healthy liver cell and blood cells. Once the liver cell and blood cell are infected they never infected again. 

Healthy liver cell and blood cell are replicate/proliferate because of stem cell by logistic growth  

𝜎  1 −
𝐿𝑕 +𝐿𝑖

𝑘1
  and 𝜓  1 −

𝐵𝑕 +𝐵𝑖

𝑘2
  respectively.The infected hepatocytes and blood cell does not 

proliferate.Healthy liver cell and blood cell are infected by the mass action low 
𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
 and 

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
 

respectively.Infected liver cell and blood cell are producing free additional viruses. Infected cells are cured by 

non-cytolytic cure processes. Infected cells and viruses are naturally died. To decrease or eliminate HBV 

production and viral infection in the liver,
𝜃𝐿𝐻𝑣

𝐿𝐻 +𝑣
+

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
, must be reduced.  

Based on these assumptions we construct the following flow chart for the dynamical system of (1) – (5). 

 

 
FIGURE1: The flow chart of the HBV model 

 

The parameters and their expression in the model are defined in Table-1 
Parameters Expression   

𝜎 

𝜓 
k1 

k2 

𝜃 

𝜋 

𝜔 

𝜆 
p 

intrinsic growth rate healthy liver cell 
intrinsic growth rate healthy blood cell 

carrying capacity of the liver for liver cell 

carrying capacity of the blood for blood cell 
rate of infection of liver cell by free virus 

rate of infection of blood cell by free virus 

rate of cure of infected liver cells by non-cytolytic cure process 
rate of cure of infected blood cells by non-cytolytic cure process 

rate of release of free viruses by an infected liver cell 
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q 

𝛿 

𝜂 

𝜇 

rate of release of free viruses by an infected blood cell 
death rate of infected liver cells 

death rate of infected blood cells 

death rate of free virus  

TABLE 1: Parameters representation and their expression 

 

a. Dynamics of the model 

Based on the above basic assumptions and flow chart we do have the following systems of ordinary differential 

equations which represents the dynamics of the considered HBV disease. 
𝑑𝐿𝑕

𝑑𝑡
= 𝜎  1 −

𝐿𝑕 +𝐿𝑖

𝑘1
 𝐿𝑕 + 𝜔𝐿𝑖 −

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
       (1) 

𝑑𝐿𝑖

𝑑𝑡
=

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
−  𝛿 + 𝜔 𝐿𝑖           (2) 

𝑑𝑣

𝑑𝑡
= 𝑝𝐿𝑖 + 𝑞𝐵𝑖 −  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 +𝑣
+

𝜋𝐵𝑕

𝐵𝑕 +𝑣
 𝑣        (3)                          

𝑑𝐵𝑕

𝑑𝑡
= 𝜓  1 −

𝐵𝑕 +𝐵𝑖

𝑘2
 𝐵𝑕 + 𝜆𝐵𝑖 −

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
        (4) 

𝑑𝐵𝑖

𝑑𝑡
=

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
−  𝜆 + 𝜂 𝐵𝑖               (5) 

 

b. Positivity and boundedness 

The feasible region of the model is the region in which all populations are nonnegative and bounded. We now 

prove that this region is invariant, i.e., if the initial populations are in the feasible region then they remain in the 

feasible region for all time. For the model equations (1) to (5) to be epidemiologically meaningful and well 

posed, we need to prove that all the state variables are non-negative. 

 

Theorem-1 – for positivity of solutions: 
Suppose𝐿𝑕 0 ≥ 0, 𝐿𝑖 0 ≥ 0, 𝑣 0 ≥ 0, 𝐵𝑕  0 ≥ 0 𝑎𝑛𝑑 𝐵𝑖(0) ≥ 0, then the solution region 

{𝐿𝑕 𝑡 , 𝐿𝑖 𝑡 , 𝑣 𝑡 , 𝐵𝑕 𝑡 , 𝐵𝑖 𝑡 }of the system of equations (1) to (5) is always non negative for𝑡 >  0. 
Proof  

By considering the five ordinary differential equations and after taking some steps on finding their solution we 

do have 

i. 
𝑑𝐿𝑕

𝑑𝑡
= 𝜎  1 −

𝐿𝑕 +𝐿𝑖

𝑘1
 𝐿𝑕 + 𝜔𝐿𝑖 −

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
 

Whose solution is  𝐿𝑕 =

𝑏±

 
  
  
  
  
  

𝑏2−4𝑎

 

 
 

𝑑−𝑒

2𝑑 𝑡+𝑐+ 
𝑏

2𝑑−𝑣  
2

 4𝑎𝑑 −𝑏2
tan −1 2𝐿𝑕 +𝑏

 4𝑎𝑑 −𝑏2
  

 

 
 

0

2𝑎
> 0    

By assuming𝑑 > 𝑒
2𝑑 𝑡+𝑐+ 

𝑏

2𝑑
−𝑣  

2

 4𝑎𝑑 −𝑏2
tan −1 2𝐿𝑕 +𝑏

 4𝑎𝑑 −𝑏2
  

and 𝑏2 > 4𝑎(𝑑 − 𝑒
2𝑎 𝑡+𝑐+ 

𝑏

2𝑎
−𝑣  

2

 4𝑎𝑑 −𝑏2
tan −1 2𝐿𝑕 +𝑏

 4𝑎𝑑 −𝑏2
  

 

 

ii. 
𝑑𝐿𝑖

𝑑𝑡
=

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
−  𝛿 + 𝜔 𝐿𝑖  whose solution is 𝐿𝑖 𝑡 =

𝜃𝐿𝑕𝑣

(𝛿+𝜔)(𝐿𝑕 +𝑣)
+ 𝑐𝑒− 𝛿+𝜔 𝑡 > 0 since  

𝜃𝐿𝑕𝑣

(𝛿+𝜔)(𝐿𝑕 +𝑣)
> 0  and  𝑐𝑒− 𝛿+𝜔 𝑡 > 0. 

iii. 
𝑑𝑣

𝑑𝑡
= 𝑝𝐿𝑖 + 𝑞𝐵𝑖 −  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 +𝑣
+

𝜋𝐵𝑕

𝐵𝑕 +𝑣
 𝑣 whose solution is  

𝑣 =
 
3𝑎𝑏

2
+ 𝑓+𝑒  −3𝜇𝑡 +𝑐1  −

𝑎3

4
 

 𝑥
1
3 

2

+ 𝑦
1
3 

2

− 𝑏−
𝑎2

4
 

−
𝑎

2
> 0. By letting  

𝑥 =

 

 
3𝑎𝑏

2
+ 𝑓+𝑒−3𝜇𝑡 +𝑐1 −

𝑎3

4

2
+

  
𝑎3

4
−

3𝑎𝑏

2
− 𝑓+𝑒−3𝜇𝑡 +𝑐1  

2

4
+

 𝑏−
𝑎2

4
 

3

27

 

 

1

3

𝑎𝑛𝑑   

 

𝑦 =

 

 
3𝑎𝑏

2
+ 𝑓+𝑒−3𝜇𝑡 +𝑐1 −

𝑎3

4

2
−

  
𝑎3

4
−

3𝑎𝑏

2
− 𝑓+𝑒−3𝜇𝑡 +𝑐1  

2

4
+

 𝑏−
𝑎2

4
 

3

27

 

