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Abstract: In this paper we considered a nonlinear deterministic dynamical system to study the effect of post 

exposure vaccination on fast and slow latent infection stages. We found that there are two equilibrium points 

exist. These are disease free equilibrium point and endemic equilibrium point. Their local stability and global 

stability analysis investigated using nonlinear stability methods. We also found that the dynamical system has 

basic reproduction number    

𝑅0 =
𝑝𝜔 𝛽1𝛬 𝜀+𝜖+𝑑 [𝛼 𝜃+𝑑 +𝜌𝜃 ]+ 1−𝑝 𝜔𝛽1𝛬 𝜌+𝛼+𝑑 [𝜖 𝜃+𝑑 +𝜃𝜀 ]

𝑑𝑁 𝜔+𝑑  𝜌+𝛼+𝑑 (𝜀+𝜖+𝑑)[ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
  it depends on thirteen parameters. Using the 

collected standard data we found the numerical value of the reproduction number is 

𝑅0 = 1.6684 > 1. This shows that the considered disease spreads in the community.  From the sensitivity index 

of the model we found that the most sensitive parameter is the effective contact rate 𝛽1. From numerical 

simulation, we observe that the recovery rate from fast latent by post exposure vaccination 𝜌 , recovery rate 

from slow latent by post exposure vaccination 𝜀 , the recurrence rate 𝜃 and the effective contact rate 𝛽1  are 

influencing the basic reproduction number. 
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I. Introduction 
Tuberculosis is a preventable and curable disease caused by slowly replicating Mycobacterium 

tuberculosis. This Mycobacterium tuberculosis often affects the lungs and any part of the body such as the 

kidney, spine, and brain. Tuberculosis claims the second largest number of victims due to a single infectious 

agent next to HIV/AIDS 
[20, 17, 3]

. Mycobacterium tuberculosis is the cause of most occurrences of tuberculosis 

(TB) and is usually acquired via airborne infection from someone who has active TB can coughs, sneezes, 

speaks, or sings. German Microbiologist Robert Koch discovered the causative organism Mycobacterium 

tuberculosis on 24
th

 March 1882 
[14]

. It typically affects the lungs (pulmonary TB) but can affect other sites as 

well (extra pulmonary TB) 
[18]

.Tuberculosis is an ancient and complex infectious disease on which a large 

number of theoretical studies have been carried out. Mycobacterium tuberculosis infection can remain latent, 

become active, or it can progress from latent TB to active TB either by endogenous re-activation and/or 

exogenous re-infection. According to the World Health Organization, one-third of the world’s population is 

infected, either latently or actively with tuberculosis 
[21]

.  

Mathematical Modeling has become a powerful tool for analysing epidemiological characteristics 
[6, 11, 

19, 8, 10]
. Different mathematical models have been developed for defining target sub-populations for treating 

latent and active TB infections and incorporating certain factors, such as drug-resistant strains, co-infection with 

HIV, relapse, re-infection and vaccination to study the transmission dynamics of TB. In particular, Bhunuet et 

al. 
[1]

 considered a TB model incorporated the treatment of infectives and chemoprophylaxis.  Liu et al. 
[12]

 

studied a TB model incorporating seasonality.  
[22]

 Studied the Analysis of Transmission and Control of 

Tuberculosis in Mainland China, 2005–2016, Based on the Age-Structure Mathematical Model. Bowong et al. 
[2]

 considered Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality. 
[23]

 Addressed Modeling and stability analysis for a tuberculosis model with healthy education and treatment. 
[9]

 

Proposed a multi-group SEIRV dynamical model with bidirectional mixed cross infection between cattle and 

sheep, and aim to investigate the influence of cross infection of mixed feeding on the brucellosis transmission. 
[7]

 Addressed What Dose a Mathematical Model tells About the Impact of Reinfection in Korean Tuberculosis 

Infection. 
[15]

 Studied on the dynamics of a Mathematical Model for Tuberculosis with variability in 

Susceptibility and Disease progressions due to difference in awareness level. 
[13]

 Addressed Liapunov Functions 

for Tuberculosis Models with Fast and Slow Progression. 
[16]

 Studied on the analysis of a mathematical model 

for tuberculosis:  that could enhance the case detection rate of tuberculosis. 
[5]

 Propose a Mmathematical Model 
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to Predict the Prevalence and Transmission Dynamics of Tuberculosis in Amansie West District, Ghana. 
[3]

 

Propose discrete age-structured SEIT model with application to tuberculosis transmission in China. In this 

paper, we will only consider the effect of post exposer vaccination. Hence, we will introduce and analyze a 

mathematical model for the transmission of TB with post exposer vaccination at slow and fast latent. 

 

The Mathematical Model 

In this paper we extend the work done by 
[19]

 by adding two assumptions that including the exposed 

compartment between susceptible and latent infected class  and splitting the latent infected class in to slow latent 

and fast latent infected classes. 

 

Model assumptions  

Consider a nonlinear dynamical system in which the host population sub divides into six mutually-

exclusive compartments, Tuberculosis susceptible individuals  𝑆(𝑡), TB-exposed individuals  𝐸𝑇 𝑡 , TB-fast 

latently infected individuals  𝐿𝑓 𝑡 , TB-slow latently infected individuals  𝐿𝑠 𝑡 , active TB infected individuals 

𝐼𝑇 𝑡  and TB recovered/treated individuals  𝑅 𝑡 . The total population at time 𝑡, denoted by  𝑁(𝑡), is given 

by  𝑁 𝑡 = 𝑆 𝑡 + 𝐸𝑇 𝑡 + 𝐿𝑓 𝑡 + 𝐿𝑠 𝑡 + 𝐼𝑇 𝑡 + 𝑅 𝑡 . We assume that all individuals in a given 

compartment are identically infectious, which might ignore potential effects caused due to variation among 

individuals. The susceptible class, 𝑆(𝑡), comprising  individuals at risk of TB.The susceptible population is 

increased by the recruitment of individuals  into the population at a rate Λ. All individuals in different 

compartments suffer from natural death rate  𝑑. Susceptible individuals acquire TB infection from individuals 

with active TB at a rate  𝜆𝑇  given by 𝜆𝑇 =
𝛽1

𝑁
𝐼𝑇 𝑡 , where 𝛽1 is the effective contact rate for TB infection. 

