Dynamics of ellipses inscribed in quadrilaterals

Alan Horwitz
Corresponding Author: Alan Horwitz

I. Introduction

Suppose that we are given a point, P, in the interior of a convex quadrilateral, Q, in the $x y$ plane. Is there an ellipse, E_{0}, inscribed in Q and which also passes through P ? If yes, how many such ellipses ? By inscribed in Q we mean that E_{O} lies in Q and is tangent to each side of Q. Looked at in a dynamic sense: Imagine a particle constrained to travel along the path of an ellipse inscribed in Q, so that the particle bounces off of each side of Q along its path. Of course there are infinitely many such paths. Can we also specify a point in Q that the particle must pass through ? If yes, is such a path then unique ? We show below(Theorem 1) that the path is unique when P lies on one of the diagonals of Q (but does not equal their intersection point), while there are two such paths if P does not lie on one of the diagonals of Q. If P equals the intersection point of the diagonals of Q, then no ellipse inscribed in Q passes through P. Finally, there is a unique ellipse inscribed in Q which is tangent at a given point on the boundary of Q, assuming, of course, that that point is not one of the vertices of Q. For a paper somewhat similar to this one, but involving ellipses inscribed in triangles, see [4].

II. Main Result

Theorem 1: Let Q be a convex quadrilateral in the $x y$ plane, let $\operatorname{int}(Q)$ denote the interior of Q, and let $\partial(Q)$ denote the boundary of Q. Let D_{1} and D_{2} denote the diagonals of Q and let $I P$ denote their point of intersection. Let $P=(x, y)$ be a point in $Q=\operatorname{int}(Q) \cup \partial(Q)$.
(i) If $P \in \operatorname{int}(Q), P \notin D_{1} \cup D_{2}$, then there are exactly two ellipses inscribed in Q which pass through P.
(ii) If $P \in \operatorname{int}(Q)$ and $P \in D_{1} \cup D_{2}$, but $P \neq I P$, then there is exactly one ellipse inscribed in Q which passes through P.
(iii) There is no ellipse inscribed in Q which passes through $I P$.
(iv) If $P \in \partial(Q)$, but P is not one of the vertices of Q, then there is exactly one ellipse inscribed in Q which passes through P (and is thus tangent to Q at one of its sides)
Figures 1 and 2 below illustrate Theorem 1(i) and (ii), respectively.

Figure 1

Figure 2
By Theorem 1 we have the following:
Corollary: If two ellipses inscribed in a convex quadrilateral intersect at a point, then that point of intersection cannot lie on either diagonal of the quadrilateral.

III. Preliminary Results

A problem, often referred to in the literature as Newton's problem, was to determine the locus of centers of ellipses inscribed in a convex quadrilateral, Q, in the $x y$ plane. Chakerian [1] gives a partial solution of Newton's problem using orthogonal projection, which is the solution actually given by Newton.

Newton's Theorem:Let M_{1} and M_{2} be the midpoints of the diagonals of a convex quadrilateral, Q. If E_{0} is an ellipse inscribed in Q, then the center of E_{0} must lie on the open line segment, Z, connecting M_{1} and M_{2}.

The figure below illustrates Newton's Theorem, which we use to help with deriving the general equation of an ellipse inscribed in Q (see Proposition 1).

We now state the following result about when a quadratic equation in x and y yields a nondegenerate ellipse.
Lemma 1: The equation $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, with $A, C>0$, is the equation of an ellipse if and only if $\Delta>0$ and $\delta>0$, where $\Delta=4 A C-B^{2}$ and $\delta=C D^{2}+A E^{2}-B D E-F \Delta$
Remark: The condition $\delta>0$ implies that the equation defines a curve and not just a single point or the empty set. The condition $\Delta>0$ implies that the equation defines an ellipse [2].
We shall prove Theorem 1 below when Q is not a parallelogram. We leave the details when Q is a parallelogram for the reader. Let Q be a convex quadrilateral with vertices A_{1}, A_{2}, A_{3}, and A_{4}, starting with $A_{1}=$ lower left corner and going clockwise. Then there is an affine transformation which sends A_{1}, A_{2}, and A_{4} to the points $(0,0),(0,1)$, and $(1,0)$, respectively. It then follows that $A_{3}=(s, t)$ for some $s, t>0$; Thus it suffices to consider the quadrilateral, $Q_{s, t}$, with vertices $(0,0),(0,1),(s, t)$, and $(1,0)$.