 

1

3

, and by assuming  
𝑥

1
3+𝑦

1
3− 𝑏−

𝑎2

4
 

3𝑏

2
+

𝑓+𝑒 −3𝜇𝑡 +𝑐1 

𝑎
−

𝑎2

4

< 2. 
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iv. 
𝑑𝐵𝑕

𝑑𝑡
= 𝜓  1 −

𝐵𝑕 +𝐵𝑖

𝑘2
 𝐵𝑕 + 𝜆𝐵𝑖 −

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
 whose solution is  

𝐵𝑕 =

𝑏± 𝑏2−4𝑎 𝑑−𝑒
2𝑎 [𝑡+𝑐+(

𝑏
2𝑎−𝑣)[

2

 4𝑎𝑑 −𝑏2
tan −1(

2𝑎𝐵𝑕 +𝑏

 4𝑎𝑑 −𝑏2
)]]

 

2𝑎
> 0.By assuming 

𝑏2 > 4𝑎(𝑑 − 𝑒
2𝑎[𝑡+𝑐+(

𝑏

2𝑎
−𝑣)[

2

 4𝑎𝑑 −𝑏2
tan −1(

2𝑎𝐵𝑕 +𝑏

 4𝑎𝑑 −𝑏2
)]]

 

v. 
𝑑𝐵𝑖

𝑑𝑡
=

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
−  𝜆 + 𝜂 𝐵𝑖   whose solution is 𝐵𝑖 𝑡 =

𝜋𝐵𝑕𝑣

 𝜆+𝜂  𝐵𝑕 +𝑣 
+ 𝑐𝑒− 𝜆+𝜂 𝑡 > 0 since 

𝜋𝐵𝑕𝑣

 𝜆+𝜂  𝐵𝑕 +𝑣 
> 0 

and 𝑐𝑒− 𝜆+𝜂 𝑡 > 0.  

 

Theorem – 2 – for boundedness of solutions 
The feasible region Ω of the dynamical system (1) – (5) defined by 

Ω =  
 𝐿𝑕 𝑡 , 𝐿𝑖 𝑡 , 𝐵𝑕 𝑡 , 𝐵𝑖 𝑡 , 𝑣 𝑡   ∈ ℜ+

5 ∪  0,0,0,0,0  0 ≤ 𝐿𝑕 𝑡 ≤ 𝑘1 , ≤ 𝐿𝑖 𝑡 ≤ 𝑘3,  

0 ≤ 𝐵𝑕 𝑡 ≤ 𝑘2, , 0 ≤ 𝐵𝑖 𝑡 ≤ 𝑘4, 0 ≤ 𝑣(𝑡) ≤
𝑝𝑘3+𝑞𝑘4

𝜇

 , it is bounded 

 

Proof 

We need to show thatif 𝐿𝑕 0 , 𝐿𝑖 0 , 𝐵𝑕 0 , 𝐵𝑖 0 , 𝑣 0  𝜖 Ω, then the solution of  

 𝐿𝑕 𝑡 , 𝐿𝑖 𝑡 , 𝐵𝑕  𝑡 , 𝐵𝑖 𝑡 , 𝑣 𝑡  ∈  Ω for all time𝑡. 

i. Consider the first ordinary differential equation 

 
𝑑𝐿𝑕

𝑑𝑡
= 𝜎  1 −

𝐿𝑕 +𝐿𝑖

𝑘1
 𝐿𝑕 + 𝜔𝐿𝑖 −

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
 , and after some simplifications we have 

 𝐿𝑕 𝑡 ≤
𝑘1

1+
(𝑘1−𝐿𝑕 (0))𝑒−𝜎𝑡

𝐿𝑕 (0)

 

Thus,  

lim𝑡→∞ sup⁡𝐿𝑕(𝑡) ≤ lim𝑡→∞ sup
𝑘1

1+
(𝑘1−𝐿𝑕 (0))𝑒−𝜎𝑡

𝐿𝑕 (0)

⁡≤𝑘1  

Hence 𝐿𝑕(𝑡) is bounded.  

ii. the second ordinary differential equation 
𝑑𝐿𝑖

𝑑𝑡
=

𝜃𝐿𝑕𝑣

𝐿𝑕 +𝑣
−  𝛿 + 𝜔 𝐿𝑖  , and after some simplifications we do have 

𝐿𝑖(𝑡) ≤
𝜃𝑘Consider  1𝑣

𝛿+𝜔
+ 𝑐𝑒− 𝛿+𝜔 𝑡 .  

Thus, 

lim𝑡→∞ sup⁡𝐿𝑖(𝑡) ≤ lim𝑡→∞ sup⁡(
𝜃𝑘1𝑣 𝑡 

𝛿+𝜔
+  𝐿𝑖 0 −

𝜃𝑘1𝑣 0 

𝛿+𝜔
 𝑒− 𝛿+𝜔 𝑡)⁡≤𝑘3.  

Hence 𝐿𝑖(𝑡) is bounded  

iii. Consider the third ordinary differential equation, 
 
𝑑𝑣

𝑑𝑡
= 𝑝𝐿𝑖 + 𝑞𝐵𝑖 −  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 +𝑣
+

𝜋𝐵𝑕

𝐵𝑕 +𝑣
 𝑣  

And after some simplifications we do have  

𝑣 𝑡 ≤
𝑝𝑘3+𝑞𝑘4

𝜇
−

 𝑝𝑘3+𝑞𝑘4−𝜇𝑣 0  

𝜇
𝑒

−
𝑡

𝜇 . 

Thus,  

lim𝑡→∞ sup⁡𝑣(𝑡) ≤ lim𝑡→∞ sup
𝑝𝑘3+𝑞𝑘4

𝜇
−

 𝑝𝑘3+𝑞𝑘4−𝜇𝑣 0  

𝜇
𝑒

−
𝑡

𝜇 ⁡≤
𝑝𝑘3+𝑞𝑘4

𝜇
. Hence 𝑣 𝑡  is bounded.  

iv. Consider the fourth ordinary differential equation  
𝑑𝐵𝑕

𝑑𝑡
= 𝜓  1 −

𝐵𝑕 +𝐵𝑖

𝑘2
 𝐵 + 𝜆𝐵𝑖 −

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
  

And after some simplifications we do have 

 𝐵𝑕 (𝑡) ≤
𝑘2

1+[
 𝑘2−𝐵𝑕  0  

𝐵𝑕  0 
 ]𝑒−𝜓𝑡

.  

Thus, 

 lim𝑡→∞ sup⁡𝐵𝑕 (𝑡) ≤ lim𝑡→∞ sup
𝑘2

1+[
 𝑘2−𝐵𝑕  0  

𝐵𝑕  0 
 ]𝑒−𝜓𝑡

⁡≤𝑘2. Hence 𝐵𝑕 (𝑡) is bounded.  

v. Consider the fifth ordinary differential equation  
𝑑𝐵𝑖

𝑑𝑡
=

𝜋𝐵𝑕𝑣

𝐵𝑕 +𝑣
−  𝜆 + 𝜂 𝐵𝑖   

And after some simplifications, we have 



Hepatitis B Virus with Non-Cytolytic Cure Process on Healthy Liver and Blood Cells: A .. 