TB-exposed individuals are progress to either fast or slow latent infection by the rate 𝑝𝜔 and (1 − 𝑝)𝜔 

respactivly. The fast latent 𝐿𝑓 𝑡 and slow latent 𝐿𝑠 𝑡 infected classes are decreased by post exposure 

vaccination by the linear recovery rate 𝜌 and 𝜀 respectivly and inters into recovered class and if not get post 

exposure vaccination develop active TB infection at some time in the time of infection by the infection rate 𝛼 

and 𝜖 respectively and inter into 𝐼(𝑡). Individuals with active TB disease suffering induced death at a rate 𝑑𝑇 .  

Individuals successfully treated at active TB infection stage develop immunity and go to recovery stage at a rate 

𝜋.The recovered class are decrease by the rate 𝜃 which is the recurrence rate of successfully treated TB cases 

and inters into infected class. Based on the above assumptions we construct the following flow chart 

 

 
Figure1: Flow diagram for Tuberculosis dynamics 

 

The corresponding dynamical system of the above flowchart is 

 
𝑑𝑆

𝑑𝑡
= Λ − 𝜆𝑇𝑆 − 𝑑𝑆       (1) 

 
𝑑𝐸𝑇

𝑑𝑡
= 𝜆𝑇𝑆 − (𝜔 + 𝑑)𝐸𝑇       (2) 

 
𝑑𝐿𝑓

𝑑𝑡
= 𝑝𝜔𝐸𝑇 − (𝜌 + 𝛼 + 𝑑)𝐿𝑓      (3) 

 
𝑑𝐿𝑠

𝑑𝑡
=  1 − 𝑝 𝜔𝐸𝑇 − (𝜀 + 𝜖 + 𝑑)𝐿𝑠    (4)                               

 
𝑑𝐼𝑇

𝑑𝑡
= 𝛼𝐿𝑓 + 𝜖𝐿𝑠 + 𝜃𝑅 − (𝜋 + 𝑑 + 𝑑𝑇)𝐼𝑇     (5) 

 
𝑑𝑅

𝑑𝑡
= 𝜌𝐿𝑓 + 𝜀𝐿𝑠 + 𝜋𝐼𝑇 − (𝜃 + 𝑑)𝑅     (6) 

Where, 
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𝜆𝑇 =
𝛽1

𝑁
𝐼𝑇 𝑡  and, now, 𝑁 = 𝑆 + 𝐸𝑇 + 𝐿𝑓 + 𝐿𝑠 + 𝐼𝑇 + 𝑅 

Positivity of solutions of the dynamical system (1) - (6)  
Theorem   

If  𝑆 0 > 0, 𝐸𝑇 0 ≥ 0, 𝐿𝑓 0 ≥ 0, 𝐿𝑠 0 ≥ 0, 𝐼𝑇 0 ≥ 0 𝑎𝑛𝑑 𝑅 0 ≥ 0 then the solution region 

 𝑆(𝑡), 𝐸𝑇(𝑡), 𝐿𝑓(𝑡), 𝐿𝑠(𝑡), 𝐼𝑇(𝑡), 𝑅(𝑡)  of the dynamical system (1)-(6) is positive for all time t ≥  0   

Proof   

To show this we have taken each differential equation of the dynamical system (1) - (6) is positive  

1) From 
𝑑𝑆

𝑑𝑡
= Λ − 𝜆𝑇𝑆 − 𝑑𝑆  its solution is 𝑆 𝑡 = 𝑒 (𝜆𝑇+𝑑)𝑑𝜏

𝑡
0  Λ𝑒− (𝜆𝑇+𝑑)𝑑𝜏

𝑡
0 𝑑𝜏 > 0

𝑡

0
  since those model 

parameters and exponential functions are positive. 

2) From 
𝑑𝐸𝑇

𝑑𝑡
= 𝜆𝑇𝑆 − (𝜔 + 𝑑)𝐸𝑇  its solution is 𝐸𝑇 𝑡 = 𝑒 (𝜔+𝑑)𝑑𝜏

𝑡
0  𝜆𝑇𝑆𝑒− (𝜔+𝑑)𝑑𝜏

𝑡
0 𝑑𝜏

𝑡

0
> 0 since those 

model parameters and exponential function is positive. 

3) From 
𝑑𝐿𝑓

𝑑𝑡
= 𝑝𝜔𝐸𝑇 − (𝜌 + 𝛼 + 𝑑)𝐿𝑓  its solution is 𝐿𝑓 𝑡 = 𝑒 (𝜌+𝛼+𝑑)𝑑𝜏

𝑡
0  𝑝𝜔𝐸𝑇𝑒− (𝜌+𝛼+𝑑)𝑑𝜏

𝑡
0 𝑑𝜏

𝑡

0
> 0 

since those model parameters and exponential functions are positive. 

4) From 
𝑑𝐿𝑠

𝑑𝑡
=  1 − 𝑝 𝜔𝐸𝑇 − (𝜀 + 𝜖 + 𝑑)𝐿𝑠 its solution 

is    𝐿𝑠 𝑡 = 𝑒 (𝜀+𝜖+𝑑)𝑑𝜏
𝑡

0   1 − 𝑝 𝜔𝐸𝑇𝑒− (𝜀+𝜖+𝑑)𝑑𝜏
𝑡

0 𝑑𝜏
𝑡

0
> 0 since those model parameters and exponential 

function are positive. 

5)  From 
𝑑𝐼𝑇

𝑑𝑡
= 𝛼𝐿𝑓 + 𝜖𝐿𝑠 + 𝜃𝑅 − (𝜋 + 𝑑 + 𝑑𝑇)𝐼𝑇  its  solution is 

  𝐿𝑠 𝑡 = 𝑒 (𝜋+𝑑+𝑑𝑇 )𝑑𝜏
𝑡

0  (𝛼𝐿𝑓 + 𝜖𝐿𝑠 + 𝜃𝑅)𝑒− (𝜋+𝑑+𝑑𝑇 )𝑑𝜏
𝑡

0 𝑑𝜏
𝑡

0
> 0  since those model parameters and 

exponential function is positive. 

