
IOSR Journal of Mathematics (IOSR-JM)     

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 4 Ser. II (Jul – Aug 2019), PP 83-94 

www.iosrjournals.org 

 

DOI: 10.9790/5728-1504028394                                   www.iosrjournals.org                                           83 | Page 

Sensitivity and Numerical analysis on the spread and control of 

Pneumonia in the case of DebreBerhan town, Ethiopia   
 

a
TemesgenTibebuMekonnen, 

 b  
DawitMeleseGebru, 

c  
MuluneshAyalewKebede,   

a
Department of Mathematics, DebreBerhan University, DebreBerhan, Ethiopia  

b
Department of Mathematics,Woldia University,Woldia, Ethiopia 

c
Department of Mathematics,Injibara University,Injibara, Ethiopia 

 

Abstract: In this work, we have considered a nonlinear dynamical system. We divide the total population of 

Debre Berhan town into four compartments:Susceptible class𝑆, Exposed class 𝐸 , Infected class𝐼 andRecovered 

class 𝑅. We found two equilibrium points, the disease free equilibrium point and the endemic equilibrium point. 

We also found the basic reproduction number of the dynamical system is𝑅0 =
𝛽 𝛼+𝑝𝜇  

 𝜇+𝛼  𝜇+𝑑+𝛾 
 which depends on 

six parameters. The numerical value of the reproduction number based on real data collected from Debre 

Berhan town is𝑅0 = 1.051448663 > 1. This shows that Pneumonia disease spread in the community of Debre 

Berhan town. We also proved that the disease free equilibrium point is unstable and the endemic equilibrium 

point is stable. We also found the numerical simulation based on the real data collected from Debre Berhan 

town which supports the analytical findings. We used sensitive analysis to identify the most influential 

parameter to control the disease. The most influential control parameter that can help us to control the spread 

of the Pneumonia disease is the transmission coefficient𝛽.  
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I. Introduction 
Infectious diseases can have a devastating impact on human life and welfare. One of the major 

contributors to morbidity and mortality is the bacterium Streptococcus Pneumonia (pneumococci). It is the main 

cause of respiratory tract infections such as otitis media and sinusitis, but it is also responsible for millions of 

deaths each year due to Pneumonia 
[8]

. Infectious disease is caused by various microbes or pathogen. Most of 

them are usually Microorganisms. Few of them are visible by naked eyes. The most common pathogens are 

different types of viruses, bacteria, Fungi and Protozoa are known as pathogens and are responsible for various 

diseases. Diseases caused by these pathogens are termed as „infectious‟ as these pathogens can be easily 

transmitted from one infected person to another non-infected person. Throughout history, infectious diseases 

have had a large impact on the human population. Although infectious diseases are present in human 

populations at all times to some degree, the effects of epidemics are the most noticeable and spectacular. There 

are two ways of infectious disease transmission namely direct or indirect transmissions 
[15]

.  

Direct transmission is the transfer of an infectious agent from the infected individual directly to the host 

by touching or biting or sexual intercourse or indirect transmission is the transfer of an infectious agent by 

contaminated inanimate objects by aerosolized agents suspended in air for a long period of time or environment 

contamination or water or food contamination 
[9]

.  

Pneumonia is a severe form of acute lower respiratory tract infection that affects the lung 
[13, 16]

.  It is 

also a type of lung infection, caused by a virus or bacteria. The lungs are filled with thousands of tubes, called 

bronchi, which end in smaller sacs called alveoli. Each one has a fine mesh of capillaries. This is where oxygen 

is added to the blood and carbon dioxide removed. When a person has Pneumonia, the alveoli in one or both 

lungs fill with pus and fluids, which hinders the gas exchange. This is sometimes known as „consolidation and 

collapse of the lung‟
[16]

.  

Pneumonia is usually caused due to an infection with a bacteria, virus, fungi or parasite. In adults it is 

mostly caused by bacteria whereas in children and infants it is commonly due to viruses. Physical or chemical 

injury to the lungs can also result in the condition. Individuals who smoke, who are hospitalized and have long-

term illness such as asthma, heart disease, cancer, HIV/AIDS, lung diseases or diabetes are at a higher risk of 

developing Pneumonia. Hospital-acquired Pneumonia is also common 
[3]

.  

Pneumonia can be transmitted when airborne microbes from an infected individual are inhaled by an 

individual 
[12]

. However, most instances of Pneumonia are attributable to self-infection with one or more types 

of microbes that originate in the nose and mouth. In healthy people, typical upper airway bacterial residents such 
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as Streptococcus pneumonia commonly referred to as “pneumococcal” and Homophiles‟ influenza are the most 

common bacteria causing community acquired pneumonia. Hospital-acquired pneumonia is usually caused by 

more resistant bacteria, such as Staphylococcus aureus, Klebsiella pneumonia,Pseudomonas aeruginosa, and 

escherichia coli. Individuals with a serious impairment of their immune system become susceptible to 

pneumonia caused by the so-called “opportunistic” microbes, such as certain fungi, viruses, and bacteria related 

to tuberculosis (mycobacterium), that would not ordinarily cause disease in normal individuals 
[2]

. 

The individuals that are at high risk of infection are children (under the age of 5years), the elderly 

(above 65years of age), and individuals with long-term health problem such as heart disease, sickle cell disease 

alcoholism, lung disease (not including asthma), diabetes, or liver cirrhosis 
[17]

. Socio-demographic factors such 

as the age, sex, parental income, and level of parental education had earlier been identified as risk factors of 

Pneumonia-related morbidity and mortality. Also, domestic crowding, maternal age, exposure to indoor air 

pollutants especially firewood burning, and parental smoking had each been recognized as important 

domestic/household risk factors. Other factors identified include attendance at day care facilities, breastfeeding 

practices, malnutrition, co-morbidities like diarrhea, HIV/AIDS, micronutrient deficiency (especially vitamin A 

and zinc), and inter-current infections such as measles and pertussis 
[1]

. 

Epidemiology is a study of infectious diseases, the causes of their occurrence and their spread in space 

and time. Mathematical epidemiology is about obtaining and understanding of biological phenomena, 

translating assumptions regarding biological features to mathematical language, finding solutions 

mathematically then, translating the results back to biology.  