DOI: 10.9790/5728-1504023546                                   www.iosrjournals.org                                           39 | Page 

 𝐵𝑖 𝑡 ≤
𝜋𝑘2𝑣

𝜆+𝜂
+  𝐵𝑖 0 −

𝜋𝑘2𝑣 0 

𝜆+𝜂
 𝑒− 𝜆+𝜂 𝑡 ≤

𝜋𝑘2𝑣

𝜆+𝜂
= 𝑘4.  

Thus, 

lim𝑡→∞ sup⁡𝐵𝑖 𝑡 ≤ lim𝑡→∞ sup⁡(
𝜋𝑘2𝑣

𝜆+𝜂
+ [𝐵𝑖 0 −

𝜋𝑘2𝑣 0 

𝜆+𝜂
]𝑒− 𝜆+𝜂 𝑡)⁡≤ 𝑘4. Hence 𝐵𝑖 𝑡  is bounded. 

 

III. Equilibrium points of the dynamical system 
3.1.  Disease Free Equilibrium point /DFE/ 

The disease equilibrium point is obtained by assuming that there is no hepatitis B virus, infected liver and blood 

cells. So the value of 𝐿𝑖 = 𝐵𝑖 = 𝑣 = 0 And by making the right hand side of the dynamical system (1) - (5) 

equal to zero we get the disease free equilibrium point is   (𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) = (𝑘1, 0,0, 𝑘2, 0).   

 

3.2. Determination of basic reproduction Number 𝑹𝟎 

The main concepts in modeling outbreaks of infectious diseases are the basic reproductive number, 

universally denoted by𝑹𝟎. The reproduction number is defined as the average number of secondary cases 

produced by a typical infected individual during his or her entire life as infectious or infectious period when 

introduced or allowed to live in a population of susceptible which can be calculated using the next-generation 

method of van den Driessche and Watmough [23]. In the dynamical system (1)-(5) the rate of appearance of 

new infections ℱ and the transfer rate of individuals 𝒱 at the disease free steady state (𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) =

(𝑘1, 0,0, 𝑘2, 0) is 𝐹 =

 
 
 
 
 
0 0 𝜃 0 0
0 0 𝜋 0 0
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0 

 
 
 
 

 , 𝑉 𝑋0 =   

𝑎
0

−𝑝
𝑑
0

0
𝑏

−𝑞
0
𝑒

0
0
𝑐
0
0

0
0
0
𝜎
0

0
0
0
0
𝜓

   and   

𝑉−1 =

 
 
 
 
 

1/𝑎
0

𝑝/𝑎𝑐
−𝑑/𝜎𝑎

0

0
1/𝑏
𝑞/𝑏𝑐

0
−𝑒/𝜓𝑏

0
0

1/𝑐
0
0

0
0
0

1/𝜎
0

0
0
0
0

1/𝜓 
 
 
 
 

. The spectral radius or Eigen value of 𝐹𝑉−is the required basic 

reproduction number obtained by  𝑅0 =
𝑝𝜃

 𝛿+𝜔  𝜇+𝜋+𝜃 
+

𝑞𝜋

 𝜆+𝜂  𝜇+𝜋+𝜃 
.  

 

3.3.  Local stability of the disease-free equilibrium point 

Theorem – 3: 
The disease free equilibrium point (𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) = (𝑘1, 0,0, 𝑘2, 0)  of the dynamical system (1) - (5) is 

locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1 

Proof  

The Jacobean matrix of the dynamical system (1) – (5) at the DFE point  

(𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) = (𝑘1, 0,0, 𝑘2, 0)  is: 

𝐽(𝑘1, 0,0, 𝑘2, 0) = 𝐽 𝐷 =

 
 
 
 
 
−𝜎
0
0
0
0

𝜔 − 𝜎
−(𝛿 + 𝜔)

𝑝
0
0

−𝜃
𝜃

−(𝜇 + 𝜃 + 𝜋)
−𝜋
𝜋

0
0
0

−𝜓
0

0
0
𝑞

𝜆 − 𝜓
−(𝜆 + 𝜂) 

 
 
 
 

 

The corresponding characteristic equation for the eigenvalue 𝑍 is 

 
 

−(𝜎 + 𝑧)
0
0
0
0

𝑑
−(𝑎 + 𝑧)

𝑝
0
0

−𝜃
𝜃

−(𝑐 + 𝑧)
−𝜋
𝜋

0
0
0

−(𝜓 + 𝑧)
0

0
0
𝑞

𝜆 − 𝜓
−(𝑏 + 𝑧)

 
 = 0 

That is  𝜎 + 𝑧  𝜓 + 𝑧  − 𝑎 + 𝑧  𝑏 + 𝑧  𝑐 + 𝑧 −  −𝑝𝜃 𝑏 + 𝑧 − 𝑞𝜋 𝑎 + 𝑧   = 0 

𝑧1 = −𝜎  𝑜𝑟  𝑧2 = −𝜓𝑜𝑟  [ 𝑎 + 𝑧  𝑏 + 𝑧  𝑐 + 𝑧 −  𝑝𝜃 𝑏 + 𝑧 + 𝑞𝜋 𝑎 + 𝑧  = 0 

For the cubic equation 

[ 𝑧3 +  𝑎 + 𝑏 + 𝑐 𝑧2 +  𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 𝑧 + 𝑎𝑏𝑐 − 𝑝𝜃𝑏 − 𝑝𝜃𝑧 − 𝑞𝜋𝑎 − 𝑞𝜋𝑧] = 0  

We used RouthHurwitz stability criterion and we get the solution of are all negative. Therefore the disease free 

equilibrium point is locally asymptotically stable. 

 

3.4. Global stability of disease-free equilibrium point 

Theorem – 4: 

If 𝑅0 < 1, then the disease free equilibrium point 𝐷(𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) = (𝑘1, 0,0, 𝑘2, 0) of the dynamical system 

(1) - (5) is globally asymptotically stable.  
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Proof  

Let the Liapunov function 

𝑉:  𝑅+) 5 ⟶ 𝑅+ it is defined by   

𝑉 𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖 = 𝐿𝑕 − 𝐿𝑕
0 − 𝐿𝑕

0 ln  
𝐿𝑕

𝐿𝑕
0  +

𝑝

𝛿+𝜔
𝐿𝑖 + 𝑣 + 𝐵𝑕 − 𝐵𝑕

0 − 𝐵𝑕
0ln⁡(

𝐵𝑕

𝐵𝑕
0) +

𝑞

𝜆+𝜂
𝐵𝑖  at the disease 

equilibrium point    𝐿𝑕
0 , 𝐿𝑖

0, 𝑣0 , 𝐵𝑕
0 , 𝐵𝑖

0 = (𝑘1, 0, 0, 𝑘2, 0). V is continuous function for all  𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖 ∈
 𝑅+)  5 ∪  0,0,0,0,0  and has 1

st
 order partial derivatives. V, it has minimum at 

(𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) = (𝑘1, 0,0, 𝑘2, 0), which is 𝑉 𝑘1 , 0,0, 𝑘2, 0 = 0. Now 
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝐿𝑕

𝑑𝐿𝑕

𝑑𝑡
 +

𝑝

𝛿+𝜔

𝜕𝑉

𝜕𝐿𝑖

𝑑𝐿𝑖

𝑑𝑡
+

𝜕𝑉

𝜕𝐵𝑕

𝑑𝐵𝑕

𝑑𝑡
+

𝑞

𝜆+𝜂

𝜕𝑉

𝜕𝐵𝑖

𝑑𝐵𝑖

𝑑𝑡
+

𝜕𝑉

𝜕𝑣

𝑑𝑣

𝑑𝑡
 which implies that 𝑉 =  1 −

𝐿𝑕
0

𝐿𝑕
 

𝑑𝐿𝑕

𝑑𝑡
+ 

𝑝

𝛿+𝜔

𝑑𝐿𝑖

𝑑𝑡
  +

𝑑𝑣

𝑑𝑡
+  1 −

𝐵𝑕
0

𝐵𝑕
 

𝑑𝐵𝑕

𝑑𝑡
+

𝑞

𝜆+𝜂

𝑑𝐵𝑖

𝑑𝑡
 . That is  

𝑑𝑉

𝑑𝑡
= −  

𝜎

𝑘1
 𝑘1 − 𝐿𝑕 2 +

𝜓

𝑘2
 𝑘2 − 𝐵𝑕 2 −    2 −

𝑝

𝛿+𝜔
 𝐿𝑕 − 𝑘1 

𝜃

𝐿𝑕 +𝑣
+ 𝜇 +   2 −

𝑞

𝜆+𝜂
 𝐵𝑕 − 𝑘2 

𝜋

𝐵𝑕 +𝑣
 𝑣 < 0. 

For  1 −
𝑝

𝛿+𝜔
 𝑘1 > 0 𝑎𝑛𝑑  1 −

𝑞

𝜆+𝜂
 𝑘2 > 0. Thus, for 𝑣 = 0 𝑎𝑛𝑑 𝑡 → ∞, we have 𝐿𝑖 → 0, 𝐵𝑖 → 0, 𝐿𝑕 →

𝑘1 𝑎𝑛𝑑 𝐵𝑕 → 𝑘2; for  𝑅0 < 1, 𝑉 < 0 and hence the disease free equilibrium point 𝐷(𝐿𝑕 , 𝐿𝑖 , 𝑣, 𝐵𝑕 , 𝐵𝑖) =
(𝑘1, 0,0, 𝑘2, 0)  of model (3.1) is globally asymptotically stable.  

 

3.5.  Endemic equilibrium point 
To determine the endemic equilibrium point we make the right hand side of the dynamical system (1) - (5) equal 

to zero, that is  
𝑑𝐿𝑕

𝑑𝑡
= 𝜎  1 −

𝐿𝑕 + 𝐿𝑖

𝑘1

 𝐿𝑕 + 𝜔𝐿𝑖 −
𝜃𝐿𝑕𝑣

𝐿𝑕 + 𝑣
= 0 

𝑑𝐿𝑖

𝑑𝑡
=

𝜃𝐿𝑕𝑣

𝐿𝑕 + 𝑣
−  𝛿 + 𝜔 𝐿𝑖 = 0 

𝑑𝑣

𝑑𝑡
= 𝑝𝐿𝑖 + 𝑞𝐵𝑖 −  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 + 𝑣
+

𝜋𝐵𝑕

𝐵𝑕 + 𝑣
 𝑣 = 0 

𝑑𝐵𝑕

𝑑𝑡
= 𝜓  1 −

𝐵𝑕 + 𝐵𝑖

𝑘2

 𝐵𝑕 + 𝜆𝐵𝑖 −
𝜋𝐵𝑕𝑣

𝐵𝑕 + 𝑣
= 0 

𝑑𝐵𝑖

𝑑𝑡
=

𝜋𝐵𝑕𝑣

𝐵𝑕 + 𝑣
−  𝜆 + 𝜂 𝐵𝑖 = 0 

Thus after some calculation we get the endemic equilibrium point is 

 𝐿𝑕
∗ , 𝐿𝑖

∗, 𝑣∗, 𝐵𝑕
∗ , 𝐵𝑖

∗ =

 
(𝑐−𝑑𝑣∗)+  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗

𝑓
,
𝜃  𝑐−𝑑𝑣∗ +  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗ 𝑣∗

𝑎  𝑓−𝑑 𝑣∗+  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗+𝑐 
, 𝑣∗,

(𝑔−𝑚𝑣∗)+ (𝑔−𝑚𝑣∗)2+𝑟𝑣∗

𝑠
,
𝜋[(𝑔−𝑚𝑣∗)+ (𝑔−𝑚𝑣∗)2+𝑟𝑣∗]𝑣∗

𝑏[(𝑠−𝑚)𝑣∗+  𝑔−𝑚𝑣∗ 2+𝑟𝑣∗+𝑔]
  

Provided that 𝑅0 > 1,1 −
𝑝

 𝛿+𝜔 
> 0 𝑎𝑛𝑑1 −

𝑞

 𝜆+𝜂 
> 0.  

 

3.6. Local stability of endemic equilibrium point 

Theorem – 5: 

The endemic equilibrium point        

 
(𝑐−𝑑𝑣∗)+  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗

𝑓
,
𝜃  𝑐−𝑑𝑣∗ +  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗ 𝑣∗

𝑎  𝑓−𝑑 𝑣∗+  𝑐−𝑑𝑣∗ 2+𝑒𝑣∗+𝑐 
, 𝑣∗,

(𝑔−𝑚𝑣∗)+ (𝑔−𝑚𝑣∗)2+𝑟𝑣∗

𝑠
,
𝜋[(𝑔−𝑚𝑣∗)+ (𝑔−𝑚𝑣∗)2+𝑟𝑣∗]𝑣∗

𝑏[(𝑠−𝑚)𝑣∗+  𝑔−𝑚𝑣∗ 2+𝑟𝑣∗+𝑔]
 of the 

dynamical system (1) - (5)is locally asymptotically stable if 𝑅0 > 1.  