6) From 
𝑑𝑅

𝑑𝑡
= 𝜌𝐿𝑓 + 𝜀𝐿𝑠 + 𝜋𝐼𝑇 −  𝜃 + 𝑑 𝑅  its solution is  𝑅 𝑡 = 𝑒  𝜃+𝑑 𝑑𝜏

𝑡
0  (𝜌𝐿𝑓 + 𝜀𝐿𝑠 +

𝑡

0

𝜋𝐼𝑇)𝑒−0𝑡𝜃+𝑑𝑑𝜏𝑑𝜏>0 since those model parameters and exponential function are positive. 

Boundedness of solutions of the dynamical system (1) - (6)  

Theorem  

If  Ω1 =   𝑆, 𝐸𝑇 , 𝐿𝑓 , 𝐿𝑠 , 𝐼𝑇 , 𝑅 ∈ ℝ+
6 : 𝑆 𝑡 + 𝐸𝑇 𝑡 + 𝐿𝑓 𝑡 + 𝐿𝑠 𝑡 + 𝐼𝑇 𝑡 +  𝑅 𝑡   is the feasible region 

of dynamical system (1) – (6) and then  the solution of the dynamical system (1) – (6) 

  𝑆(𝑡), 𝐸𝑇(𝑡), 𝐿𝑓(𝑡), 𝐿𝑠(𝑡), 𝐼𝑇(𝑡), 𝑅(𝑡) ∈ Ω1   for all  𝑡 ≥ 0   

Proof  

The total population in our model is denoted by 𝑁 and thus we do have 𝑁 𝑡 = 𝑆 𝑡 + 𝐸𝑇 𝑡 + 𝐿𝑓 𝑡 + 𝐿𝑠 𝑡 +

𝐼𝑇 𝑡 + 𝑅 𝑡 . And thus  
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸𝑇

𝑑𝑡
+

𝑑𝐿𝑓

𝑑𝑡
+

𝑑𝐿𝑠

𝑑𝑡
+

𝑑𝐼𝑇

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
.  

That is  
𝑑𝑁

𝑑𝑡
= Λ − 𝑑𝑁 − 𝑑𝑇𝐼𝑇 ≤ Λ − 𝑑𝑁. After some calculation we get 𝑁(𝑡) ≤

1

𝑑
(Λ − 𝑒

−1

𝑑
 𝑡+𝑐 

), for any 

constant 𝑐 = −𝑑 ln Λ − d𝑁0  at an initial point 𝑁 0 = 𝑁0.⟹   𝑁 𝑡 ≤
Λ

𝑑
 1 − 𝑒

−𝑡

𝑑  + 𝑁0𝑒
−𝑡

𝑑 . This shows that 

all solutions in Ω1remain in Ω1  for all time  𝑡 ≥ 0. 

Disease free equilibrium point 
The disease free equilibrium point is obtained by setting the right-hand sides of the dynamical system (1) – (6) 

equal to zero with assumption  𝐼𝑇 = 0 and we obtain  𝐸0 = (
Λ

𝑑
, 0,0,0,0,0).  

 

Basic Reproduction Number 𝑹𝟎 

The basic reproduction number 𝑅0 is defined as the effective number of secondary infections produced 

by a single infectious individual introduced in a wholly susceptible population during his or her entire infectious 

period 
[4]

. This definition is given for the models that represent spread of infection in a population. We calculate 

the basic reproduction number by using the next generation operator method on the dynamical system (1) – (6). 

In the dynamical system (1) – (6) the rate of appearance of new infections ℱ and the transfer rate of individuals 

𝒱 at the disease free steady state  𝐸0 = (
Λ

𝑑
, 0,0,0,0,0)  is 
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ℱ =

 

 
 

0 0 0
𝛽1Λ

𝑑𝑁
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0 0 0 0 0 

 
 

, 𝑉 =

 

 
 

𝜔 + 𝑑 0 0 0 0
−𝑝𝜔 𝜌 + 𝛼 + 𝑑 0 0 0

−(1 − 𝑝)𝜔 0 𝜀 + 𝜖 + 𝑑 0 0

0 −𝛼 −𝜖 𝜋 + 𝑑 + 𝑑𝑇 −𝜃
0 −𝜌 −𝜀 −𝜋 𝜃 + 𝑑 

 
 

        

and  𝑉−1 =

 

 
 
 
 

1

𝜔+𝑑
0 0 0 0

𝑝𝜔

 𝜔+𝑑 (𝜌+𝛼+𝑑)

1

𝜌+𝛼+𝑑
0 0 0

(1−𝑝)𝜔

 𝜔+𝑑 (𝜀+𝜖+𝑑)
0

1

𝜀+𝜖+𝑑
0 0

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5

𝑚6 𝑚7 𝑚8 𝑚9 𝑚10 

 
 
 
 

. Where  

𝑚1 =
𝑝𝜔 [𝛼 𝜔+𝑑 +𝜌𝜃 ]

 𝜔+𝑑  𝜌+𝛼+𝑑 [ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
+

(1−𝑝)𝜔 [𝜖 𝜃+𝑑 +𝜃𝜀 ]

 𝜔+𝑑  𝜀+𝜖+𝑑 [ 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋 ]
 𝑚2 =

𝛼 𝜃+𝑑 +𝜌𝜃

 𝜌+𝛼+𝑑 [ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
, 

𝑚3 =
𝜖 𝜃+𝑑 +𝜃𝜀

 𝜀+𝜖+𝑑 [ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
, 𝑚4 =

 𝜃+𝑑 

 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋
,  

𝑚5 =
𝜃

 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋
, 𝑚6 =

𝑝𝜔 [𝛼𝜋−𝜌(𝜋+𝑑+𝑑𝑇)]

 𝜔+𝑑  𝜌+𝛼+𝑑 [ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
+

(1−𝑝)𝜔[𝜖𝜋−𝜀(𝜋+𝑑+𝑑𝑇 )]

 𝜔+𝑑  𝜀+𝜖+𝑑 [ 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋 ]
 𝑚7 =

𝛼𝜋−𝜌(𝜋+𝑑+𝑑𝑇 )