The main use of mathematics in epidemiology is to gain insight on epidemics, too see how the 

dynamics of an infectious disease depends on the basic parameters that characterize it. Reality, however, is 

complex and even the most involves of the models are only sketches of it. To be able to describe the situation 

mathematically and to extrapolate on the basis simplifications but the model we must understand how the 

dynamics depends on the basic components of the model and how sensitive these parameters 
[4]

. An epidemic 

model is a simplified means of describing the transmission of infectious diseases through individuals. The 

modeling of infectious of infectious diseases is a tool which has been used to study the mechanisms by which 

disease spread, to predict the future course of an outbreak and to evaluate strategies to control epidemics 
[11]

.  

Epidemic modeling has three main aims. The first is to understand the spreading mechanism of the 

disease. For this, the essential part is a mathematical structure equations give us threshold values and other 

constants which we use to describe the behavior of the disease. The second aim is to predict the future course of 

the epidemic and the third is to understand how we may control the spread of the epidemic education, 

immunization, isolation 
[9]

. In order to make a reliable model and predictions, to develop methods of control, we 

must be sure that our model describes the epidemic closely; it contains all its specific features. So it is important 

to validate models by checking whether they fit the observed data or not 
[9]

. Mathematical models and computer 

simulations have become useful in analyzing the spread and control of infectious disease. They together build 

and test theories that involve with complex biological systems related disease, getting qualitative conjectures 

and determine parameter sensitive due to change and estimating parameters from data 
[4]

. 

We used Deterministic model, also known as compartmental models it can attempt to describe and 

explain what happens on the average at the population scale. They fit well large populations. These models 

categorize individuals into different subgroups or compartments. This study was covers the dynamics of 

spreading and controlling of Pneumonia in all Kebeles of Debre Berhan Town, North  Showa Amhara Region, 

Ethiopia, based on the application of mathematical models integrated with the concept of biology and 

epidemiology. In this thesis we construct a mathematical model to understand the spreading and controlling of 

Pneumonia and we model the disease through ordinary differential equations (ODEs). This model is used to 

determine which factors are most responsible for the spread of Pneumonia. The model divides the human 

population into four classes: susceptible class, exposed class, infected class and recovered class. 

 

II. The Mathematical Model 
In this study we consider the deterministic SEIR (Susceptible, Exposed, Infected and Recovered) 

model where the population partitioned in to components or classes based on the epidemiological state of 

individuals and it assume that the population size in a compartment is differentiable with respect to time and the 

epidemic process is deterministic. Therefore, the Pneumonia transmission dynamics between the compartments 

will be described by a system of ordinary differential equation. The work done by 
[10]

 is the initial model, where 

the population is divided into compartments containing susceptible, exposed, infectious and recovered 

individuals. Compartments with labels 𝑆, 𝐸, 𝐼 , 𝑅are used for epidemiological classes. The class𝑆 is the class of 

susceptible individuals; that is, those who can become infected. When there is an adequate contact of a 

susceptible with an infective so that transmission occurs, the susceptible enters the exposed class𝐸 of those in 

the latent period, who are infected but not yet infectious. At the end of the latent period, the individual enters the 
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class 𝐼 of infective, who are capable of transmitting the infection (that is, infectious). At the end of the infectious 

period, the individual enters the recovered class 𝑅. 

We extend the work 
[10]

 by considering the following assumptions.  All new-born are susceptible i.e., 

no vertical transmission to the infection and are recruited at rate 𝜇𝑁.  Natural death rate and birth rate are equal 

that is 𝜇. The death occurred due to natural case in each class. Total number of population is the sum of all 

compartments. The exposed become infected at rate  𝛼  and the infectious individuals from the infection at 

rate 𝛾 . The transmission coefficient 𝛽, the latency coefficient 𝛼, the recovery coefficient 𝛾 and the capital 

death rate 𝜇are positive quantities i.e. all parameters are non-negative. Age structure is not considered. The 

infected compartment 𝐼 𝑡  decrease by the disease induced death rate 𝑑. The impact of immunodeficiency as a 

factor of fast progression to pneumonia is taken to account. That is the proportion of fast progression rate  𝑝  of 

the new infection directly move in to the infectious class as a result of co-infection of Pneumonia with other 

related disease like heart disease, diarrhea, HIV/AIDS and some substance abuse alcohol and tobacco, and the 

remaining proportion  1 − 𝑝 of new infection move to the latently infected but not infectious class due to slow 

progression rate to Pneumonia in the case when individuals highly immunized. Here, 0 < 𝑝 < 1. 

Based on the above assumptions we construct the following flow chart of the dynamical system 

 

 
Figure1:- The flow chart of the model 

 

The corresponding dynamical system is  
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 −

𝛽𝑆𝐼

𝑁
,                                                                                  1  

𝑑𝐸

𝑑𝑡
=  1 − 𝑝 

𝛽𝑆𝐼

𝑁
−  𝜇 + 𝛼 𝐸      2  

𝑑𝐼

𝑑𝑡
 = 𝛼𝐸 +

𝑝𝛽𝑆𝐼

𝑁
−  𝜇 + 𝑑 + 𝛾 𝐼,                                                                  3  

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅        4  

 

 

Theorem-1:(positivity of the solution) 

Suppose 𝑆 0 ≥ 0, 𝐸 0 ≥ 0, 𝐼 0 ≥ 0 𝑎𝑛𝑑  𝑅 0 ≥ 0 , then the solution region {𝑆 𝑡 , 𝐸, 𝑣 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 }of the 

system of equations (1) to (4) is always non negative for 𝑡 >  0 

Proof:-Let us assume that all parameters are positive.By considering the four ordinary differential equations and 

after taking some steps on finding their solution we do have: 

i. 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 −

𝛽𝑆𝐼

𝑁
 whose solution is  

S 𝑡 = 𝑆 0 𝑒− 𝜇𝑡 +𝛽𝐾 𝑡  +𝐾 0 + 𝜇𝑒− 𝜇𝑡 +𝛽𝐾 𝑡  +𝐾 0   𝑁 𝑠 𝑒 𝜇𝑠+𝛽𝐾 𝑠  −𝐾 0  𝑑𝑠 >
𝑡

0
0, since 𝑆 0 > 0 

ii. 
𝑑𝐸

𝑑𝑡
=  1 − 𝑝 

𝛽𝑆𝐼

𝑁
−  𝜇 + 𝛼 𝐸 whose solution is  

𝐸 𝑡 = 𝐸 0 𝑒− 𝜇+𝛼 𝑡 + 𝑒− 𝜇+𝛼 𝑡   1 − 𝑝 
𝛽𝑆𝐼

𝑁
𝑒 𝜇+𝛼 𝑆𝑑𝑆 > 0

𝑡

0
since𝐸 0 > 0. 