Since $Q_{s, t}$ is convex, $s+t>1$; Also, if Q has a pair of parallel vertical sides, first rotate counterclockwise by
90°, yielding a quadrilateral with parallel horizontal sides. Since we are assuming that Q is not a parallelogram, we may then also assume that $Q_{s, t}$ does not have parallel vertical sides and thus $s \neq 1$. The midpoints of the diagonals of $Q_{s, t}$ are $M_{1}=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $M_{2}=\left(\frac{1}{2} s, \frac{1}{2} t\right)$, and the line through M_{1} and M_{2} has equation

$$
y=L(x)=\frac{s-t+2 x(t-1)}{2(s-1)}
$$

Any point on the open line segment connecting M_{1} and M_{2} has the form $(h, L(h)), h \in I=\frac{1}{2}$ and $\frac{1}{2} s$.
Now suppose that E_{0} is an ellipse inscribed in $Q_{s, t}$. How does one find the equation of E_{0} and the points of tangency of E_{0} with $Q_{s, t}$? We sketch the derivation of the equation and points of tangency now.First, since E_{0} has center $\left(h, L(h), h \in I\right.$ by Newton's Theorem, one may write the equation of E_{0} in the form

$$
\begin{equation*}
(x-h)^{2}+B(x-h)(y-L(h))+C(y-L(h))^{2}+F=0 . \tag{1}
\end{equation*}
$$

Throughout we let J denote the open interval $(0,1)$; Now suppose that E_{0} is tangent to $Q_{s, t}$ at the points $P_{\zeta}=(\zeta, 0)$ and $P_{v}=(0, v)$, where $\zeta, v \in J ;$ Differentiating(1)with respectto x andplugging in P_{ζ} and P_{v} yields

$$
\begin{align*}
\zeta-h & =\frac{B L(h)}{2} \tag{2}\\
& v-L(h)=\frac{B h}{2 C}
\end{align*}
$$

Plugging in P_{ζ} and P_{v} into (1) yields
$(\zeta-h)^{2}-B L(h)(\zeta-h)+C(L(h))^{2}+F=0$ and
$h^{2}-B h(v-L(h))+C(v-L(h))^{2}+F=0 ;$ By (2) we have $F=\frac{h^{2}}{4 C}\left(B^{2}-4 C\right)$ and
$F=\frac{L^{2}(h)}{4}\left(B^{2}-4 C\right) ;$ Using both expressions for F gives

$$
\begin{equation*}
C=\frac{h^{2}}{L^{2}(h)} \tag{3}
\end{equation*}
$$

Now by (2) again,

$$
\begin{equation*}
B=\frac{2(\zeta-h)}{L(h)} \tag{4}
\end{equation*}
$$

(2), (3), and (4) then imply that

$$
\begin{equation*}
v=\frac{\zeta L(h)}{h} \tag{5}
\end{equation*}
$$

Substituting (3) and (4) into $F=\frac{h^{2}}{4 C}\left(B^{2}-4 C\right)$ yields $F=\zeta^{2}-2 \zeta h$; (1) then becomes

$$
\begin{equation*}
(x-h)^{2}+\frac{2(\zeta-h)}{L(h)}(x-h)(y-L(h))+\frac{h^{2}}{L^{2}(h)}(y-L(h))^{2}+\zeta^{2}-2 \zeta h=0 \tag{6}
\end{equation*}
$$

Finally, we want to find h in terms of ζ, which makes the final equation simpler than expressing everything in terms of h. One way to do this is to use the following well-known Theorem of Marden [5].