Proof  
TheJacobean matrix of the dynamical system (1) - (5) at the endemic equilibrium point is 

𝐽 =

 
 
 
 
 
−(𝑚 + 𝑎) −𝑔 −𝑏 0 0

𝑎 −𝑒 𝑏 0 0
−𝑎 𝑝 − 𝜇 + 𝑏 + 𝑑 −𝑐 𝑞
0 0 −𝑑 −(𝑛 + 𝑐) −𝑙
0 0 𝑑 𝑐 −𝑓 

 
 
 
 

 Where,  

a=
𝜃𝑣∗2

 𝐿𝑕
∗ +𝑣∗ 

2 , 𝑏 =
𝜃𝐿𝑕

∗ 2

 𝐿𝑕
∗ +𝑣∗ 

2 , 𝑐 =
𝜋𝑣∗2

 𝐵𝑕
∗+𝑣∗ 

2 , 𝑑 =
𝜋𝐵𝑕

∗2

 𝐵𝑕
∗+𝑣∗ 

2 , 𝑒 = 𝛿 + 𝜔; 

 𝑓 = 𝜆 + 𝜂, 𝑔 =
𝜎

𝑘1
𝐿𝑕
∗ − 𝜔, 𝑙 =

𝜓

𝑘2
𝐵𝑕

∗ − 𝜆, 𝑚 =
𝜎

𝑘1
 −𝑘1 + 2𝐿𝑕

∗ + 𝐿𝑖
∗ ;  

 𝑛 =
𝜓

𝑘2
 −𝑘2 + 2𝐵𝑕

∗ + 𝐵𝑖
∗   and 𝑕 =

𝜎

𝑘1
𝐿𝑕 − 𝜔 < 𝜎 − 𝜔 > 0, because 𝐿𝑕 < 𝑘1 and intrinsic growth rate is larger 

than the curing rate. Also  𝑙 =
𝜓

𝑘2
𝐵𝑕 − 𝜆 < 𝜓 − 𝜆 > 0. 

The corresponding characteristic equation for the eigenvalue 𝑡 is 
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−(𝑥 + 𝑡) −𝑔 −𝑏 0 0

𝑎 −(𝑒 + 𝑡) 𝑏 0 0
−𝑎 𝑝 −(𝑦 + 𝑡) −𝑐 𝑞

0 0 −𝑑 −(𝑧 + 𝑡) −𝑙

0 0 𝑑 𝑐 −(𝑓 + 𝑡)

 
 

= 0 

Or 

 

 𝑎𝑔 +  𝑥 + 𝑡  𝑒 + 𝑡 ][− 𝑦 + 𝑡  𝑧 + 𝑡  𝑓 + 𝑡 + 𝑐𝑑𝑙 − 𝑐𝑑𝑞 − (−𝑑𝑞 𝑥 + 𝑡 − 𝑐𝑑 𝑓 + 𝑡  −

−𝑐𝑞 𝑦 + 𝑡 ] + [𝑏 𝑥 + 𝑡 − 𝑎𝑏][𝑝 𝑧 + 𝑡  𝑓 + 𝑡 +

 −𝑏 𝑒 + 𝑔 + 𝑡   −𝑎 𝑧 + 𝑡  𝑓 + 𝑡 − 𝑎𝑐𝑙 
 = 0 

Or 

 

 𝑡2 +  𝑥 + 𝑒 𝑡 +  𝑎𝑔 + 𝑥𝑒  ∗

 −𝑡3 −  𝑓 + 𝑦 + 𝑧 𝑡2 −  𝑓𝑦 + 𝑓𝑧 + 𝑦𝑧 + 𝑑𝑞 − 𝑐𝑑 − 𝑐𝑞 𝑡 − 𝑓𝑦𝑧 + 𝑐𝑑𝑙 − 𝑐𝑑𝑞 + 𝑑𝑞𝑥 − 𝑐𝑑𝑓 − 𝑐𝑞𝑦 +

𝑝 𝑏 𝑥 − 𝑎 + 𝑏𝑡  𝑡2 +  𝑓 + 𝑧 𝑡 + 𝑐𝑞 + 𝑓𝑧 + 𝑎 𝑏𝑡 + 𝑏 𝑒 + 𝑔   𝑡2 +  𝑓 + 𝑧 𝑡 + 𝑓𝑧 + 𝑐𝑙 

 = 0 

Or 

 

−𝑡5 −  𝑐3 + 𝑐1 𝑡
4 −  𝑐4 + 𝑐2 − 𝑏𝑝 − 𝑎𝑏 𝑡3 −  𝑐5 + 𝑐1𝑐4 + 𝑐2𝑐3 − 𝑏𝑝𝑐7 − 𝑝𝑐26 − 𝑎𝑏𝑐7 − 𝑎𝑐9 𝑡

2 −

 𝑐5 + 𝑐1𝑐4 + 𝑐2𝑐3 − 𝑏𝑝𝑐7 − 𝑝𝑐26 − 𝑎𝑏𝑐7 − 𝑎𝑐9 𝑡
2 −  𝑐1𝑐5 + 𝑐2𝑐4 − 𝑏𝑝𝑐8 − 𝑝𝑐6𝑐7 − 𝑎𝑏𝑐10 𝑡 −

 𝑐2𝑐5 − 𝑝𝑐6𝑐8 − 𝑎𝑐9𝑐10 

 = 0  

Where 

𝑐1 = 𝑥 + 𝑒  

𝑐2 = 𝑎𝑔 + 𝑥𝑒  

𝑐3 = 𝑓 + 𝑦 + 𝑧  

𝑐4 =  𝑓𝑦 + 𝑓𝑧 + 𝑦𝑧 + 𝑑𝑞 − 𝑐𝑑 − 𝑐𝑞   

𝑐5 = 𝑓𝑦𝑧 − 𝑐𝑑𝑙 + 𝑐𝑑𝑞 − 𝑑𝑞𝑥 + 𝑐𝑑𝑓 + 𝑐𝑞𝑦  

𝑐6 = 𝑏 𝑥 − 𝑎   

𝑐7 = 𝑓 + 𝑧  

 𝑐8 = 𝑐𝑞 + 𝑓𝑧  

𝑐9 = 𝑏 𝑒 + 𝑔   

 𝑐10 = 𝑓𝑧 + 𝑐𝑙  
 

Let  

𝑑1 = 𝑐3 + 𝑐1  

𝑑2 = 𝑐4 + 𝑐2 − 𝑏𝑝 − 𝑎𝑏  

𝑑3 = 𝑐5 + 𝑐1𝑐4 + 𝑐2𝑐3 − 𝑏𝑝𝑐7 − 𝑝𝑐6 − 𝑎𝑏𝑐7 − 𝑎𝑐9   
𝑑4 = 𝑐1𝑐5 + 𝑐2𝑐4 − 𝑏𝑝𝑐8 − 𝑝𝑐6𝑐7 − 𝑎𝑏𝑐10   

𝑑5 = 𝑐2𝑐5 − 𝑝𝑐6𝑐8 − 𝑎𝑐9𝑐10   

We do have a fifth degree polynomial equation 𝑡5 + 𝑑1𝑡
4 + 𝑑2𝑡

3 + 𝑑3𝑡
2 + 𝑑4𝑡 + 𝑑5 = 0 

By applying RouthHurwitz stability criterion we get there is change of sign in the first column of Routh-Hurwitz 

array and the endemic equilibrium point is unstable.  

 

3.7. Global stability of endemic equilibrium point 

Theorem – 6: 

If𝑅0 > 1, the endemic equilibrium pointof the dynamical system (1) – (5) is globally asymptotically stable. 