 

iii. 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 +

𝑝𝛽𝑆𝐼

𝑁
−  𝜇 + 𝑑 + 𝛼 𝐼 whose solution is 

𝐼 𝑡 =  

𝐼 0 𝑒−  𝜇+𝑑+𝛼 𝑡−𝑝𝛽𝜑  𝑡 +𝑝𝛽𝜑  0  +

𝑒−  𝜇+𝑑+𝛼 𝑡−𝑝𝛽𝜑  𝑡 +𝑝𝛽𝜑  0    𝛼𝐸 𝑠 𝑒  𝜇 +𝑑+𝛼 𝑠−𝑝𝛽𝜑  𝑠 +𝑝𝛽𝜑  0   𝑑𝑠
𝑡

0

 > 0 

𝐼 𝑡  =  𝐼 0 𝑒−  𝜇+𝑑+𝛼 𝑡−𝑝𝛽𝜑  𝑡 +𝑝𝛽𝜑  0  since𝐼 0 > 0 

iv. 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 𝑡 − 𝜇𝑅 𝑡  whose solution is R 𝑡 =  𝑅 0 𝑒𝜇𝑡 + 𝑒𝜇𝑡   𝛾𝐼 𝑠 𝑒𝜇𝑠  𝑑𝑠

𝑡

0
> 0 

Since𝑅 0 > 0 
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Theorem-2:(Boundedness of the solution) 

The solution of the dynamical system (1) - (4) in the feasible region  

𝐷 =   𝑆 𝑡 , 𝐸 𝑡 , 𝐼 𝑡 , 𝑅 𝑡  ∈ 𝑅+
4  ,0 < 𝑁 𝑡 ≤ 𝐶2,  𝑆0 > 0, 𝐸0 ≥ 0,  𝐼0 ≥ 0, 𝑅0 ≥ 0  

It is bounded.  

Proof  

Let us consider 𝑑𝐼 ≤ 𝑑𝑁 and summing up all the four equations, we do have 𝑁 𝑡 = 𝑆 𝑡 + 𝐸 𝑡 + 𝐼 𝑡 + 𝑅 𝑡  

so that 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
.  Which implies that  

𝑑𝑁

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 −

𝛽𝑆𝐼

𝑁
+  1 − 𝑝 

𝛽𝑆𝐼

𝑁
−  𝜇 + 𝛼 𝐸 + 𝛼𝐸 +

𝑝𝛽𝑆𝐼

𝑁
−  𝜇 + 𝑑 + 𝛾 𝐼 + 𝛾𝐼 − 𝜇𝑅. After some simplification we get 

𝑑𝑁

𝑑𝑡
= −𝑑𝐼. That is 

𝑑𝑁

𝑑𝑡
≤ 0. To find the upper 

bound we consider two cases. The first is  
𝑑𝑁

𝑑𝑡
= 0 and integrating both sides gives 𝑁 𝑡 − 𝑁 0 = 𝐶1 or 

𝑁 𝑡 =  𝑁 0 + 𝐶1 = 𝐶2 (constant). The second case is  
𝑑𝑁

𝑑𝑡
< 0 and integrating both sides gives 𝑁 𝑡 −

𝑁 0 < 𝐶1 or 𝑁 𝑡 <  𝑁 0 + 𝐶1 = 𝐶2. From the two cases we do have 𝑁 𝑡 ≤  𝐶2. There fore lim𝑡→∞ 𝑁 𝑡 ≤
lim𝑡→∞ 𝐶2 = 𝐶2 which is the upper bound. Hence we have0 < 𝑁 𝑡 ≤ 𝐶2. This shows all solutions 

 𝑆 𝑡 , 𝐸 𝑡 , 𝐼 𝑡 , 𝑅 𝑡   of the dynamical system (1)- (4) is bounded in the interval (0, 𝐶2] where 𝐶2 is positive 

constant. 

 

III. Scaling the nonlinear dynamical system 
Let us consider 𝑁 𝑡  is the total maximum population size and assuming that 𝑁 𝑡  is constant.Therefore, we set 

the proportion by introducing the new variables 𝑠 𝑡 =
𝑆 𝑡 

𝑁 𝑡 
, 𝑒 𝑡 =

𝐸 𝑡 

𝑁 𝑡 
, 𝑖 𝑡 =

𝐸 𝑡 

𝑁 𝑡 
, 𝑟 𝑡 =

𝑅 𝑡 

𝑁 𝑡 
 in the 

dynamical system  1 −  4  we get a new dynamical system which is topologically equivalent to the original 

system 
𝑑𝑠

𝑑𝑡
= 𝜇 − 𝜇𝑠 − 𝛽𝑠𝑖         (5)  

𝑑𝑒

𝑑𝑡
 =  1 − 𝑝 𝛽𝑠𝑖 −  𝜇 + 𝛼 𝑒       (6) 

𝑑𝑖

𝑑𝑡
= 𝛼𝑒 + 𝑝𝛽𝑠𝑖 −  𝜇 + 𝑑 + 𝛾 𝑖       (7)  

𝑑𝑟

𝑑𝑡
= 𝛾𝑖 − 𝜇𝑟          (8) 

With initial condition𝑆 0 > 0, 𝐸 0 ≥ 0,  𝐼 0 ≥ 0, 𝑅 0 ≥ 0. 

IV.  
V. Existence of Equilibrium points of the dynamical system 

4.1 Disease Free Equilibrium point 

The disease free equilibrium point is obtained by assuming that 𝑖 = 0 and by setting the right hand side of the 

system  5 −  8  equal to zero we obtained  𝐸0 𝑠
0 , 𝑒0, 𝑖0, 𝑟0 =  1, 0, 0, 0 .  