Marden's Theorem: Let $F(z)=\frac{t_{1}}{z-z_{1}}+\frac{t_{2}}{z-z_{2}}+\frac{t_{3}}{z-z_{3}}, \sum_{k=1}^{3} t_{k}=1$, and let Z_{1} and Z_{2} denote the zeros of $F(z)$. Let L_{1}, L_{2}, L_{3} be the line segments connecting $z_{2} \& z_{3}, z_{1} \& z_{3}$, and $z_{1} \& z_{2}$, respectively.If $t_{1} t_{2} t_{3}>0$, then Z_{1} and Z_{2} are the foci of an ellipse, E_{0}, which is tangent to L_{1}, L_{2}, and L_{3} at the points $\zeta_{1}, \zeta_{2}, \zeta_{3}$, where $\zeta_{1}=\frac{t_{2} z_{3}+t_{3} z_{2}}{t_{2}+t_{3}}, \zeta_{2}=\frac{t_{1} z_{3}+t_{3} z_{1}}{t_{1}+t_{3}}$, and $\zeta_{3}=\frac{t_{1} z_{2}+t_{2} z_{1}}{t_{1}+t_{2}}$, respectively.
Using $A_{2}=(0,1), A_{3}=(s, t)$, and $A_{5}=\left(0,-\frac{t}{s-1}\right)$, and applying Marden's Theorem to the triangle $\square A_{2} A_{3} A_{5}$, one can show that E_{0} is tangent to $Q_{s, t}$ at the point $\left(\frac{s-2 h}{2(t-1) h+s-t}, 0\right)$.

Many of the details of this can be found in [3]. Hence $\zeta=\frac{s-2 h}{2(t-1) h+s-t}$, which implies that

$$
\begin{equation*}
h=\frac{1}{2} \frac{\zeta(t-s)+s}{\zeta(t-1)+1} \tag{7}
\end{equation*}
$$

Substituting for h in (6) using (7) and simplifying gives

$$
\begin{gather*}
t^{2} x^{2}+\left(4 \zeta^{2}(t-1) t+2 \zeta t(s-t+2)-2 s t\right) x y+ \\
(\zeta(t-s)+s)^{2} y^{2}-2 \zeta t^{2} x-2 \zeta t(\zeta(t-s)+s) y+\zeta^{2} t^{2}=0, \zeta \in J \tag{8}
\end{gather*}
$$