 𝜌+𝛼+𝑑 [ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
, 𝑚8 =

𝜖𝜋−𝜀(𝜋+𝑑+𝑑𝑇)

 𝜀+𝜖+𝑑 [ 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋 ]
, 𝑚9 =

𝜋

 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋
 and 

𝑚10 =
𝜋+𝑑+𝑑𝑇

 𝜋+𝑑+𝑑𝑇  𝜃+𝑑 −𝜃𝜋
. The spectral radius or Eigen value of 𝐹𝑉− is the required basic reproduction number 

obtained by 

𝑅0 =
𝑝𝜔 𝛽1Λ 𝜀+𝜖+𝑑 [𝛼 𝜃+𝑑 +𝜌𝜃 ]+ 1−𝑝 𝜔𝛽1Λ 𝜌+𝛼+𝑑 [𝜖 𝜃+𝑑 +𝜃𝜀 ]

𝑑𝑁 𝜔+𝑑  𝜌+𝛼+𝑑 (𝜀+𝜖+𝑑)[ 𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋 ]
.  

Local Stability of the Disease Free Equilibrium 𝑬𝟎 

Theorem 

The disease free equilibrium point 𝐸0 = (
Λ

𝑑
, 0,0,0, 0, 0 ) of the dynamical system (1)-(6) is locally 

asymptotically stable if 𝑅0 < 1 whereas unstable if 𝑅0 > 1.  
Proof  

The Jacobean matrix of the dynamical system (1) - (6) at the DFE point𝐸0 = (
Λ

𝑑
, 0,0,0, 0, 0 )   is: 

𝐽 𝐸0 =

 

 
 
 
 
 

−𝑑 0 0 0 −
β1Λ

dN
0

0 −(𝜔 + 𝑑) 0 0
β1Λ

dN
0

0 𝑝𝜔 −(𝜌 + 𝛼 + 𝑑) 0 0 0

0 (1 − 𝑝)𝜔 0 −(𝜀 + 𝜖 + 𝑑) 0 0

0 0 𝛼 𝜖 −(𝜋 + 𝑑 + 𝑑𝑇) 𝜃

0 0 𝜌 𝜀 𝜋 −(𝜃 + 𝑑) 

 
 
 
 
 

     

The corresponding characteristic equation of the above Jacobian matrix is 

 

 

−𝑑 − 𝜆 0 0 0 −
β1Λ

dN
0

0 − 𝜔 + 𝑑 − 𝜆 0 0
β1Λ

dN
0

0 𝑝𝜔 − 𝜌 + 𝛼 + 𝑑 − 𝜆 0 0 0

0 (1 − 𝑝)𝜔 0 − 𝜀 + 𝜖 + 𝑑 − 𝜆 0 0

0 0 𝛼 𝜖 − 𝜋 + 𝑑 + 𝑑𝑇 − 𝜆 𝜃

0 0 𝜌 𝜀 𝜋 − 𝜃 + 𝑑 − 𝜆

 

 

= 0   

 

After some calculations and using Routh Hurwitz stability criteria we get all the root of the characteristics 

equation are negative if 𝑅0 < 1 and some of the eigenvalues are positive if 𝑅0 > 1. Therefore the disease free 

equilibrium point is stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.  

Global stability of the disease free equilibrium 𝑬𝟎 

Theorem 

The disease-free equilibrium 𝑬𝟎 = (
𝚲

𝒅
, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, ) is globally asymptotically stable if 

(𝑺−𝐒∗)𝚲

𝑺
+

𝒑𝝎𝜷𝟏𝑰𝑻𝑺

𝑵 𝝎+𝒅 
+

𝜶𝒑𝝎𝑬𝑻

 𝝆+𝜶+𝒅 
+

𝝐 𝟏−𝒑 𝝎𝑬𝑻

 𝜺+𝝐+𝒅 
+

𝝅 𝜶𝑳𝒇+𝝐𝑳𝒔+𝜽𝑹 

 𝝅+𝒅+𝒅𝑻 
+

𝜽 𝝆𝑳𝒇+𝜺𝑳𝒔+𝝅𝑰𝑻 

 𝜽+𝒅 
>

𝜷𝟏𝑰𝑻(𝑺−𝐒∗)

𝑵
+ 𝒅(𝑺 − 𝐒∗) + 𝒑𝝎𝑬𝑻 +

𝜶𝑳𝒇 + 𝝐𝑳𝒔 + 𝝅𝑰𝑻 + 𝜽𝑹   

Proof  

We define the Liapunov function 𝐿: 𝑅+
6 → 𝑅+ by: 
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𝐿 𝐒, 𝑬𝑻, 𝑳𝒇, 𝑳𝒔, 𝑰𝑻, 𝑹 = 𝒖𝟏  𝑺 − 𝐒 𝟎 − 𝐒 𝟎 𝐥𝐧
𝐒

𝐒 𝟎 
 + 𝒖𝟐

𝒑𝝎

 𝝎+𝒅 
𝑬𝑻 + 𝒖𝟑

𝜶

 𝝆+𝜶+𝒅 
𝑳𝒇 + 𝒖𝟒

𝝐

 𝜺+𝝐+𝒅 
𝑳𝒔 +

𝒖𝟓
𝝅

 𝝅+𝒅+𝒅𝑻 
𝑰𝑻 + 𝒖𝟔

𝜽

 𝜽+𝒅 
𝑹, and thus we get 𝐿 is continuous function for all  𝑆, 𝐸𝑇 , 𝐿𝑓 , 𝐿𝑠 , 𝐼𝑇 , 𝑅 ∈ ℜ+

6  and has 

1
st
 order partial derivatives and 𝐿 has minimum at  

(𝑆 0 , 𝐸𝑇 0 , 𝐿𝑓 0 , 𝐿𝑠 0 , 𝐼𝑇 0 , 𝑅(0)) = (
Λ

𝑑
, 0,0, 0, 0,0), which is 𝐿(

Λ

𝑑
, 0,0, 0, 0,0) = 0. Finally we calculate 

the time derivative of  𝐿 S, 𝐸𝑇 , 𝐿𝑓 , 𝐿𝑠 , 𝐼𝑇 , 𝑅  along the solution path yields  
𝒅𝑳 𝐒,𝑬𝑻,𝑳𝒇,𝑳𝒔,𝑰𝑻,𝑹 