4.2 Endemic equilibrium point  

The endemic equilibrium point is obtained by assuming that 𝑖 ≠ 0 and by setting the right hand side of the 

system  5 −  8  equal to zero we obtained  𝐸∗ 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗  where 

𝑠∗ =
 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 

𝛽 𝛼 + 𝑝𝜇 
 

𝑒∗ =  
 1 − 𝑝 𝜇 𝜇 + 𝑑 + 𝛾 

𝛽 𝛼 + 𝑝𝜇 
 

𝛽 𝛼 + 𝑝𝜇 

 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 
−  1  

𝑖∗ =
𝜇

𝛽
 

𝛽 𝛼 + 𝑝𝜇 

 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 
−  1  

𝑟∗ =  
𝛾

𝛽
 

𝛽 𝛼 + 𝑝𝜇 

 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 
−  1  

 

 

4.3 Basic reproduction number 𝑹𝟎 

The basic reproduction number denoted by 𝑅0 is defined as the average number of secondary cases 

produced by a typical infected individual during his or her entire life as infectious or infectious period when 

introduced or allowed to live in a population of susceptible which can be calculated using the next-generation 

method as follows:  In the dynamical system (1)-(4) the rate of appearance of new infections ℱ and the transfer 

rate of individuals 𝒱 at the disease free steady state  
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𝐹 =  
0  1 − 𝑝 𝛽
0 𝑝𝛽

  , 𝑉 =  
 𝜇 + 𝛼 0

−𝛼  𝜇 + 𝑑 + 𝛾 
   and   𝑉−1 =  

1

 𝜇+𝛼 
0

𝛼

 𝜇+𝛼  𝜇+𝑑+𝛾 

1

 𝜇+𝑑+𝛾 

 .So that  𝐹𝑉−1 =

 

𝛼𝛽  1−𝑝 

 𝜇+𝛼  𝜇+𝑑+𝛾 

 1−𝑝 𝛽

 𝜇+𝑑+𝛾 

𝛼𝛽𝑝

 𝜇+𝛼  𝜇+𝑑+𝛾 

𝑝𝛽

 𝜇+𝑑+𝛾 

 .  

Hence the spectral radius of the matrix 𝐹𝑉−1is given by 𝑚𝑎𝑥 𝜆1 ,  𝜆2 =  𝜆2. Therefore, using the next 

generation method the spectral radius of the matrix  𝐹𝑉−1 is 𝜆2 =
𝛽 𝛼+𝑝𝜇  

 𝜇+𝛼  𝜇+𝑑+𝛾 
since 𝜆1 = 0 .  Therefore we 

found𝑅0 =
𝛽 𝛼+𝑝𝜇  

 𝜇+𝛼  𝜇+𝑑+𝛾 
.  

 

4.4. Stability analysis of the equilibrium points 

Theorem-3: 

The disease free equilibrium point 𝐸0 of the system of ordinary differential equation  1 −  4  is stable if  

𝑅0 < 1 and unstable if  𝑅0 > 1.  

 

Proof  

The Jacobian matrix of the dynamical system  1 −  4  at any equilibrium point  𝑠, 𝑒, 𝑖, 𝑟   is  

𝐽 𝑠, 𝑒, 𝑖, 𝑟 =  

−𝜇 − 𝛽𝑖 0 −𝛽𝑠 0
 1 − 𝑝 𝛽𝑖 − 𝜇 + 𝛼  1 − 𝑝 𝛽𝑠 0

𝑝𝛽𝑖 𝛼 𝑝𝛽𝑠 −  𝜇 + 𝑑 + 𝛾 0
0 0 𝛾 𝜇

  

And then the Jacobian matrix of the dynamical system  1 −  4  at Disease free equilibrium point 

𝐸0 𝑠
0 , 𝑒0, 𝑖0, 𝑟0 =  1, 0, 0, 0  is  

𝐽 1,0,0,0 =  

−µ 0 −𝛽 0
0 −(µ + 𝛼) (1 − 𝑝)𝛽 0

0 𝛼 𝑝𝛽 − (µ + 𝑑 + 𝛾) 0
0 0 𝛾 −µ

 . The corresponding characteristic equation is  

 

−µ − 𝜆 0 −𝛽 0
0 −(µ + 𝛼) − 𝜆 (1 − 𝑝)𝛽 0

0 𝛼  𝑝𝛽 − (µ + 𝑑 + 𝛾) − 𝜆 0
0 0 𝛾 −µ − 𝜆

 = 0.  

Or  −µ − 𝜆  −µ − 𝜆   −𝑥 − 𝜆  𝑧 − 𝜆 − 𝑦𝛼 = 0 whose eigenvalues are λ1 = −𝜇 and λ2 = −𝜇 and values 

of eigen values found by stability criterion of the equation   −𝑥 − 𝜆  𝑧 − 𝜆 − 𝑦𝛼 = 0 . This can be rewritten 

as𝑎2 𝜆
2 + 𝑎1𝜆

1 + 𝑎0𝜆
0  = 0 , where 𝑎2 = 1, 𝑎1 =   µ + 𝛼 +  µ + 𝑑 + 𝛾  − 𝑝𝛽 and  𝑎0 =  µ + 𝛼  µ + 𝑑 +

𝛾−𝛽𝛼+𝑝𝜇. 

Hence we found that If 𝑎1 >0 which implies 
 µ+𝑑+𝛾 + ( µ+𝛼)  

𝑝𝛽
> 1 and 𝑏1 > 0 means

 µ+𝑑+𝛾  µ+𝛼 

𝛽(𝛼+𝑝𝜇 )
=

1

𝑅0
> 1, then 

the first column of the Routh array has no sign change this means all Eigenvalues have negative real part, in this 

case the disease free equilibrium point (1, 0, 0, 0) is stable. If either 𝑎1 <0 implies 
 µ+𝑑+𝛾 +  µ+𝛼 

𝑝𝛽
<  1 or𝑏1  < 0 

means
 µ+𝑑+𝛾  µ+𝛼 

𝛽 𝛼+𝑝𝜇  
=

1

𝑅0
< 1, then the first column of the Routh array have sign change this means all 

Eigenvalues do not have negative real part, in this case the disease free equilibrium point (1, 0, 0, 0) is unstable. 

 

4.5Stability analysis of the endemic equilibrium point 

Theorem-4: 

The endemic equilibrium point 𝐸∗ 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗  of the system of ordinary differential equation  1 −  4  is 

stable if𝑅0 > 1.  