Now we use Lemma 1 to show that (8) gives the equation of an ellipse. First, Δ simplifies to $16 t^{2}(1-\zeta) \zeta(\zeta(t-1)+1)(s+\zeta(t-1))>0$ since $\zeta \in J, s, t>0$, and $s+t>1$; Similarly, δ simplifies to $\zeta^{2}(\zeta-1)^{2}(s+\zeta(t-1))^{2}>0$; Note that by (7), any ellipse with equation given by (8) has center $(h, L(h))=C_{\zeta}=\left(\frac{1}{2} \frac{\zeta(t-s)+s}{\zeta(t-1)+1}, \frac{1}{2} \frac{t}{(t-1) \zeta+1}\right)$; This leads to the following result, some of which we have already proven.
Proposition 1: (i) E_{0} is an ellipse inscribed in $Q_{s, t}$ if and only if the general equation of E_{0} is given by (8) for some $\zeta \in J$. Furthermore, (8) provides a one-to-one correspondence between ellipses inscribed in $Q_{s, t}$ and points $\zeta \in J$.
(ii) If E_{0} is an ellipse given by (8) for some $\zeta \in J$, then E_{0} is tangent to the four sides of $Q_{s, t}$ at the points
$\zeta_{1}=\left(0, \frac{\zeta t}{\zeta(t-s)+s}\right), \zeta_{2}=\left(\frac{(1-\zeta) s^{2}}{\zeta(t-1)(s+t)+s}, \frac{t(s+\zeta(t-1))}{(\zeta(t-1)(s+t)+s)}\right)$,
$\zeta_{3}=\left(\frac{s+\zeta(t-1)}{\zeta(s+t-2)+1}, \frac{(1-\zeta) t}{\zeta(s+t-2)+1}\right)$, and $\zeta_{4}=(\zeta, 0)$, going clockwise and starting with the leftmost side.
Proof: First, the derivation given above proves that if E_{0} is an ellipse inscribed in $Q_{s, t}$, then the general equation of E_{0} is given by (8) for some $\zeta \in J$. Now it is clear geometrically that if E_{1} and E_{2} are distinct ellipses with the same center and which are each inscribed in a convex quadrilateral, Q, then Q must be a parallelogram. Chakerian mentions this in [1], but no proof is cited or given. One way to prove this is as follows:By using nonsingular affine transformations, one may assume that E_{1} is the unit circle and that E_{2} has major and minor axes parallel to the x and y axes. We leave the rest of the details to the reader. Since $Q_{s, t}$ is not a parallelogram, there is a one-to-one correspondence between ellipses inscribed in $Q_{s, t}$ and points $\zeta \in J$ and completes theproof of (i). Second, if E_{0} is an ellipse with equation given by (8), then using basic calculus techniques it is easy to show that E_{0} is inscribed in $Q_{s, t}$ and is tangent to the four sides of $Q_{s, t}$ at $\zeta_{1}-\zeta_{4}$, which proves (ii).

Lemma 2: Let

$$
\begin{align*}
& g(x, y)=(y s+(1-y) t)^{2}+4 t(t-1) x y, \tag{9}\\
& \quad(s, t) \in G=\{(s, t): s, t>0, s+t>1, s \neq 1\} .
\end{align*}
$$

Then $g(x, y)>0$ for any $(x, y) \in \operatorname{int}\left(Q_{s, t}\right)$.
Proof: Suppose that $(x, y) \in \operatorname{int}\left(Q_{s, t}\right)$.
Since $y s+(1-y) t$ is a linear function of y which is positive at $y=0$ (yields $t>0$) and at $y=1$ (yields $s>0$),

$$
\begin{equation*}
y s+(1-y) t>0, y \in J \tag{10}
\end{equation*}
$$

Hence $g(x, y)>0$ if $t \geq 1$. Assume now that $s>1$ and $t<1$: By completing the square we have

$$
\begin{gathered}
\frac{g(x, y)}{(s-t)^{2}}=\left(y+\left(\frac{t}{s-t}\right)\left(\frac{2(t-1) x}{s-t}+1\right)\right)^{2}+4 t^{2}(1-t) x \frac{(t-1) x+s-t}{(s-t)^{4}} . \text { Using similar reasoning, } \\
(t-1) x+s-t>0, x \in J
\end{gathered}
$$

Hence $g(x, y)>0$ if $s>1$ and $t<1$. Finally, assume that $s<1$ and $t<1: \frac{\partial g(x, y)}{\partial x}=4 t y(t-1) \neq 0$, which implies that g has no critical points in $\operatorname{int}\left(Q_{s, t}\right)=S_{1} \cup S_{2}$,
where $S_{1}=\left\{(x, y): 0<x \leq s, 0<y<L_{2}(x)\right\}, S_{2}=\left\{(x, y): s \leq x<1,0<y<L_{3}(x)\right\}$, and

$$
\begin{align*}
& L_{2}(x)=1+\frac{t-1}{s} x \tag{11}\\
& L_{3}(x)=\frac{t}{s-1}(x-1)
\end{align*}
$$