𝒅𝒕
= 𝑳𝟏 − 𝐋𝟐 Where,  𝑳𝟏 =

(𝑺−𝐒∗)𝚲

𝑺
+

𝒑𝝎𝜷𝟏𝑰𝑻𝑺

𝑵 𝝎+𝒅 
+

𝜶𝒑𝝎𝑬𝑻

 𝝆+𝜶+𝒅 
+

𝝐 𝟏−𝒑 𝝎𝑬𝑻

 𝜺+𝝐+𝒅 
+

𝝅 𝜶𝑳𝒇+𝝐𝑳𝒔+𝜽𝑹 

 𝝅+𝒅+𝒅𝑻 
+

𝜽 𝝆𝑳𝒇+𝜺𝑳𝒔+𝝅𝑰𝑻 

 𝜽+𝒅 
> 0   

And 𝐋𝟐 =
𝜷𝟏𝑰𝑻(𝑺−𝐒∗)

𝑵
+ 𝒅(𝑺 − 𝐒∗) + 𝒑𝝎𝑬𝑻 + 𝜶𝑳𝒇 + 𝝐𝑳𝒔 + 𝝅𝑰𝑻 + 𝜽𝑹 > 0. Therefore we conclude that if 

𝑳𝟏 < 𝐋𝟐 then, 
𝒅𝑳 𝐒,𝑬𝑻,𝑳𝒇,𝑳𝒔,𝑰𝑻,𝑹 

𝒅𝒕
< 0, which implies the disease free equilibrium point is globally asymptotically 

stable.  

Endemic Equilibrium point 𝑬∗ 

Endemic equilibrium point is steady-state solutions where the disease persists in the population and is obtained 

by setting the right hand side of the dynamical system (1)-(6) equal to zero. Thus we get the endemic 

equilibrium point is  

𝐸∗ =

 
 
 

 
 Λ

𝑑𝑅0

,
Λ

 𝜔 + 𝑑 
 1 −

1

𝑅0

 ,
𝑝𝜔Λ

 𝜔 + 𝑑  𝜌 + 𝛼 + 𝑑 
 1 −

1

𝑅0

 ,
 1 − 𝑝 𝜔Λ

 𝜔 + 𝑑  𝜀 + 𝜖 + 𝑑 
 1 −

1

𝑅0

 ,

𝑑𝑁𝑅0

𝛽1

 1 −
1

𝑅0

 ,
Λ

 𝜔 + 𝑑 
 

𝑝𝜔Λ

 𝜔 + 𝑑  𝜌 + 𝛼 + 𝑑 
+

 1 − 𝑝 𝜔Λ

 𝜔 + 𝑑  𝜀 + 𝜖 + 𝑑 
+

𝜋𝑑𝑁

𝛽1Λ
𝑅0  1 −

1

𝑅0

 
 
 
 

 
 

 

        

Local stability of the endemic equilibrium  

Theorem  

If 𝑅0 > 1, and then the endemic equilibrium point 𝐸∗ of the dynamical system (1) – (6) is locally asymptotically 

stable 

Proof  

The Jacobian matrix of the dynamical system (1)-(6) at the endemic equilibrium point 𝐸∗ is  

𝐽 𝐸∗ =

 

 
 
 
 
 

−[𝑑𝑅0  1 −
1

𝑅0
 ] − 𝑑 0 0 0 −

β1Λ

𝑑𝑁𝑅0
0

𝑑𝑅0  1 −
1

𝑅0
 −(𝜔 + 𝑑) 0 0

β1Λ

dN 𝑅0
0

0 𝑝𝜔 −(𝜌 + 𝛼 + 𝑑) 0 0 0

0 (1 − 𝑝)𝜔 0 −(𝜀 + 𝜖 + 𝑑) 0 0

0 0 𝛼 𝜖 −(𝜋 + 𝑑 + 𝑑𝑇) 𝜃

0 0 𝜌 𝜀 𝜋 −(𝜃 + 𝑑) 

 
 
 
 
 

     

The corresponding characteristic equation of the above Jacobian matrix is 

 

 

 

−  𝑑𝑅0  1 −
1

𝑅0
  − 𝑑 − 𝜆 0 0 0 −

β1Λ

𝑑𝑁𝑅0
0

𝑑𝑅0  1 −
1

𝑅0
 − 𝜔 + 𝑑 − 𝜆 0 0

β1Λ

dN 𝑅0
0

0 𝑝𝜔 − 𝜌 + 𝛼 + 𝑑 − 𝜆 0 0 0

0 (1 − 𝑝)𝜔 0 − 𝜀 + 𝜖 + 𝑑 − 𝜆 0 0

0 0 𝛼 𝜖 − 𝜋 + 𝑑 + 𝑑𝑇 − 𝜆 𝜃

0 0 𝜌 𝜀 𝜋 − 𝜃 + 𝑑 − 𝜆

 

 

 

=

0   
After some calculations and using Routh Hurwitz stability criteria we get all the root of the characteristics 

equation are negative if 𝑅0 > 1. Therefore the disease endemic equilibrium point is stable if 𝑅0 > 1. 