Proof  

The Jacobian matrix of the dynamical system (1) - (4) at the endemic equilibrium point  𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗  is 

𝐽 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗ =  

−𝜇 − 𝛽𝑖∗ 0 −𝛽𝑠∗ 0
 1 − 𝑝 𝛽𝑖∗ − 𝜇 + 𝛼  1 − 𝑝 𝛽𝑠∗ 0

𝑝𝛽𝑖∗ 𝛼 𝑝𝛽𝑠∗ −  𝜇 + 𝑑 + 𝛾 0
0 0 𝛾 𝜇

 where 

𝑠∗ =
 𝜇+𝛼  𝜇+𝑑+𝛾 

𝛽 𝛼+𝑝𝜇  
, 𝑒∗ =  

 1−𝑝 𝜇 𝜇+𝑑+𝛾 

𝛽 𝛼+𝑝𝜇  
 

𝛽 𝛼+𝑝𝜇  

 𝜇 +𝛼  𝜇 +𝑑+𝛾 
−  1 , 𝑖∗ =

𝜇

𝛽
 

𝛽 𝛼+𝑝𝜇  

 𝜇+𝛼  𝜇+𝑑+𝛾 
−  1 ,  
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𝑟∗ =  
𝛾

𝛽
 

𝛽 𝛼 + 𝑝𝜇 

 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 
−  1  

Note that the endemic equilibrium exists provided that 
𝛽 𝛼+𝑝𝜇  

 𝜇+𝛼  𝜇 +𝑑+𝛾 
− 1 >0 that is  𝑅0 − 1 > 0. 

The corresponding characteristic equation is  

  

− 𝜇 + 𝛽𝑖∗ − 𝜆 0 −𝛽𝑠∗ 0

 1 − 𝑝 𝛽𝑖∗ − 𝜇 + 𝛼 − 𝜆  1 − 𝑝 𝛽𝑠∗ 0

𝑝𝛽𝑖∗ 𝛼  𝑝𝛽𝑠∗ −  𝜇 + 𝑑 + 𝛾  − 𝜆 0

0 0 𝛾  −𝜇 − 𝜆 

  = 0 

Or  

− 𝜇 + 𝛽𝑖∗ − 𝜆 − 𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 𝜇 −  𝜇 + 𝛼  𝜇 + 𝑑 + 𝛾 𝜆 + 𝑝𝛽𝜇 𝜇 + 𝛼 𝑠∗ + 𝑝𝛽 𝜇 + 𝛼 𝑠∗ 𝜆
− 𝜇 𝜇 + 𝛼 𝜆 −  𝜇 + 𝛼 𝜆2 − 𝜇 𝜇 + 𝑑 + 𝛾 𝜆 −  𝜇 + 𝑑 + 𝛾 𝜆2 + 𝑝𝛽𝜇𝑠∗ 𝜆 + 𝑝𝛽𝑠∗ 𝜆2 − 𝜇𝜆2

− 𝜆3 + 𝛼𝛽𝜇 1 − 𝑝 𝑠∗ + 𝛼𝛽 1 − 𝑝 𝑠∗𝜆 − 𝑝𝛽2𝑖∗𝑠∗𝜆2

+   𝛼𝛽2 1 − 𝑝 𝑖∗𝑠∗ + 𝑝𝛽2 𝜇 + 𝛼 𝑖∗𝑠∗ − 𝑝𝛽2𝜇𝑖∗𝑠∗   𝜆 +  𝜇 + 𝛼 𝑝𝛽2𝜇𝑖∗𝑠∗

+ 𝛼𝛽2𝜇 1 − 𝑝 𝑖∗𝑠∗ = 0 

Or this can be rewritten as  𝑎4𝜆
4 + 𝑎3𝜆

3 + 𝑎2 𝜆
2 + 𝑎1 𝜆

1 + 𝑎0𝜆
0  = 0. Applying Routh-Hurwitz stability 

criterion we found that if all signs of the first column of the array have the same, all roots have negative real 

parts. In addition to this all polynomial coefficients must have the same sign, since𝑎4 is positive then the other 

coefficient of the polynomial must be positive. Then the endemic equilibrium point to be stable or unstable we 

restrict the sign of the remaining element in first column of the array, that is  𝑏1 =
1

𝑎3
 𝑎2𝑎3 − 𝑎4𝑎1 and  

𝑐1 =
𝑎1𝑎2𝑎3−𝑎3

2−𝑎4𝑎1
2

𝑎2𝑎3−𝑎4𝑎1
. Hence after some simplification we found that if 𝑏1 > 0 and 𝑐1 > 0 makes 𝑅0 > 1then 

the first column of the Routh-Hurwitz array have the same sign in this case the endemic equilibrium point 

 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗ is stable. If either𝑏1 < 0 or𝑐1 < 0 then the first columns of the Routh-Hurwitz have sign change in 

this case the endemic equilibrium point  𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗ is unstable.  

 

VI. Parameter Estimation based on Real data 
The considered mathematical model can be used to represent the spread of Pneumonia disease in the case of 

Debre Berhan town. Our real data collected from our research site Debre Berhan town   
Description Total 

Total number of male  in Debre Berhan town 46,778 

Total number of female  in Debre Berhan town   56,672 

Total number of population in Debre Berhan town 103,450 

Number of new born individuals in Debre Berhan town  603 

Number of individuals whose age between 0 and 2 years 2,578 

Number of individuals whose age is greater than or equal to 65 years 4,815 

Table 1: The gathered data about the total population and new born individual 

 
Description Total 

Number of individuals who have taken pneumonia test 8,069 

Number of individuals whose fast progress to the disease and directly go to the infected group 1,754 

Number of individuals dies by pneumonia case 32 

Number of individuals dies by natural case 40 

Number of individuals who shows pneumonia positive 5,834 

Table 2: The collected data about the pneumonia diseases and individuals who are died by the disease 

 
Classes of initial population Symbol Total 

Number of susceptible population initially 𝑆0 89,906 

Number of exposed population initially 𝐸0 7,393 

Number of infected population initially 𝐼0 5,834 

Number of recovered population initially 𝑅0 317 

Total initial population 𝑁0 103,450 

Table 3: The total number of initial populations in each of the compartments of the model 

 

Most parameters are identified from the collected data from Debre Berhan town, but there exist few 

parameters which can be estimated based on different research findings. For instance, the latency coefficient and 

the recovery coefficient are estimated depending on different research findings. Incubation period is the time 

taken from being infected with the bacteria or virus to development of symptoms [6]. The incubation period for 

Pneumonia is seven to 10 days [5, 7]. Using this the mean incubation period is the mean value of seven to 10 

days.That is; mean incubation period =
7+10

2
= 8.5 days.The contagious period for Pneumonia is 24 to 48 hours 

[10, 8]. Using this the mean contagious period is the mean value of 1 to 2 days.That is; mean contagious period 
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=
1+2