Proof  

Let the Liapunov function defined at the endemic equilibrium point is  

𝑉 𝐿𝑕
∗ , 𝐿𝑖

∗, 𝑣∗, 𝐵𝑕
∗ , 𝐵𝑖

∗ = 𝐿𝑕 − 𝐿𝑕
∗ − 𝐿𝑕

∗ ln  
𝐿𝑕

𝐿𝑕
∗  +

𝑝

𝛿+𝜔
[𝐿𝑖 − 𝐿𝑖

∗ − 𝐿𝑖
∗ ln  

𝐿𝑖

𝐿𝑖
∗ ] + 𝑣 − 𝑣∗ − 𝑣∗ ln  

𝑣

𝑣∗ + 𝐵𝑕 − 𝐵𝑕
∗ −

𝐵𝑕
∗ ln  

𝐵𝑕

𝐵𝑕
∗ +

𝑞

𝜆+𝜂
[𝐵𝑖 − 𝐵𝑖

∗ − 𝐵𝑖
∗ ln  

𝐵𝑖

𝐵𝑖
∗ ]. V is continuous function for all  𝐿𝑕

∗ , 𝐿𝑖
∗, 𝑣∗, 𝐵𝑕

∗ , 𝐵𝑖
∗ ∈ ℜ+

5 and has first 

order partial derivatives.V has minimum at  𝐿𝑕
∗ , 𝐿𝑖

∗, 𝑣∗, 𝐵𝑕
∗ , 𝐵𝑖

∗ which is  𝐿𝑕
∗ , 𝐿𝑖

∗, 𝑣∗, 𝐵𝑕
∗ , 𝐵𝑖

∗ = 0. And now we do 

have  
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝐿𝑕

𝑑𝐿𝑕

𝑑𝑡
+

𝑝

𝛿+𝜔

𝜕𝑉

𝜕𝐿𝑖

𝑑𝐿𝑖

𝑑𝑡
+

𝜕𝑉

𝜕𝑣

𝑑𝑣

𝑑𝑡
+

𝜕𝑉

𝜕𝐵𝑕

𝑑𝐵𝑕

𝑑𝑡
+

𝑞

𝜆+𝜂

𝜕𝑉

𝜕𝐵𝑖

𝑑𝐵𝑖

𝑑𝑡
  

𝑑𝑉

𝑑𝑡
=

 
 
 

 
 −

𝜎

𝑘1
 𝑘1 − 𝐿𝑕  𝐿𝑕

∗ − 𝐿𝑕 −
𝑝𝜃 𝐿𝑕

∗ 𝑣∗

 𝛿+𝜔  𝐿𝑕
∗ +𝑣∗ 

−  
𝜃𝐿𝑕

∗ 𝑣

𝐿𝑕 +𝑣
−

𝜃𝐿𝑕
∗ 𝑣

𝐿𝑕 +𝑣
 +

𝑝𝜃 𝐿𝑕
∗ 𝑣∗

 𝛿+𝜔  𝐿𝑕
∗ +𝑣∗ 

+ 𝑝𝐿𝑖
∗

−  𝜇 +
𝜃𝐿𝑕

𝐿𝑕 +𝑣
+

𝜋𝐵𝑕

𝐵𝑕 +𝑣
 𝑣 − 𝑝𝐿𝑖

∗ − 𝑞𝐵𝑖
∗ +  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 +𝑣
+

𝜋𝐵𝑕

𝐵𝑕 +𝑣
 𝑣∗ −

𝜓

𝑘2
 𝑘2 − 𝐵𝑕 (𝐵𝑕

∗ − 𝐵𝑕 )

−
𝑞𝜋𝐵𝑕

∗𝑣∗

 𝜆+𝜂  𝐵𝑕
∗+𝑣∗ 

−     
𝜋𝐵𝑕

∗𝑣

𝐵𝑕 +𝑣
−

𝜋𝐵𝑕
∗𝑣

𝐵𝑕 +𝑣
 +

𝑞𝜋𝐵𝑕
∗𝑣∗

 𝜆+𝜂  𝐵𝑕
∗+𝑣∗ 

+ 𝑞𝐵𝑖
∗ 
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𝑑𝑉

𝑑𝑡
= −[

𝜎

𝑘1

 𝑘1 − 𝐿𝑕  𝐿𝑕
∗ − 𝐿𝑕 +

𝜓

𝑘2

 𝑘2 − 𝐵𝑕 (𝐵𝑕
∗ − 𝐵𝑕 )] −  𝜇 +

𝜃𝐿𝑕

𝐿𝑕 + 𝑣
+

𝜋𝐵𝑕

𝐵𝑕 + 𝑣
 (𝑣∗ − 𝑣) 

⟹
𝑑𝑉

𝑑𝑡
< 0. For 𝐿𝑕

∗ − 𝐿𝑕 > 0, 𝐵𝑕
∗ − 𝐵𝑕 < 0 𝑎𝑛𝑑 𝑣∗ − 𝑣 > 0 

Therefore the endemic equilibrium point 

𝐸∗ 𝐿𝑕
∗ , 𝐿𝑖

∗, 𝑣∗, 𝐵𝑕
∗ , 𝐵𝑖

∗ =

 
(𝑐−𝑑𝑣)+  𝑐−𝑑𝑣 2+𝑒𝑣

𝑓
,

𝜃  𝑐−𝑑𝑣 +  𝑐−𝑑𝑣 2+𝑒𝑣 𝑣

𝑎  𝑓−𝑑 𝑣+  𝑐−𝑑𝑣 2+𝑒𝑣+𝑐 
, 𝑣∗,

(𝑔−𝑚𝑣 )+ (𝑔−𝑚𝑣 )2+𝑟𝑣

𝑠
,

𝜋[(𝑔−𝑚𝑣 )+ (𝑔−𝑚𝑣 )2+𝑟𝑣]𝑣

𝑏[(𝑠−𝑚)𝑣+  𝑔−𝑚𝑣 2+𝑟𝑣+𝑔]
  

is globally asymptotically stable for 𝑅0 > 1,1 −
𝑝

 𝛿+𝜔 
> 0 𝑎𝑛𝑑1 −

𝑞

 𝜆+𝜂 
> 0. 

 

IV. Parameter estimation for numerical simulation and sensitivity analysis. 
To perform numerical simulation and sensitivity analysis we collect the following parameter values obtained 

from different sources.  
Parameter Value Meaning Unit  Source 

𝜎 0.1 Intrinsic growth rate of healthy liver cell  𝑐𝑒𝑙𝑙

𝑚𝑙 ∗ 𝑑𝑎𝑦
 

Ref. [9] 

𝜓 0.0001 Intrinsic growth rate of healthy blood cell 𝑐𝑒𝑙𝑙

𝑚𝑙 ∗ 𝑑𝑎𝑦
 

Ref. [9] 

𝑘1 1000 Carrying capacity of the liver for liver cell 𝑐𝑒𝑙𝑙

𝑚𝑙 ∗ 𝑑𝑎𝑦
 

Ref. [7] 

𝑘2 1000 Carrying capacity of the blood for liver cell 𝑐𝑒𝑙𝑙

𝑚𝑙 ∗ 𝑑𝑎𝑦
 

Ref. [7] 

𝜃 0.0014 Rate of infection of liver cell by free virus 𝑐𝑒𝑙𝑙

𝑚𝑙 − 𝑑𝑎𝑦
 

Ref. [7] 

𝜋 0.0014 Rate of infection of blood cell by free virus 𝑐𝑒𝑙𝑙

𝑚𝑙 − 𝑑𝑎𝑦
 

Ref. [7] 