We now check g on $\partial\left(Q_{s, t}\right) \cdot g(x, 0)=t^{2}>0, g\left(x, L_{2}(x)\right)=\left(s^{2}-(1-t)(s+t) x\right)^{2} / s^{2}$; Since $x \leq s$
for $(x, y) \in S_{1}$,
$s^{2}-(1-t)(s+t) x \geq s^{2}-(1-t)(s+t) s=s t(s+t-1)>0$, and hence nonzero. Thus
$g\left(x, L_{2}(x)\right)>0 ; g\left(x, L_{3}(x)\right)=t^{2}((s+t-2) x+1-t)^{2} /(s-1)^{2}$; Since $s+t-2<0$ and $s \leq x$ for $(x, y) \in S_{2},(s+t-2) x+1-t \leq(s+t-2) s+1-t=(s-1)(s+t-1)<0$, and hence nonzero. Thus $g\left(x, L_{3}(x)\right)>0$; Finally, $g(0, y)=(y s+(1-y) t)^{2}>0$ by (10).
Proof of Theorem 1:For fixed x, y, s, t, one can rewrite the left hand side of (8) as the following polynomial in $\zeta: p(\zeta)=p_{2} \zeta^{2}+p_{1} \zeta+p_{0}$, where $p_{2}=g(x, y)$, $p_{1}=2 t(s-t+2) x y-2 s y^{2}(s-t)-2 s t y-2 t^{2} x, p_{0}=(s y-t x)^{2}$, and $g(x, y)$ is from Lemma 2 .
Evaluating p at the endpoints of Jyields

$$
\begin{align*}
& p(0)=(s y-t x)^{2} \geq 0 \tag{12}\\
& \quad p(1)=t^{2}(x+y-1)^{2} \geq 0
\end{align*}
$$

Now a simple computation yields, in simplified form, the discriminant of p :

$$
\begin{gathered}
p_{1}^{2}-4 p_{2} p_{0}= \\
-16 s(s-1) t^{2} x y\left(y-L_{2}(x)\right)\left(y-L_{3}(x)\right)
\end{gathered}
$$

Also, $p^{\prime}\left(\zeta_{0}\right)=0$, where $\zeta_{0}=-\frac{p_{1}}{2 p_{2}}$. Another simple computation yields $p\left(\zeta_{0}\right)=-\frac{p_{1}^{2}-4 p_{2} p_{0}}{4 p_{2}}$, which implies, by (13), that

$$
\begin{equation*}
p\left(\zeta_{0}\right)=\frac{4 s(s-1) t^{2} x y\left(y-L_{2}(x)\right)\left(y-L_{3}(x)\right)}{p_{2}} \tag{14}
\end{equation*}
$$

We now assume throughout that $s>1$ and thus $I=\left(\frac{1}{2}, \frac{1}{2} s\right)$. The case $s<1$ follows similarly and we omit the details. Suppose that $(x, y) \in \operatorname{int}\left(Q_{s, t}\right)=S_{1} \cup S_{2}$, where $S_{1}=\left\{(x, y): 0<x \leq 1,0<y<L_{2}(x)\right\}, L_{2}$ and L_{3} given in (11). By (14), $p\left(\zeta_{0}\right)<0$. Summarizing:

$$
\begin{equation*}
(x, y) \in \operatorname{int}\left(Q_{s, t}\right) \text { and } p^{\prime}\left(\zeta_{0}\right)=0 \text { implies that } p\left(\zeta_{0}\right)<0 . \tag{15}
\end{equation*}
$$