2
= 1.5 days. The mean incubation period of the Pneumonia is the inverse of the latency coefficient. Using 

this information and the collected real date from Debre Berhan town we do have  

𝑠0 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
, 𝑒0 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 exp𝑜𝑠𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
, 

𝑖0 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
,𝑟0 =

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑑  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙  𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

𝛽 =
𝑇𝑕𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑇𝑕𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑒𝑜𝑝𝑙𝑒𝑠𝑤𝑕𝑜𝑡𝑜𝑜𝑘𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎𝑡𝑒𝑠𝑡
, 𝛼 =

1

𝑚𝑒𝑎𝑛𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑓𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎
 

𝛾 =
1

𝑚𝑒𝑎𝑛𝑐𝑜𝑛𝑡𝑎𝑔𝑒𝑢𝑠𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑓𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎
, μ

1
=

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑒𝑤𝑏𝑜𝑟𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

μ
2

=
Number  of  individuals  dies  by  natural  case  

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
,  

𝜇 =

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑒𝑤𝑏𝑜𝑟𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑡𝑜𝑡 𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
+

Number  of  individuals  dies  by  natural  case  

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

2
=

μ
1

+ μ
2

2
 

𝑑 =
Number of people who dies by pneumonia case

the total number of infected  people
𝑝

=
Number of individuals whose fastly progress to the disease and directly go to the infected group

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
 

 1 − 𝑝  

= 1 −
Number of individuals whose fastly progress to the disease and directly go to the infected group

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
 

 
Descriptions      Symbols           Values 

Fractions of susceptible individuals 𝑠0 0.869076848 

Fractions of exposed individuals 𝑒0 0.071464475 

Fractions of infected individuals 𝑖0 0.056394393 

Fractions of recovered individuals 𝑟0 0.003064282 

The transmission coefficient 𝛽 0.723014004 

The latency coefficient 𝛼 0.117647058 

The recovery coefficient 𝛾 0.66666667 

The natural birth and death rate 𝜇 0.003107781537 

The pneumonia induced death rate 𝑑 0.005485087819 

Proportion of fast progression rate 𝑝 0.300651354 

Proportion of slow progression rate  1 − 𝑝  0.699348645 

Table 4: The estimate values of the state variables and parameters 

 

VII. Model Application 
6.1 Stability of Disease free equilibrium point based on Real parameter estimation 

After substituting the estimated parameter values in table 4   in to model 5 −  8 , we do have the following 

system of non-linear differential equations 
𝑑𝑠

𝑑𝑡
= 0.003107781537 −  0.003107781537 + 0.723014004𝑖 𝑠 ,                                       9  

𝑑𝑒

𝑑𝑡
= 0.505638864𝑠𝑖 −  0.003107781537 + 0.117647058 𝑒 ,                                           10  

𝑑𝑖

𝑑𝑡
 = 0.117647058𝑒 − 0.217375139𝑠𝑖 − 0.675259469𝑖 ,                                                  11  

𝑑𝑟

𝑑𝑡
= 0.66666666𝑖 − 0.003107781537𝑟        12  

Based on the above real data we found the basic reproduction number   𝑅0 = 1.051448663 > 1. This shows 

that the disease free equilibrium point of our SEIR Pneumonia model system is unstable and the endemic 

equilibrium point is stable. This means Pneumonia can be spread through the community of Debre Berhan town. 

By making the right hand side of equations (9) - (12) equal to zero with assumption 𝑖 = 0 we found that the 

disease free equilibrium point is 𝐸0 =  𝑠0 , 𝑒0, 𝑖0, 𝑟0 =  1, 0, 0, 0  and with the assumption 𝑖 ≠ 0 we found that 

the endemic equilibrium point is  

𝐸∗ 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗ =  0.951068688, 0.0008806970415, 0.0002211458277, 0.475463028  . 
 
6.2 Stability analysis of disease free equilibrium point 

The Jacobian matrix of the dynamical system (9) - (12) at the disease free equilibrium point  𝑠0 , 𝑒0, 𝑖0, 𝑟0 =
 1, 0, 0, 0  is  
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𝐽 1,0,0,0 =  

−0.00310778 0 −0.723014004 0
0 −0.120754839 0.505638864 0
0 0.117647058 −0.457888119 0
0 0 0.6666666 −0.00310778

  

The corresponding characteristic equation is 

 

−0.00310778 − 𝜆 0 −0.723014004 0
0 −0.120754839) − 𝜆 0.505638864 0

0 0.117647058 −0.457888119 − 𝜆 0
0 0 0.6666666 −0.00310778 − 𝜆

 = 0 

 

After some calculation we found that the eigen values are  𝜆1 = −0.00310778, 𝜆2 = −0.00310778, 𝜆3 =
−0.585803579 𝑎𝑛𝑑 𝜆4 = 0.0071606215. The first three eigenvalues of the Jacobian matrix are negative 

values but the fourth one is positive, therefore the disease free equilibrium point 1.0,0,0  is unstable. This 

implies that the disease exists in the community of Debre Berhan town.  

 

6.3 Stability analysis of endemic equilibrium point  

𝑬∗ 𝒔∗, 𝒆∗, 𝒊∗, 𝒓∗ =  𝟎. 𝟗𝟓𝟏𝟎𝟔𝟖𝟔𝟖𝟖, 𝟎. 𝟎𝟎𝟎𝟖𝟖𝟎𝟔𝟗𝟕𝟎𝟒𝟏𝟓, 𝟎. 𝟎𝟎𝟎𝟐𝟐𝟏𝟏𝟒𝟓𝟖𝟐𝟕𝟕, 𝟎. 𝟒𝟕𝟓𝟒𝟔𝟑𝟎𝟐𝟖   

The Jacobian matrix of the dynamical system (9) - (12) at the endemic equilibrium point is 

𝑱 𝒔∗, 𝒆∗, 𝒊∗, 𝒓∗ =  

−0.003267673067 0 −0.694413329 0
0.0001118199251 −0.120754839 0.480888908 0

0.00004807160509 0.117647058 0.46852078 0
0 0 0.66666666 −0.00310778

  

The corresponding characteristic equation is 

 

−0.003267673067 − 𝜆 0 −0.694413329 0
0.0001118199251 −0.120754839 − 𝜆 0.480888908 0

0.00004807160509 0.117647058 −0.46852078 − 𝜆 0
0 0 0.66666666 −0.00310778 − 𝜆

 = 0 

Or 𝜆4 + 0.090552962𝜆3 + 0.700864956𝜆2 + 0.026602248𝜆 + 0.00000273612458 = 0 
Applying Routh Hurwitz stability criterion we found that the Routh Hurwitz array  

 

𝜆4

𝜆3

𝜆2

𝜆1

𝜆0

 
 

1 0.700864956 0.00000273612458 0
0.090552962 0.026602248 0 0
0.407089378 0.00000273612458 0 0
0.026601639 0 0 0

0.00000273612458 0 0 0

 

By Routh-Hurwitz stability criteria from this Routh array we understand that the first columns have the same 

sign and thus all the roots of the characteristic polynomials are negative. Therefore, the endemic equilibrium 

point  

𝐸∗ 𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗ =  0.951068688, 0.0008806970415, 0.0002211458277  0.475463028   

It is stable. This means that Pneumonia is spread through the community of Debre Berhan town.   