𝜔 0.1 Rate of cure of infected liver cells 𝑐𝑒𝑙𝑙

𝑑𝑎𝑦
 

Ref. [7] 

𝜆 0.1 Rate of cure of infected blood cells 𝑐𝑒𝑙𝑙

𝑑𝑎𝑦
 

Ref. [7] 

𝑝 300 Rate of release of free viruses by an infected liver 

cell(average) 

𝑣𝑖𝑟𝑜𝑛𝑠

𝑐𝑒𝑙𝑙 − 𝑑𝑎𝑦
 

Ref. [9] 

𝑞 800 Rate of release of free viruses by an infected blood 

cell(average) 

𝑣𝑖𝑟𝑜𝑛𝑠

𝑐𝑒𝑙𝑙 − 𝑑𝑎𝑦
 

Ref. [9] 

𝛿 0.003 Death rate of infected liver cells 𝑑𝑎𝑦−1 Ref. [9] 

𝜂 0.03 Death rate of infected blood cells 𝑑𝑎𝑦−1 Ref. [9] 

𝜇 3.693 Death rate of free virus 𝑑𝑎𝑦−1 Ref. [7] 

TABLE 2:Parameter estimation 

4.1. Estimation of basic reproduction number 𝑹𝟎 

𝑅0 =
𝑝𝜃

 𝛿+𝜔  𝜇+𝜋+𝜃 
+

𝑞𝜋

 𝜆+𝜂  𝜇+𝜋+𝜃 
 . 

⟹ 𝑅0 =
300×0.0014

(0.003+0.12)(3.693+0.0014 +0.0014 )
+

800×0.0014

(0.12+0.03)(3.693+0.0014 +0.0014 )
=

0.42

0.4545834
+

1.12

0.55437
 b 

⟹ 𝑅0 = 0.923922870 + 2.020311344 = 2.944234214  

From this value of basic reproduction number we find that the disease spreads in the liver as 

𝑅0 = 2.944234214 > 1 

 

4.2. Numerical simulation 

The numerical analysis is obtained from the graphs of basic reproduction number with respect to the parameters 

obtained and given in Table-2. 

 

4.2.1. Rate of infection of healthy blood cell by free virus𝝅 

Graphical representation of the basic reproduction number 𝑅0 versus rate of infection of healthy blood cell by 

free virus𝜋 and keeping other parameters constant 



Hepatitis B Virus with Non-Cytolytic Cure Process on Healthy Liver and Blood Cells: A .. 

DOI: 10.9790/5728-1504023546                                   www.iosrjournals.org                                           43 | Page 

 
FIGURE 2: Graphs of reproduction number verses the rate of infection of healthy blood cell 

 

From the graph of figure 2, we observe that there is intersection point(0.000554918, 1) between basic 

reproduction number  R0 and the rate of infection of healthy blood cell 𝜋in the first quadrant. Here we observe 

that, when 𝑅0 < 1, then 𝜋 < 0.000554918; this means the spread of HBV disease decreases when 𝜋 is less 

than0.000554918. If 𝑅0 > 1, then 𝜋 > 0.000554918; this means the disease of HBV spreads in the liver and 

blood when 𝜋 is greater than 0.000554918. 
 

4.2.2. Rate of cure of infected blood cell by non-cytolytic cure processes 𝝀 

Graphical representation of the basic reproduction number 𝑅0 versus rate of cure of infected blood cell by non-

cytolytic cure processes 𝜆and keeping other parameters constant is as follows 

 

 
FIGURE 3: Graphs of reproduction number verses rate of cure of infected blood cell 

 

From the graph of figure 3, we observe that there is intersection point(0.3688896, 1) between basic 

reproduction number  R0 and the rate of cure of infected blood cell 𝜆 in the first quadrant. Here we observe that, 

when 𝑅0 < 1, then 𝜆 > 0.3688896; this means the spread of HBV disease decreases when 𝜆 is greater 

than0.3688896. If 𝑅0 > 1, then 𝜆 < 0.3688896; this means the disease of HBV spreads in the liver and blood 

when 𝜆 is less than 0.3688896 

 

4.2.3. Drate of infected blood cell 𝜼 

Graphical representation of the basic reproduction number 𝑅0 versus death rate of infected blood cell 𝜂and 

keeping other parameters constant is represented as follows. 
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FIGURE 4: Graphs of reproduction number verses the death rate of infected blood cell 

 

From the graph of figure 4, we observe that there is intersection point(3.883413951, 1) between basic 

reproduction number  R0 and the death rate of infected blood cell𝜂 in the first quadrant. Here we observe that, 

when 𝑅0 < 1, then 𝜂 > 3.883413951; this means the spread of HBV disease decreases when 𝜂 is greater 

than0.100138475. If 𝑅0 > 1, then 𝜂 < 3.883413951; this means the disease of HBV spreads in the liver and 

blood when 𝜂 is less than 3.883413951. 
 

4.2.4.   Death rate of free virus 𝝁 

Graphical representation of the basic reproduction number 𝑅0 versus Death rate of free virus 𝜇and keeping other 

parameters constant is as follows 

 
FIGURE 5: Graphs of reproduction number verses the death rate of free virus 

 

From the graph of figure 5, we observe that there is intersection point(10.878500821, 1) between 

basic reproduction number  R0 and the death rate of free virus 𝜇 in the first quadrant. Here we see that, when 

𝑅0 < 1, then 𝜇 > 10.878500821; this means the spread of HBV disease decreases when 𝜇 is greater 

than  8.617695295. If 𝑅0 > 1, then 𝜇 < 10.878500821; this means the disease of HBV spreads in the liver 

and blood when 𝜇 is less than 10.878500821. 
 

4.3. Sensitivity analysis 

The basic reproduction number 𝑅0 is a function of nine parameters 𝜃, 𝜋, 𝑝, 𝑞, 𝛿, 𝜔, 𝜇, 𝜆, 𝑎𝑛𝑑 𝜂. Inorder 

to cure the disease it is necessary to control the parameter values to make 𝑅0 < 1. We are therefore interested in 

finding the rate of change of 𝑅0as the parameter values are changed. The rate of change of 𝑅0for a change in 

value of parameter 𝜙can be estimated from a normalized sensitivity index, 𝑆𝐼 (𝜙)defined by SI ϕ =
ϕ

R0

∂R0

∂ϕ
[8]. 