Global stability of the endemic equilibrium point  

Theorem 

If 𝑆 = S∗, 𝐸𝑇 = 𝐸𝑇
∗, 𝐿𝑓 = 𝐿𝑓

∗, 𝐿𝑠 = 𝐿𝑠
∗, 𝐼𝑇 = 𝐼𝑇

∗ and 𝑅 = 𝑅∗ then the endemic equilibrium point of the 

dynamical system (1) – (6) is globally asymptotically stable if 

 
𝑺−𝐒∗

𝑺
 𝚲 +  

𝑬𝑻−𝑬𝑻
∗

𝑬𝑻
 

𝜷𝟏𝑰𝑻

𝑵
𝑺 +  

𝑳𝒇−𝑳𝒇
∗

𝑳𝒇
 𝒑𝝎𝑬𝑻 +  

𝑳𝒔−𝑳𝒔
∗

𝑳𝒔
  𝟏 − 𝒑 𝝎𝑬𝑻 +  

𝑰𝑻−𝑰𝑻
∗

𝑰𝑻
  𝜶𝑳𝒇 + 𝝐𝑳𝒔 + 𝜽𝑹 +

 
𝑹−𝑹∗

𝑹
  𝝆𝑳𝒇 + 𝜺𝑳𝒔 + 𝝅𝑰𝑻 <  
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𝑺−𝐒∗

𝑺
 

𝜷𝟏𝑰𝑻

𝑵
𝑺 +  

𝑺−𝐒∗

𝑺
 𝒅𝑺 +  

𝑬𝑻−𝑬𝑻
∗

𝑬𝑻
  𝝎 + 𝒅 𝑬𝑻 +  

𝑳𝒇−𝑳𝒇
∗

𝑳𝒇
  𝝆 + 𝜶 + 𝒅 𝑳𝒇 +  

𝑳𝒔−𝑳𝒔
∗

𝑳𝒔
  𝜺 + 𝝐 + 𝒅 𝑳𝒔 +

𝑰𝑻−𝑰𝑻∗𝑰𝑻𝝅+𝒅+𝒅𝑻𝑰𝑻+𝑹−𝑹∗𝑹𝜽+𝒅𝑹  

Proof 

We define the Liapunov function 𝐿: 𝑅+
6 → 𝑅+ by: 

𝐿 S, 𝐸𝑇 , 𝐿𝑓 , 𝐿𝑠 , 𝐼𝑇 , 𝑅 =

 
 
 

 
 𝑢1  𝑆 − S∗ − S∗ ln  

𝑆

S∗  + 𝑢2  𝐸𝑇 − 𝐸𝑇
∗ − 𝐸𝑇

∗ ln  
𝐸𝑇

𝐸𝑇
∗  +

𝑢3  𝐿𝑓 − 𝐿𝑓
∗ − 𝐿𝑓

∗ ln  
𝐿𝑓

𝐿𝑓
∗  + 𝑢4  𝐿𝑠 − 𝐿𝑠

∗ − 𝐿𝑠
∗ ln  

𝐿𝑠

𝐿𝑠
∗  +

𝑢5  𝐼𝑇 − 𝐼𝑇
∗ − 𝐼𝑇

∗ ln  
𝐼𝑇

𝐼𝑇
∗  + 𝑢6  𝑅 − 𝑅∗ − 𝑅∗ ln  

𝑅

𝑅∗   
 
 

 
 

  

 Thus we get 𝐿 is continuous function for all 𝐸∗ ∈ ℜ+
6  and has 1

st
 order partial derivatives and 𝐿 has minimum at 

𝐸∗, Finally we calculate the time derivative of  𝐿 S, 𝐸𝑇 , 𝐿𝑓 , 𝐿𝑠 , 𝐼𝑇 , 𝑅 along the solution path yields  

⟹
𝑑𝐿 S,𝐸𝑇 ,𝐿𝑓 ,𝐿𝑠 ,𝐼𝑇 ,𝑅 

𝑑𝑡
=

 
 
 

 
 𝑢1  

𝑑𝑆

𝑑𝑡
−

S∗

𝑆

𝑑𝑆

𝑑𝑡
 + 𝑢2  

𝑑𝐸𝑇

𝑑𝑡
−

𝐸𝑇
∗

𝐸𝑇

𝑑𝐸𝑇

𝑑𝑡
 +

𝑢3  
𝑑𝐿𝑓

𝑑𝑡
−

𝐿𝑓
∗

𝐿𝑓

𝑑𝐿𝑓

𝑑𝑡
 + 𝑢4  

𝑑𝐿𝑠

𝑑𝑡
−

𝐿𝑠
∗

𝐿𝑠

𝑑𝐿𝑠

𝑑𝑡
 +

𝑢5(
𝑑𝐼𝑇

𝑑𝑡
−

𝐼𝑇
∗

𝐼𝑇

𝑑𝐼𝑇

𝑑𝑡
) + 𝑢6(

𝑑𝑅

𝑑𝑡
−

𝑅∗

𝑅

𝑑𝑅

𝑑𝑡
)  

 
 

 
 

  

After some calculation we get  
𝑑𝐿 S,𝐸𝑇 ,𝐿𝑓 ,𝐿𝑠 ,𝐼𝑇 ,𝑅 

𝑑𝑡
= 𝐿1 − L2 where  

𝐿1 =  
 

𝑆−S∗

𝑆
 Λ +  

𝐸𝑇−𝐸𝑇
∗

𝐸𝑇
 

𝛽1𝐼𝑇

𝑁
𝑆 +  

𝐿𝑓−𝐿𝑓
∗

𝐿𝑓
 𝑝𝜔𝐸𝑇 +  

𝐿𝑠−𝐿𝑠
∗

𝐿𝑠
  1 − 𝑝 𝜔𝐸𝑇 +

 
𝐼𝑇−𝐼𝑇

∗

𝐼𝑇
  𝛼𝐿𝑓 + 𝜖𝐿𝑠 + 𝜃𝑅 +  

𝑅−𝑅∗

𝑅
  𝜌𝐿𝑓 + 𝜀𝐿𝑠 + 𝜋𝐼𝑇 

 > 0 ,  and also 

L2 =  
 

𝑆−S∗

𝑆
 

𝛽1𝐼𝑇

𝑁
𝑆 +  

𝑆−S∗

𝑆
 𝑑𝑆 +  

𝐸𝑇−𝐸𝑇
∗

𝐸𝑇
  𝜔 + 𝑑 𝐸𝑇 +  

𝐿𝑓−𝐿𝑓
∗

𝐿𝑓
  𝜌 + 𝛼 + 𝑑 𝐿𝑓 +

 
𝐿𝑠−𝐿𝑠

∗

𝐿𝑠
  𝜀 + 𝜖 + 𝑑 𝐿𝑠 +  

𝐼𝑇−𝐼𝑇
∗

𝐼𝑇
  𝜋 + 𝑑 + 𝑑𝑇 𝐼𝑇 +  

𝑅−𝑅∗

𝑅
  𝜃 + 𝑑 𝑅

 > 0  

Therefore we conclude that   if 𝐿1 < L2 then, 
𝑑𝐿 S,𝐸𝑇 ,𝐿𝑓 ,𝐿𝑠 ,𝐼𝑇 ,𝑅 

𝑑𝑡
< 0 which implies the endemic equilibrium point 

for the tuberculosis model is globally asymptotically stable.  