 

VIII. Numerical Simulation 
In this section, we found the effect of control parameters on the basic reproduction number of our dynamical 

system𝑅0 =
𝛽(α+pμ)

(μ+𝛼)(μ+𝑑+𝛾)
. The parameters are the transmission coefficient𝛽, the latency coefficient𝛼, the 

recovery coefficient𝛾, the proportion of fast progression rate𝑝, the disease induced death rate𝑑, the birth rate 𝜇. 

In this analysis we discuss the effect of each parameters change on the basic reproduction number graphically 

using win plot software, where the parameter values are taken from table 4. 

 

7.1 Basic reproduction number 𝑹𝟎 versus transmission coefficient 𝜷 

Let us take our control parameter to be the transmission coefficient 𝛽 and the  remaining parameters taken to 

be constant. Then𝑅0 𝛽 = 1.454257688𝛽. The graphical representation of the basic reproduction number 𝑅0 

versus the transmission coefficient 𝛽 is  
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Figure 1: From this, graph we observe that when  𝜷 < 0.687636041, then𝑹𝟎 < 1. And when𝜷 >

0.687636041, and then𝑹𝟎 >1 

 

7.2 Basic reproduction number 𝑹𝟎 versus recovery coefficient 𝜸 

Let us take the second control parameter 𝛾 with various values, which is recovery coefficient and the remaining 

parameters are assumed to be constant. Then𝑅0 𝛾 =
0.085736024

0.001037630556 +0.120754839 𝛾
.The graphical representation of 

basic reproduction numberversus the recovery coefficient 𝛾  is given by 

 

 
 Figure 2: From this, graph we observe that as𝜸 → ∞, 𝑹𝟎 → 𝟎. If  𝜸 < 0.624072037, then 

  𝑹𝟎 > 𝟏. And if 𝜸 >  0.624072037, and then𝑹𝟎 < 𝟏 

 

The reproduction number𝑅0 is inversely proportional to 𝛾. 
7.3 Basic reproduction number 𝑹𝟎 versus disease induced death rate 𝒅 

Let us take the third control parameter 𝑑 with various values, which is disease induced death rate and the 

remaining parameters are assumed to be constant. we get 𝑅0 𝑑 =
0.085736024

0.080878506 +0.12754839 𝑑
.The following graph 

shows basic reproduction number in the vertical axes versus the disease induced death rate in the horizontal 

axes.  

 
Figure 3: From this, graph we observe that as𝒅 → ∞, 𝑹𝟎 → 𝟎. When 𝒅 < 0.04022679 then𝑹𝟎 > 𝟏.And 

when𝒅 > 0.04022679,  and then𝑹𝟎 < 𝟏. The basic reproduction number𝑹𝟎 is inversely proportional to 𝒅. 
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7.4 Basic Reproduction number 𝑹𝟎 versus latency coefficient 𝜶 

Let us take forth control parameter to be  𝛼 which is the latency coefficient and the remaining parameters are 

taken to be constant we get𝑅0 𝛼 =
0.723014004 𝛼+0.000675554

(0.002098559128 +0.675259539 𝛼)
.   The graphical representation of the basic 

reproduction number versus the latency coefficient in the is given by 

 

 
Figure 4: From this, geaph we see  that as𝜶 → ∞,  𝑹𝟎 → 𝟏. 𝟎𝟕𝟎𝟕𝟐𝟎𝟏𝟔𝟑.When𝜶 < 0.029798368 then𝑹𝟎 <

1.And when𝜶 > 0.029798368 then𝑹𝟎 > 1. 

 

7.5 Basic reproduction number 𝑹𝟎 versus the birth rate 𝝁 

Let us take the fifth control parameter to be  𝜇 which is the birth rate and the remaining parameters are assumed 

to be constantwe get𝑅0 𝜇 =
0.08506047 +0.217375139 𝜇

 𝜇 2+0.789798815 𝜇+0.079076676  
 .The graphical representation of the basic 

reproduction number versus the birth rate is given by 

 

 
Figure 5: From this, graph we observe that analytically, as𝜇 → ∞, 𝑅0 → 0. When 

𝜇 < 0.010269206 and then𝑅0 > 1. And when𝜇 > 0.010269206 then𝑅0 < 1 

 

7.6 Basic reproduction number 𝑹𝟎 versus the proportion of fast progression rate 𝒑 

Let we take the last control parameter to be 𝑝 which is the proportion of fast progression rate and the remaining 

parameters are assumed to be constant. Then𝑅0(𝑝) = 1.04316381 + 0.027556364𝑝 

 The following graph shows basic reproduction number in the vertical axes versus is the proportion of fast 

progression rate in the horizontal axes.  