For given $P=(x, y) \in \operatorname{int}\left(Q_{s, t}\right)$, by Proposition 1(i), the number of distinct ellipses inscribed in $Q_{s, t}$ which pass through P equals the number of distinct roots of $p(\zeta)=0$ in J. To prove (i), suppose that $P \notin D_{1} \cup D_{2}$. Then $x+y-1 \neq 0 \neq s y-t x$, which implies, by (12), that $p(0)>0$ and $p(1)>0$. By (15), $p(\zeta)$ has two distinct roots in J. To prove (ii), suppose that $P \in D_{1} \cup D_{2}$, but $P \neq I P$. Then either $x+y-1=0$ or $s y-t x=0$, butnot both, which implies, by (12), that $p(0)>0$ and $p(1)>0$, or $p(0)>0$ and $p(1)=0$. By (15), $p(\zeta)$ has one root in J. Finally, to prove(iii), if $P=I P$, then by (12), $p(\zeta)$ vanishes at both endpoints of J, which implies that p has no roots in J. The proof of (iv) follows from the proof of Proposition 1(ii) and we leave the details to the reader.
Examples: (1) $s=\frac{1}{2}, t=\frac{3}{4}, x=\frac{1}{3}$, and $y=\frac{3}{4}$. Then $P=\left(\frac{1}{3}, \frac{3}{4}\right) \in \operatorname{int}\left(Q_{s, t}\right), P \notin D_{1} \cup D_{2}$. By
Theorem 1(i), there are exactly two ellipses, E_{1} and E_{2}, inscribed in $Q_{s, t}$ and which pass through P;
$256 p(\zeta)=33 \zeta^{2}-36 \zeta+4$, which has roots $\frac{6}{11} \pm \frac{8}{33} \sqrt{3} \in J$. Letting $\zeta=\frac{6}{11}-\frac{8}{33} \sqrt{3}$ in (8) yields the equation of E_{1} :

$$
\begin{gathered}
27(1099-152 \sqrt{ } 3) x^{2}+16(1477-444 \sqrt{ } 3) y^{2}+24(1117-1062 \sqrt{ } 3) x y+ \\
36(524 \sqrt{ } 3-1065) x+48(-773+398 \sqrt{ } 3) y \\
=36(-481+272 \sqrt{ } 3)
\end{gathered}
$$

Letting $\zeta=\frac{6}{11}+\frac{8}{33} \sqrt{3}$ in (8) yields the equation of E_{2} :

$$
\begin{gathered}
27(1099+152 \sqrt{ } 3) x^{2}+16(1477+444 \sqrt{ } 3) y^{2}+24(1117+1062 \sqrt{ } 3) x y- \\
36(1065+524 \sqrt{ } 3) x-48(773+398 \sqrt{ } 3) y \\
=-36(481+272 \sqrt{ } 3) .
\end{gathered}
$$

(2) $s=4, t=2, x=\frac{1}{2}$, and $y=\frac{1}{4}$. Then $P=\left(\frac{1}{2}, \frac{1}{4}\right) \in D_{1} \cup D_{2}, P \neq I P=\left(\frac{2}{3}, \frac{1}{3}\right)$.By Theorem 1(ii), there is exactly one ellipse, E_{0}, inscribed in $Q_{s, t}$ which passes through P;
$p(\zeta)=(1 / 4) \zeta(29 \zeta-28)$, which has roots 0 and $\frac{28}{29}$; Letting $\zeta=\frac{28}{29}$ in (8) yields the equation of E_{0} $: 15979 x^{2}+17100 y^{2}+27588 x y-30856 x-31920 y+16240=1344$.

References

[1]. G. D. Chakerian, A Distorted View of Geometry, MAA, Mathematical Plums, Washington, DC, 1979, 130-150.
[2]. Jack Goldberg, "Matrix Theory with Applications", McGraw-Hill, 1991.
[3]. Alan Horwitz, Ellipses of maximal area and of minimal eccentricity inscribed in a convex quadrilateral, Australian Journal of Mathematical Analysis and Applications, 2(2005), Issue 1, Article 4, 1-12.
[4]. Alan Horwitz, Dynamics of ellipses inscribed in triangles, Journal of Science, Technology and Environment, Volume 5, Issue 1 (2016), 1-21.
[5]. Morris Marden, The Location of the Zeros of the Derivative of a Polynomial, The American Mathematical Monthly, Vol. 42, No. 5 (May, 1935), pp. 277-286.

Alan Horwitz. " Dynamics of ellipses inscribed in quadrilaterals." IOSR Journal of Mathematics (IOSR-JM) 15.5 (2019): 11-18.