The normalized sensitivity indices of the reproduction number with respect to𝜃, 𝜋, 𝑝, 𝑞, 𝛿, 𝜔, 𝜇, 𝜆, 𝑎𝑛𝑑 𝜂are 

obtained by 

𝑆𝐼 𝑝 =
p

R0

∂R0

∂p
=

𝑝𝜃 (𝜆+𝜂)

𝑝𝜃  𝜆+𝜂 +𝑞𝜋 (𝛿+𝜔)
=

1

1+
𝑞𝜋  𝛿+𝜔 

𝑝𝜃 (𝜆+𝜂 )
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𝑆𝐼 𝑞 =
q

R0

∂R0

∂q
=

𝑞𝜋  𝛿+𝜔 

𝑞𝜋  𝛿+𝜔 +𝑝𝜃  𝜆+𝜂 
=

1

1+
𝑝𝜃 (𝜆+𝜂 )

𝑞𝜋  𝛿+𝜔 

  

𝑆𝐼 𝜃 =
θ

R0

∂R0

∂θ
=

 𝑝 𝜆+𝜂  𝜇 +𝜋 −𝑞𝜋  𝛿+𝜔  

 𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔   𝜇+𝜋+𝜃 
× θ  

𝑆𝐼 𝜋 =
π

R0

∂R0

∂θ
=

 𝑞 𝛿+𝜔  𝜇+𝜃 −𝑝𝜃  𝜆+𝜂  

 𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔   𝜇 +𝜋+𝜃 
× π  

𝑆𝐼 𝜆 =
λ

R0

∂R0

∂θ
= −

𝑞𝜋 (𝛿+𝜔)

[𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔 ] 𝜆+𝜂 
× λ  

𝑆𝐼 𝛿 =
δ

R0

∂R0

∂δ
= −

𝑝𝜃  𝜆+𝜂 

 𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔   𝛿+𝜔 
× 𝛿  

𝑆𝐼 𝜂 =
η

R0

∂R0

∂η
= −

𝑞𝜋  𝛿+𝜔 

 𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔  (𝜆+𝜂)
× η  

𝑆𝐼 𝜔 =
ω

R0

∂R0

∂ω
== −

𝑝𝜃  𝜆+𝜂 

 𝑝𝜃  𝜆+𝜂 +𝑞𝜋  𝛿+𝜔   𝛿+𝜔 
× 𝜔  

𝑆𝐼 𝜇 =
μ

R0

∂R0

∂μ
== −

μ

 𝜇 +𝜋+𝜃 
  

 

Using the data in table-2, the resulting sensitivity indices of 𝑅0to the nine different parameters in the model are 

shown in the following table in the order from most sensitive to least. The highest magnitude of the normalized 

sensitivity indices of the reproduction number with respect to parameters is the most sensitive one. 

 
Order Parameter Sensitivity index 

1 𝜇 −0.999242383 

2 𝜋 +0.715775246 

3 𝑞 +0.686192159 

4 𝜆  −0.548956631 

5 𝑝 +0.313807531 

6 𝜃 +0.313769358 

7 𝜔  −0.306153689 

8 𝜂  −0.137238493 

9 𝛿  −0.051025614 

TABLE 3: The sensitivity index of the parameters 

 

 

V. Results and Discussions 
We considered non-linear system of ordinary differential equation to study the dynamics of HBV 

disease inside the host. In this study we adopted and extended the appropriate mathematical model on the 

dynamics of HBV and we found that an important aspect of mathematical epidemiology which is known to be 

basic reproduction number R0 which determines how HBV spreads in the live and blood; and control it. 

To decide if the spread of HBV in the liver and blood is high or low, we used the standard 

measurement which is known as the basic reproduction numberR0. In our modified model we have derived the 

basic reproduction number𝑅0 =
𝑝𝜃

 𝛿+𝜔  𝜇 +𝜋+𝜃 
+

𝑞𝜋

 𝜆+𝜂  𝜇 +𝜋+𝜃 
 which depends on nine parameters. We also found 

that the numerical value of the basic reproduction number based on the standard data taken from different 

journals is 𝑅0 = 2.944234214 > 1. This in principle implies that the disease spreads in the liver and blood of 

the host. We observe from the above figures that we have four control parameters namely, the rate of infection 

of blood cell 𝜋, the rate of cure of infected blood cell 𝜆, the death rate of infected blood cell 𝜂 and the death rate 

of free virus 𝜇which influence the basic reproduction number. We discuss about these control parameters in 

detail as follows. 

The graph in figure 2 tell us that how basic reproduction numberR0is affected by the rate of infection of 

blood cell 𝜋. From the graphical representation we get that𝜋 = 0.000554918 is our control parameter. If  

𝜋 > 0.000554918then the basic reproduction number is greater than one and HBV disease spreads in the liver 

and blood. If 𝜋 < 0.000554918 then the basic reproduction number is less than one and the disease decrease its 

spread in the liver and blood. 

The graph in figure 3, tell us that how basic reproduction numberR0is affected by the rate of cure of 

infected blood cell  𝜆. From the graphical representation we get that𝜆 = 0.3688896 is our control parameter. If  

𝜆 < 0.3688896then the basic reproduction number is greater than one and HBV disease spreads in the liver and 

blood. If 𝜆 > 0.3688896then the basic reproduction number is less than one and the disease decrease its spread 

in the liver and blood. 

The graph in figure 4 shows that how basic reproduction numberR0is affected by the death rate of 

infected blood cell 𝜂. From the graphical representation we get  𝜂 = 3.883413951 is our control parameter. If 

𝜂 < 3.883413951then the basic reproduction number is greater than one and the disease spreads in the liver 
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and blood of the host. If 𝜂 > 3.883413951then the basic reproduction number is less than one and the disease 

decrease its spread in the liver and blood. 

The graph in figure 5 shows that how basic reproduction numberR0is affected by the death rate of free 

virus  𝜇. From the graphical representation we get  𝜇 = 10.878500821is our control parameter. If 𝜇 <
10.878500821then the basic reproduction number is greater than one and the HBV disease spreads in the liver 

and blood of the host. If 𝜇 > 10.878500821then the basic reproduction number is less than one and the disease 

decreases its spread in the liver and blood. 

Out of the nine parameters that we consider in the reproduction number; 𝑝, 𝑞, 𝜃, 𝛿 𝑎𝑛𝑑 𝜔are not 

considered in the numerical analysis. The reason is that the graph of these respective parameters versus the 

reproduction number does not intersect in the first quadrant. 

 

VI. Conclusions 
From the dynamical system of the model, we obtain the reproduction number  

𝑅0 =
𝑝𝜃

 𝛿+𝜔  𝜇+𝜋+𝜃 
+

𝑞𝜋

 𝜆+𝜂  𝜇+𝜋+𝜃 
. Based on standard data collected from different journals, the numerical value 

of reproduction number is 𝑅0 = 2.944234214 which is greater than one. This in principle implies that the 

disease spreads in the liver and blood. We have observed that the disease free equilibrium point is locally 

asymptotically stable and globally asymptotically stable. Also the endemic equilibrium point is locally 

asymptotically stable and globally asymptotically stable. From the sensitivity index of the model we consider 

the most sensitive parameter is  𝜇 which is death rate of free virus. The list sensitive parameter is 𝛿, which is 

death rate of infected liver cell. Therefore attention must be given to the death rate of free virus to control the 

HBV disease. 

 

VII. Recommendations 
In this study we observe that the basic reproduction number 𝑅0 = 2.944234214is greater than one and 

this implies that the disease spreads in the liver and blood of the host. Therefore, we want to draw the following 

recommendations to make the basic reproduction number less than one. The rate infection of healthy blood cell 

𝜋 should be less than 0.000554918. The rate of cure of infected blood cell 𝜆 should be greater than 0.3688896. 

The death rate of infected blood cell 𝜂 should be greater than 3.883413951. The death rate of free virus 𝜇 

should be greater than 10.878500821. 
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