 

Numerical Simulations  
In this section we give numerical simulation for dynamical system (1) – (6) for the purpose of verifying 

some of the analytical results. This is done by using a set of parameter values whose sources are mainly from 

literature as well as estimation and calculated from assumed date in order to have more realistic simulation 

results. In this analysis we discuss the effect of each parameters change on the basic reproduction number 

graphically using win plot software. We assume that initial data of Tuberculosis in Ethiopia in 2010 

namely,  𝑁 = 107534882 , 𝑆 0 = 101634882, 𝐸𝑇 0 = 2500000 , 

𝐿𝑓 0 = 200000 , 𝐿𝑠 0 = 3000000 , 𝐼𝑇 0 = 150000𝑅 0 = 50000 , 𝑑 = 0.014286   and 

Λ = 𝑑𝑁 =  44897.96. 

The others parameter are in text on Table-1, which presents the parameter values and their respective sources.  

 

PARAMETER ESTIMATION FOR NUMERICAL SIMULATION AND SENSTIVITY ANALYSIS 

To perform numerical simulation and sensitivity analysis we collect the following parameter values obtained 

from different sources.  

 
Parameter  



Formual  Symbol Value Source 
 

recruitment rate  𝛬 44898 /year Calculated from 
Estimated date 

effective contact rate   𝛽1 varied Estimated 

Probability developed to fast latent   𝑝 0.45 Estimated 

progression rate from exposed  to latent 

infection 

1

Aver. 𝑖𝑛𝑐𝑢𝑏. 𝑝𝑒𝑟𝑖𝑜𝑑
 

 

𝜔 

 

0.166667/yr 

 

Calculated  

recovery rate from fast latent by post 

exposure vaccination  

  

𝜌 

 

40/yr 

 

Estimated 

progression rate from fast  latent to 

infected  

1

15 + 365
2

 
 

𝛼 

 

0.0052632 

 

Calculated  
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progression rate from slow  latent to 
infected 

1

5 ∗ 365 + 10 ∗ 365
2

 
 

𝜖 

 
0.000365297 

 
Calculated 

recovery rate from slow latent by post 
exposure vaccination 

  

𝜀 

 
25/yr 

 
Estimated  

recovery rate from infected class   𝜋 0.25 Estimated 

recurrence rate   𝜃 0.0833333 Estimated 

natural death rate  𝑑 0.014286/ yr Estimated 

induced death rate  𝑑𝑇  0.35 /year [23] 

Table-1:  Parameter estimation 

 

Estimation of basic reproduction number 𝑹𝟎 

𝑅0 =
𝑝𝜔 𝛽1 𝜀+𝜖+𝑑  𝛼 𝜃+𝑑 +𝜌𝜃  + 1−𝑝 𝜔𝛽1 𝜌+𝛼+𝑑  𝜖 𝜃+𝑑 +𝜃𝜀  

 𝜔+𝑑  𝜌+𝛼+𝑑  𝜀+𝜖+𝑑   𝜋+𝑑+𝑑𝑇   𝜃+𝑑 −𝜃𝜋  
  

𝑅0 = 1.6684 > 1 

From this value of basic reproduction number we find that the disease spreads in the community as  𝑅0 =
1.6684 > 1 

Numerical simulation 

The numerical analysis is obtained from the graphs of basic reproduction number with respect to the parameters 

obtained and given in Table-1. 

Case-1:  

Graphical representation of the basic reproduction number 𝑅0 versus effective contact rate  𝛽1  and keeping 

other parameters constant 

Case-2:  

Graphical representation of the basic reproduction number 𝑅0 versus progression rate from exposed to latent 

infection 𝜔 and keeping other parameters constant  

For these two cases (1 and 2) the graphical representation of the basic reproduction number in  (𝑅0, 𝛽1) and 

(𝑅0, 𝜔)-plans shown below in figure-2 and figure-3 respectively.  

 

 
Figure-2                                                                                 Figure-3 

 

In figure-2: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝛽1 < 0.51008 and 𝑅0 >
1 when 𝛽1 > 0.51008. 

In figure-3: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝜔 < 0.1666632 and 𝑅0 > 1 

when 𝜔 > 0.1666632 with the bifurcation parameter value 𝛽1 = 0.510082 . 
Case-3: 

 Graphical representation of the basic reproduction number 𝑅0 versus recovery rate from fast latent by post 

exposure vaccination 𝜌 and keeping other parameters constant 

Case-4:  

Graphical representation of the basic reproduction number 𝑅0 versus progression rate from fast latent to infected  

𝛼 and keeping other parameters constant 

For these two cases (3 and 4) the graphical representation of the basic reproduction number in  (𝑅0, 𝜌) and 

(𝑅0, 𝛼)-plans shown below in figure-4 and figure-5 respectively.  



Post exposure vaccination for the dynamics of Tuberculosis with fast and slow latent period: A .. 

DOI: 10.9790/5728-1504026170                                   www.iosrjournals.org                                           68 | Page 

 
Figure-4                                                       Figure-5 

 

In figure-4: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝜌 < 0.98339 and 𝑅0 >
1  when 𝜌 > 0.98339. 

In figure-5: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝛼 < 1.77032 and 𝑅0 > 1 when 

𝛼 < 1.77032  

Case-5:  

Graphical representation of the basic reproduction number 𝑅0 versus progression rate from slow latent to 

infected 𝜖 and keeping other parameters constant 

Case-6:  

Graphical representation of the basic reproduction number 𝑅0 versus recovery rate from slow latent by post 

exposure vaccination 𝜀 and keeping other parameters constant  

For these two cases (5 and 6) the graphical representation of the basic reproduction number in  (𝑅0, 𝜖) and 

(𝑅0, 𝜀)-plans shown below in figure-6 and figure-7 respectively.  