 

 
Figure 6: From this graph, we observe that the basic reproduction number𝑅0 is directly proportional to  𝑝. 
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IX. Sensitivity Analysis 
Sensitivity analysis investigates the relations between control parameters and basic reproduction 

number of the dynamical system and a property of the observable outcome, which represents some phenotypic 

features of the modeled system. In this work we use sensitivity analysis to determine the effect of those 

parameters and the most influential parameter that affects the basic reproduction number.  The primary objective 

of Sensitivity analysis is to calculate 
𝜕𝑅0

𝜕𝑥𝑖

𝑥𝑖

𝑅0
 where 𝑥𝑖  is represents those parameter𝛽, 𝛼, 𝑝, 𝜇, 𝛾, 𝑑, which are exist 

in our mathematical model.Thus the normalized sensitivity indices of the reproduction number with respect 

to𝛽, 𝛼, 𝑝, 𝜇, 𝛾 𝑎𝑛𝑑 𝑑are given by: 

i) 𝑆𝐼 𝛽 = 1 

ii) 𝑆𝐼 𝛼 =
𝛼𝜇  1−𝑝 

(𝛼+𝜇)(𝛼+𝑝𝜇 )
 

iii) 𝑆𝐼 𝑝 =
𝑝𝜇

α+pμ
 

iv) 𝑆𝐼 𝜇 =
𝜇 𝑝 μ+𝑑+𝛾 − 2μ+𝑑+𝛾+𝛼  

 α+pμ  μ+𝑑+𝛾 
 

v) 𝑆𝐼 𝛾 = −
γ

μ+𝑑+𝛾
 

vi) 𝑆𝐼 𝑑 = −
d

μ+𝑑+𝛾
 

Based on the values of each parameter given in table 4 the values of normalized sensitivity indices are 

calculated as follows: 

 
Parameter Sensitivity index 

𝛽 −2.920911325808973 

 𝜇 +1 

𝛾 −0.987274718 

𝛼 +0.0178568196314191 

𝑑 −0.008122932 

𝑝 +0.007881397404381 

Table 5: Numerical sensitive indices of control parameters 

 

From the sensitivity analysis we observe that the transmission coefficient 𝛽 is more sensitive parameter than the 

other five parameters.  

 

X. Results and Discussions 
In this work we have been dealing with dynamics of Pneumonia disease based on the deterministic 

mathematical model. To understand the dynamics of the disease, we first discussed the initial mathematical 

model of Pneumonia disease, the authors divide the total population in four categories namely the susceptible 

group𝑆 𝑡 , the exposed group𝐸 𝑡 , the infected group 𝐼 𝑡  and the recovered group𝑅 𝑡 . In the initial 

mathematical model the authors assumed that all population group decreases by natural death rate𝜇, but in our 

extended model the infected peoples additionally decreases due to disease induced death rate 𝑑 and also the 

authors of the initial mathematical model considers all susceptible peoples inters to the exposed group, but in 

this research the susceptible individuals directly inters to the infected group due the factor associated to fast 

progression rate 𝑝 and the remaining susceptible people will inters to the exposed group due to strong immunity 

individuals by slow progression rate  1 − 𝑝 .  

A complete qualitative analysis of the model was done. It was first showed that the positivity of the 

solution, where the model is epidemiologically and mathematically meaningful and Boundedness of the solution 

region. The model has two equilibrium points, the disease free equilibrium point 𝐸0 and the endemic 

equilibrium point𝐸∗. The model basic reproduction number 𝑅0 was calculated using the next generation matrix 

i.e.𝑅0 =
𝛽 𝛼+𝑝μ 

 𝜇 +α  𝜇+d+γ 
, which  depends on six  parameters. The stability analysis of the equilibrium points was 

investigated using Routh-Hurwitz stability criteria. Using real data collected from Debre Berhan town the model 

is numerically analyzed. Using these collected real data we determined the disease free equilibrium point is 

 1, 0, 0, 0  and the endemic equilibrium point 

is 0.951068688, 0.00088069704156, 0.0002211458277, 0.47546302    and the basic reproduction number 

is 𝑅0 = 1.051448663.and thus we observe that the disease free equilibrium point is unstable and the endemic 

equilibrium point is stable since 𝑅0 > 1.  

From thenumerical simulations that has done above we observe that, when the transmission coefficient 

increases (𝛽 > 0.687636041), then the basic reproduction number also increases (𝑅0 > 1). This means the 

number of infected population increases in the community and the disease persist. If the recovery coefficient 

increases (𝛾 > 0.590832377), then the basic reproduction number decrease (𝑅0 < 1) which indicates the 
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number of infected people decrease in the community that is the spread of the disease reduces. When the disease 

induced death rate increases (𝑑 > 0.04022679), then the basic reproduction number decreases(𝑅0 <
1),thisimplies that the number of infected population decreases and the spread of the disease reduce.  

If the latency coefficient increase (α > 0.029798368), then the basic reproduction number also 

increase (𝑅0 > 1). This means the number of infected population increases in the community and the disease 

persist. When the natural birth rate increase (μ > 0.010269206), then the basic reproduction number decrease 

(𝑅0 < 1) which  means that the number of infected population decreases and the spread of the disease reduce 

and if the proportion of fast progression rate increases, then the basic reproduction number 𝑅0 increases. This 

means that the number of individuals directly go to the infected class increase.  

In general, results from numerical analysis shows that when the transmission coefficient, latency 

coefficient and the proportion of fast progression rate  increases, then the basic reproduction number increases, 

this implies that the infected population increases, this will result increasing on the transmission of Pneumonia, 

when it decrease the basic reproduction number decrease, this implies that the infected population decrease. This 

will result decreasing on the transmission of Pneumonia. In other way when the recovery coefficient, the natural 

birth rate and the disease induced death rate decrease, then the basic reproduction number increase, this implies 

that the infected population increases, this will result increasing on the transmission of Pneumonia. When it 

increases, then the basic reproduction number decrease, this implies that the infected population decrease. This 

will result decreasing on the transmission of Pneumonia. 

 

XI. Conclusions and Recommendations 
Conclusions 

Based on our data collected from Debre Berhan town we have made the parameter estimation which 

gives the basic reproduction number is 𝑅0 = 1.051448663.  This shows that the Pneumonia generation number 

is greater than one and guarantees the spread of Pneumonia is high in the community of Debre Berhan town. 

From the sensitivity analysis we understand that the transmission coefficient 𝛽 is more sensitive parameter than 

the other five parameters. This means that the transmission coefficient 𝛽 is the most influential parameter on the 

increment of basic reproduction number than the other five parameters. 

 
Recommendations 

Based on the finding of the study the current researcher recommends the following. The basic control 

parameter that decreases the number of infected people is the transmission coefficient𝛽 = 0.687636041. 

Therefore, to be the basic reproduction number less than one the transmission coefficient 𝛽 should be less 

than 0.687636041. The second basic control parameter that decreases the basic reproduction number is the 

recovery coefficient𝛾 = 0.590832377. Therefore, to be the basic reproduction number less than one the 

recovery coefficient 𝛾should be greater than 0.590832377.  The third basic control parameter that decreases the 

basic reproduction number is the latency coefficientα = 0.029798368. Therefore to be the basic reproduction 

number less than one the latency coefficient should be 𝛼 should be less than0.029798368. 
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