 

 
Figure-6                                                                      Figure-7 

 

In figure-6: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝜖 > 0.00033 and 𝑅0 > 1 when 

𝜖 < 0.00033.  

In figure- 7: shows that the basic reproduction number 𝑅0 < 1 when 𝜀 > 3.27134 and 𝑅0 > 1 when 𝜀 <
3.27134 .  
Case-7:  

Graphical representation of the basic reproduction number 𝑅0 versus recovery rate from infected class 𝜋  and 

keeping other parameters constant 

Case-8: Graphical representation of the basic reproduction number 𝑅0 versus recurrence rate 𝜃  and keeping 

other parameters constant 

For these two cases (7 and 8) the graphical representation of the basic reproduction number in  (𝑅0, 𝜋) and 

(𝑅0, 𝜃)-plans shown below in figure-8 and figure-9 respectively.  
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Figure-8                                                             Figure-9 

 

In figure-8: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝜋 > 0.25039 and 𝑅0 > 1when 

𝜋 < 0.25039  
In figure-9: The graph shows that the basic reproduction number  𝑅0 < 1 when 𝜃 < 2.75370 and 𝑅0 > 1 when 

𝜃 > 2.75370  

 

Sensitivity Analysis 
To determine how best we can do in order to reduce human mortality and morbidity due to TB, it is 

necessary to know the relative importance of different factors responsible for its transmission and prevalence. 

Sensitivity indices allow us to measure the relative change in a state variable when a parameter changes. The 

normalized forward sensitivity index of a variable, 𝑢 , that depends differentially on a parameter,  𝑝 is calculated 

by 𝜓𝑝
𝑢 =

𝑝

𝑢
𝑥

𝜕𝑢

𝜕𝑝
. After some simplifications and numerical calculation we get values of sensitivity index for the 

important parameters mentioned by the table below:  
Parameters  Values of sensitivity index 

𝛽1 +1 

𝜔 +0.078949381 

𝜌 +0.000149635 

𝛼 +0.0000101530467 

𝜖 +0.000092649909 

𝜀 -0.549619131  

𝜋 -0.091265923 

𝜃 +0.9998864 

𝑑𝑇 -0.873095459 

Table-2: sensitivity indices 

 

II. Results and Discussions 
We discussed on the system of nonlinear ordinary differential equation to study the dynamics of 

Tuberculosis. Under this we take an appropriate mathematical model on the epidemic of tuberculosis and we 

found that an important aspect of mathematical epidemiology which is known as basic reproduction number 𝑅0 

is determining how to spread and control Tuberculosis. From figure 2, 3, 4, 5 and 9 the effective contact rate 𝛽1, 

the progression rate from exposed to latent infection 𝜔, the recovery rate from fast latent by post exposure 

vaccination  𝜌 , and the progression rate from fast latent to infected 𝛼 and the recurrence rate 𝜃 have a positive 

effect on the basic reproduction number 𝑅0. Figure 2 shows that the rate of conversion from susceptible class to 

exposed class is increase by due to the contact of infected class with the susceptible class, and the number of 

infected individuals is increase. So we control the effective contact rate  𝛽1 < 0.51008 to control 𝑅0 < 1. Figure 

3 shows that if the progression rate from exposed to latent infection 𝜔  increase, then the basic reproduction 

number 𝑅0 increase. So we control the progression rate from exposed to latent infection 𝜔  < 0.06614 to 

control 𝑅0 < 1. Figure 4 shows that the recovery rate from fast latent by post exposure vaccination 𝜌 has a 

quadratic indirect effect on the basic reproduction number  𝑅0 that means if recovery rate from fast latent by 

post exposure vaccination is increase the number of recovered individuals having lower immunity are increase. 

This implies that recurrence rate of infected individuals are increase. That is reproduction number  𝑅0  increases. 

So we control the recovery rate from fast latent by post exposure vaccination 𝜌 < 0.98339 to control 𝑅0 < 1. 

Figure 5 shows that if the progression rate from fast latent to infected 𝛼 increase, then the basic reproduction 

number 𝑅0 increases. So we control the progression rate from fast latent to infect 𝛼 < 1.77032 to control 𝑅0 <
1. Figure 9 show that if the recurrence rate 𝜃  increases then the basic reproduction number 𝑅0 increase. So we 

control the recurrence rate 𝜃 < 2.75370 to control 𝑅0 < 1. 
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From figure 6, 7 and 8 the progression rate from slow latent to infected 𝜖  , recovery rate from slow 

latent by post exposure vaccination 𝜀 and the recovery rate from infected class 𝜋 have a negative effect on the 

basic reproduction number 𝑅0.  Figure 6 shows if the progression rate from slow latent to infected 𝜖  increase 

implies that number of infected population with non-symptom decreases. Then due to getting active tuberculosis 

they must get treatment and decrease number of infected populations, and then the basic reproduction 

number 𝑅0 decreases. So we control the progression rate from slow latent to infect 𝜖 > 0.00033 to control 𝑅0 <
1. Figure 7 show if the recovery rate from slow latent by post exposure vaccination 𝜀 increase implies that the 

number of recovered individuals having high immunity is increase. So we control the recovery rate from slow 

latent by post exposure vaccination 

 𝜀  > 3.27134 to control 𝑅0 < 1. Figure 8 shows if the recovery rate from infected class 𝜋 increase 

implies that number of infected population with active Tuberculosis decreases, then the basic reproduction 

number 𝑅0 decreases. So we control the recovery rate from infected class 𝜋 > 0.25039 to control 𝑅0 < 1.  

 

III. Conclusions and Recommendations 
           The purpose of this study was to develop a mathematical model for Tuberculosis with post exposure 

vaccination at fast and slow latent stage. Based on the data we have obtained unstable disease free equilibrium 

point, stable endemic equilibrium point and the basic reproduction number 

 𝑅0 = 1.6684 > 1  shows that the disease spreads in the community. To control the disease we make the control 

parameter 𝛽1 < 0.510082. Also to control the disease giving post exposure vaccination for all slow latent 

infected individuals and giving post -exposure vaccination for fast latent infected individuals are not important 

to control the disease. So the coming researcher will consider effect of pre-exposure vaccination for fast latent 

infected individuals, age structure and sex. 
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